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Abstract: WUSCHEL-related homeobox (WOX) transcription factors are unique to plants and play
pivotal roles in plant development and stress responses. In this investigation, we acquired protein
sequences of foxtail millet WOX gene family members through homologous sequence alignment
and a hidden Markov model (HMM) search. Utilizing conserved domain prediction, we identified
13 foxtail millet WOX genes, which were classified into ancient, intermediate, and modern clades.
Multiple sequence alignment results revealed that all WOX proteins possess a homeodomain (HD).
The SiWOX genes, clustered together in the phylogenetic tree, exhibited analogous protein spatial
structures, gene structures, and conserved motifs. The foxtail millet WOX genes are distributed
across 7 chromosomes, featuring 3 pairs of tandem repeats: SiWOX1 and SiWOX13, SiWOX4 and
SiWOX5, and SiWOX11 and SiWOX12. Collinearity analysis demonstrated that WOX genes in foxtail
millet exhibit the highest collinearity with green foxtail, followed by maize. The SiWOX genes
primarily harbor two categories of cis-acting regulatory elements: Stress response and plant hormone
response. Notably, prominent hormones triggering responses include methyl jasmonate, abscisic acid,
gibberellin, auxin, and salicylic acid. Analysis of SiWOX expression patterns and hormone responses
unveiled potential functional diversity among different SiWOX genes in foxtail millet. These findings
lay a solid foundation for further elucidating the functions and evolution of SiWOX genes.

Keywords: foxtail millet; WOX transcription factor family; expression pattern; plant hormones

1. Introduction

Transcription factors encompass a wide range of classifications and functions. They
possess the capacity to bind to the promoters of target genes, thereby either activating or
repressing their transcriptional activity. These factors orchestrate the specific expression of
target genes across diverse tissues, cells, and under various external conditions, governing
vital life processes through cascades of transcriptional regulation. The WUSCHEL-related
homeobox (WOX) transcription factor family, unique to plants, constitutes a distinct subfam-
ily within the eukaryotic transcription factor homeobox family. Its members exhibit diverse
biological functions, primarily contributing to the dynamic equilibrium of plant stem cell
division and differentiation, embryonic and post-embryonic development, hormone signal
transduction, and responses to crop stress [1–3]. Proteins within the WOX family feature a
conserved homeodomain (HD) structure composed of 60 amino acid residues, with WUS
additionally harboring a tyrosine (Y) residue. These amino acids are arranged into a “helix-
loop-helix-turn-helix-loop-helix” structure, where the “helix-loop-helix-turn-helix” formed
by the second and third helices can bind to specific DNA sequences, thereby regulating
the transcription of downstream genes [4]. Research on the classification of WOX family
members primarily focuses on their evolutionary origins. By reconstructing phylogenetic
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trees of plant WOX using homologous HD domain protein sequences, the phylogenetic
tree of plant WOX can be categorized into three clades: Modern, intermediate, and an-
cient. Bioinformatics analysis of 350 WOX genes in 50 plants revealed that WOX members
in lower plants originate solely from the ancient clade, while WOX members in higher
plants are exclusively found in the modern clade, with the intermediate clade emerging
in vascular plants. This study suggests that the intermediate clade and the evolutionary
clade may have evolved from the duplication and differentiation of ancient clade mem-
bers [5–7]. The conserved HD structure of the WOX transcription factor family remains
highly conserved across different species. In addition to the HD domain, it also contains a
WUS-box domain, exclusive to modern clade members, positioned at the carboxy-terminal
end of the homologous domain. The amino acid sequence is in the form of T-L-X-L-F-P-X-X,
with X representing any amino acid. Non-modern clade WOX family members exhibit
variations at this position. The WUS-box domain plays a critical role in regulating the WUS
gene’s control of stem cell characteristics in shoot apical meristems and floral meristem
morphology [3,8,9]. Some family members feature carboxy-terminal ethylene-responsive
element binding factors (ERF)-related domains, known to be involved in transcriptional
repression [10].

In the model plant Arabidopsis thaliana, a total of 16 WOX family members have been
identified, comprising AtWUS and AtWOX1 to AtWOX15. Previously documented WOX
transcription factor family members are closely associated with regulating stem cell fate, as
well as initiating and developing tissues and organs [7]. Among the 16 WOX members, the
modern clade encompasses WUS and WOX1 to WOX7; the intermediate clade comprises
WOX8, WOX9, WOX11, WOX12, and WOX15; while the ancient clade includes WOX10,
WOX13, and WOX14 [7,8]. WUS was the pioneering gene discovered in the WOX family,
acting as a pivotal regulator of stem cell regulation in shoot apical meristems. Through
EMS mutagenesis, the wus mutant exhibited defective shoot apical meristems, reduced
floral organ numbers, and missing pistils [11]. Subsequent investigations unveiled that
in mutants with WUS loss of function, WUS plays a crucial role in maintaining stem
cell characteristics and quantity, while inhibiting stem cell differentiation [12], Moreover,
WUS is implicated in ovule and anther development in Arabidopsis [13,14], with similar
roles observed in rice and maize [15]. In Arabidopsis plants overexpressing TaWUS,
mutants exhibit early flowering and increased numbers of floral organs, including petals,
sepals, and flowers, while the number of stamens and pistils remains unchanged [16].
Genetic and molecular studies have revealed that in the regulatory network of shoot apical
meristems in Arabidopsis, WUSCHEL (WUS) interacts with CLAVATA (CLV). Assisted by
related transport proteins, WUS relocates from the tissue center to the stem cell area via
intercellular connections, stimulating the expression of the CLV3 gene to uphold stem cell
characteristics. Once CLV3 binds to its receptor protein CLV1, it dampens WUS transcription
levels, facilitating stem cell differentiation and thus forming a CLV-WUS feedback loop to
regulate the dynamic balance of stem cells in Arabidopsis shoot apical meristems [17–20].
This feedback loop can also interact with plant hormones such as cytokinins and auxins
to collectively regulate meristem development [21,22]. Furthermore, AtWOX5 exhibits
specific expression in the root apical meristem, where it suppresses the differentiation of
root apical stem cells, ensuring a constant stem cell count and fostering the growth of
root apical meristems [23], CLE40, acting through receptors ACR4 and CLV1, inhibits the
expression of AtWOX5, thereby promoting stem cell differentiation, suggesting the presence
of a regulatory pathway akin to the shoot apical meristem (SAM) in Arabidopsis’ root
apical meristem. During seed development in Arabidopsis [23,24]. AtWOX2 and AtWOX8
are co-expressed, with AtWOX2 playing a crucial role in initiating shoot apical stem cells
in embryos [25,26]. AtWOX3 participates in regulating the lateral axis development of
flowers, with mutants displaying loss or narrowing of petals [27], AtWOX11 and AtWOX12
collectively influence root meristem development [28], Similarly, AtWOX13 and AtWOX14
play roles in regulating both flower and root development, with AtWOX13 primarily
expressed in the stigma and pistil [29]. Recent research has unveiled AtWOX13 as a
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pivotal regulatory factor in Arabidopsis callus tissue formation. Following explant injury,
AtWOX13 is rapidly induced, partially reliant on the activity of the AP2/ERF transcription
factor WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1). Subsequently, AtWOX13
directly upregulates WIND2 and WIND3, thereby promoting cell proliferation and organ
regeneration [30].

In the growth and development of crops such as rice, maize, and tomato, WOX
transcription factors also play pivotal roles. For instance, OsWOX1/MOC3 serves as a
homolog of the Arabidopsis WUS gene in rice, whereas MOC1 encodes a plant-specific
GAI-RGA-SCR (GRAS) family protein. FON1, on the other hand, acts as a homolog of
Arabidopsis CLV1 in rice. MOC1 activates FON1 expression by binding to its promoter,
and further investigations have demonstrated that MOC1 can interact with MOC3, acting
as a co-activator to enhance FON1 expression [31–34]. In maize, ZmWUS1 and ZmWUS2
function as homologs of Arabidopsis WUS. It has been observed that the maize mutant
Bif3 contains an enhancer region with multiple binding sites for type B response regulators
(B-type RR), which significantly upregulates the expression of ZmWUS1-B, resulting in
excessive development of meristematic stem cells in the inflorescence [35]. In rice, OsNS,
and in maize, ZmNS1/ZmNS2, serve as homologs of AtWOX3. OsNS exhibits predominant
expression in rice leaf primordia, young leaves, and flowers, while ZmNS1/ZmNS2 ensure
the proper phenotype of maize leaves and floral organs [36–39]. Overexpression of the
tomato gene SlWOX13 significantly influences the expression of genes associated with leaf
development, meristem development, and trichome development. Additionally, SlWOX13
is implicated in tomato plant gibberellin synthesis and response, thereby affecting normal
plant growth and development [40]. Recent studies have unveiled that SlWOX13 directly
activates the expression of multiple genes involved in ethylene synthesis and signaling, as
well as carotenoid biosynthesis, thereby positively regulating tomato fruit ripening [41].

With the completion of foxtail millet whole-genome sequencing [42], numerous gene
families of foxtail millet have been identified and subjected to bioinformatics analysis. As a
model crop of C4 plants [43], foxtail millet has recently been found to possess YUC [44],
CLE [45], and GRF [46] families associated with its growth and development. Despite exten-
sive studies on the WOX gene family in various species such as Arabidopsis [8], rice [47],
sorghum [47], cotton [48], wheat [16], maize [47,49], mung bean [50], sunflower [51], cucum-
ber [52], melon [53], and Medicago sativa [54], there have been no reports on the WOX gene
family in foxtail millet. This study identified 13 foxtail millet WOX genes and constructed
a phylogenetic tree comprising foxtail millet (13), Arabidopsis (16), rice (13), maize (21),
tomato (10), and green foxtail (13). Through RNA-seq data analysis, the study scrutinized
the protein spatial structure, gene structure and conserved motifs, cis-acting elements,
chromosome location, tissue-specific expression patterns, and response to different plant
hormones of the WOX gene family in foxtail millet. These findings suggest that the WOX
gene family plays a crucial role in the growth and development of foxtail millet and its
response to various plant hormones, laying the groundwork for further elucidating the
functions of WOX genes in foxtail millet.

2. Materials and Methods
2.1. Identification and Phylogenetic Analysis of WOXs in Foxtail Millet

The genomic, proteomic, coding sequence, and GFF annotation data of foxtail millet
were downloaded from the foxtail millet multi-omics database MDSI (http://foxtail-millet.
biocloud.net/home, accessed on 4 December 2023). Whole-genome data of Arabidopsis,
tomato, rice, maize, and green foxtail were obtained from the Phytozome database (https:
//phytozome-next.jgi.doe.gov/, accessed on 4 December 2023). The HMMER model
(PF00046) of the WOX gene family was downloaded from the Pfam database (http://pfam.
xfam.org/, accessed on 4 December 2023). TBtools (v2.034) [55] software was used to
perform HMM searches in the total protein sequences of foxtail millet, filtering for SiWOX
genes. Protein sequences of WOX genes in Arabidopsis were downloaded from the TAIR
database (https://www.arabidopsis.org/, accessed on 4 December 2023), and TBtools
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software was used to perform BLAST to compare Arabidopsis WOX gene family protein
sequences with foxtail millet (threshold: 1 × 10−5), identifying SiWOX genes. SiWOX genes
obtained from both methods were subjected to domain prediction using the Pfam website,
selecting genes containing the HD domain as candidate genes, and finally determining the
SiWOX gene family members. Published gene numbers were used to obtain WOX protein
sequences of maize, rice, tomato, and Brachypodium distachyon. The MEGA (v11.0) [56]
software was used to align WOX protein sequences of Arabidopsis (16), tomato (10), rice
(13), maize (21), foxtail millet (13), and green foxtail (13) and construct a phylogenetic tree
using the neighbor-joining method (bootstrap = 1000). The resulting tree was beautified
using iTOL (https://itol.embl.de/, accessed on 26 December 2023).

2.2. Protein Properties and Sequence Analyses of SiWOX Genes

The physicochemical properties of SiWOX proteins, including the number of amino
acids, molecular weight, isoelectric point, instability index, aliphatic index, and hydropathy
index, were analyzed using the ExPASy website (https://web.expasy.org/protparam/,
accessed on 5 December 2023). Subcellular localization prediction of SiWOX protein
sequences was performed using the website (http://www.csbio.sjtu.edu.cn/bioinf/plant-
multi/#, accessed on 5 December 2023). Protein spatial structure prediction of SiWOX
was conducted using the protein structure database website (https://alphafold.ebi.ac.uk/,
accessed on 5 December 2023).

2.3. Sequence Alignment, Gene Structure, and Conserved Motif Analysis of SiWOX Gene
Family Members

SiWOX protein sequences were aligned using the CLUSTALW website (https://www.
ebi.ac.uk/Tools/msa/clustalo/, accessed on 18 December 2023). The alignment results
were downloaded and visualized using ESPript (https://espript.ibcp.fr/ESPript/cgi-bin/
ESPript.cgi, accessed on 18 December 2023). The exon and intron structures of SiWOX
were analyzed using GSDS2.0 (http://gsds.gao-lab.org/, accessed on 19 December 2023).
Conserved motifs of SiWOX genes were predicted using the MEME online website (https:
//meme-suite.org/meme/, accessed on 25 December 2023), with the number of motifs set
to 12, the minimum amino acid residues set to 3, the maximum amino acid residues set to
70, and other parameters set to default.

2.4. Analysis of Promoter Cis-Acting Elements of SiWOX Gene Family Members

The upstream 2000 bp sequences of SiWOX genes were extracted using TBtools soft-
ware and submitted to the PlantCARE online website (http://bioinformatics.psb.ugent.
be/webtools/plantcare/html/, accessed on 5 December 2023) for prediction of promoter
cis-acting elements.

2.5. Chromosomal Localization and Collinearity Analysis of SiWOX Gene Family Members

Chromosomal position data of SiWOX were obtained from the gene annotation file.
Using TBtools’ One Step MCScanX with default parameters, genes undergoing tandem
duplication were identified, and Advanced Circos was used for visualization. Similarly,
One Step MCScanX was used to identify collinear genes between foxtail millet and green
foxtail, rice, and maize. The results were integrated using File Merge For MCScanX, and
Multiple Synteny Plot was used to draw inter-species collinearity diagrams.

2.6. Analysis of Expression Patterns of SiWOX Gene Family Members

Transcriptome data of different developmental stages and tissues of Yugu1 were
obtained from the Setaria-db database (www.setariadb.com/millet, accessed on 8 January
2023) [57], The tissue naming method followed the study by Meng et al. Heatmaps were
generated using TBtools to compare differences in SiWOX expression. In the experimental
field of Shanxi Agricultural University’s Minor Crops molecular Breeding Team, Jingu21
(provided by the SXAU Minor Crops Functional Genomics Center) was planted. At the
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11–12 leaf stage of foxtail millet, the first period of cone panicles (approximately 1.0–1.5 mm)
was sampled, and at the 13–14 leaf stage, the second period of panicles (approximately
2.5–3.0 mm) was sampled. Each sample had 3 biological replicates. The Yugu1 (provided
by SXAU Minor Crops Functional Genomics Center) were hydroponically cultivated in
an artificial climate chamber at Shanxi Agricultural University (light intensity: 50,000 LX;
16 h of daylight at 28 ◦C, 8 h of night at 22 ◦C) with ABA (2 µM) and distilled water as
controls. After 9 days, the roots of seedlings were sampled, with 3 biological replicates per
sample. After freezing with liquid nitrogen, the panicles and roots were sent to Novogene
Bioinformatics Technology Co., Ltd. (Beijing, China) for high-throughput sequencing on
the Illumina Hiseq platform. The sequencing results were analyzed using the R language
to generate bar charts.

2.7. Response of SiWOX to Plant Hormones

Jingu21 seedlings were hydroponically cultivated in a growth chamber at the Col-
lege of Life Sciences, Shanxi Agricultural University, using Hoagland’s solution (Beijing
Coolaber Technology Co., Ltd., Beijing, China). The light intensity was set to 50,000 LX,
with a photoperiod of 16 h of light at 28 ◦C during the day and 8 h of darkness at 22 ◦C
during the night. After 28 days of foxtail millet germination, seedlings were treated with six
hormones: 6-benzylaminopurine (6-BA) (100 µM), abscisic acid (ABA) (100 µM), salicylic
acid (SA) (100 µM), gibberellic acid (GA3) (100 µM), jasmonic acid (JA) (100 µM), and
indole-3-acetic acid (IAA) (100 µM). Leaf samples were taken at 0 h, 0.5 h, 2 h, 6 h, and
12 h after treatment. Each sample had three biological replicates and was frozen in liquid
nitrogen and stored at −80 ◦C. Primers were designed using the foxtail millet multi-omics
database MDSi (http://foxtail-millet.biocloud.net/home, accessed on 4 December 2023)
and synthesized by Sangon Biotech Co., Ltd. (Shanghai, China) (Table S1) with specificity
checked. The gene Si9g37480 was used as an internal reference [43]. Total RNA was ex-
tracted from the leaves using RNA extraction reagent (Beijing Coolaber Technology Co.,
Ltd., Beijing, China) following the Trizol method. Real-time quantitative polymerase chain
reaction (qPCR) was performed using the UnionScript First-strand cDNA Synthesis Mix for
qPCR (with dsDNase) for reverse transcription. Before amplification, the cDNA template
was diluted fivefold. The qPCR reaction system was prepared using ChamQTM Universal
SYBR qPCR Master Mix (Vazyme Biotech Co., Ltd., Nanjing, China). All qPCR reactions
were performed on a Bio-Rad CFX96 Touch qPCR instrument, with each reaction repeated
three times. The relative expression levels were calculated using the 2−∆∆CT method [58],
and line graphs were generated using R language.

3. Results
3.1. Identification and Phylogenetic Analysis of SiWOX Gene Family

To identify WOX genes in foxtail millet, we conducted BLAST and HMM searches
using the 13 WOX genes from Arabidopsis. A total of 13 putative WOX genes were
identified in foxtail millet, the same number as in rice and green foxtail [47]. Structural
domain prediction using Pfam revealed that all 13 foxtail millet WOX genes contain the
HD domain. Based on their chromosomal distribution order, they were named SiWOX1 to
SiWOX13. To analyze the evolutionary pattern of the WOX gene family in foxtail millet, we
performed cluster analysis and constructed a phylogenetic tree using protein sequences of
WOX genes from Arabidopsis (16), tomato (10), rice (13), maize (21), foxtail millet (13), and
green foxtail (13) (Figure 1). The 86 WOX proteins from these six species were divided into
three evolutionary clades, consistent with previous classification results [3,7,47]. Among
them, the modern clade had the most members (46), followed by the intermediate clade (29),
and the ancient clade (11). In foxtail millet, SiWOX2, SiWOX3, SiWOX7, SiWOX8, SiWOX10,
SiWOX11, and SiWOX12 belonged to the modern clade; SiWOX1, SiWOX4, SiWOX5,
SiWOX9, and SiWOX13 belonged to the intermediate clade; only SiWOX6 belonged to the
ancient clade. This distribution indicates conserved functional characteristics in foxtail
millet growth and development. Further analysis revealed that SiWOX2, along with WUS

http://foxtail-millet.biocloud.net/home
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from maize, Arabidopsis, and tomato, formed a separate cluster, indicating the conservation
of WUS protein function in these species. SiWOX2 is speculated to play a role in SAM
differentiation during foxtail millet growth and development. Additionally, because foxtail
millet, green foxtail, maize, and rice are monocotyledonous plants, while Arabidopsis
and tomato are dicotyledonous plants, the genes of foxtail millet always clustered with
those of green foxtail, maize, and rice, indicating a closer phylogenetic relationship with
them than with Arabidopsis and tomato. Notably, the number of WOX genes in foxtail
millet is the same as that in green foxtail, and their relationship in the evolutionary tree
is the closest, suggesting that each pair of genes in foxtail millet and green foxtail may be
orthologous genes, supporting the hypothesis that foxtail millet was domesticated from
green foxtail [59].
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Figure 1. Phylogenetic analysis of WOX proteins of foxtail millet, green foxtail, tomato, maize, rice,
and Arabidopsis. A phylogenetic evolutionary tree was constructed using MEGA-11, where clades of
the same color represent that they belong to the same subfamily. The WOX gene IDs of the six species
are supplemented in Table S2. Node numbers: bootstrap values, a put back sampling statistical
method used to test the credibility of evolutionary tree branches.

3.2. Structure Characterization of the WOX Proteins of Foxtail Millet

Analysis of the characteristics of foxtail millet WOX proteins (Table 1) reveals that the
13 foxtail millet WOX proteins consist of 212 to 531 amino acids, with relative molecular
weights ranging from 24.01 to 54.80 kDa. The theoretical isoelectric points range from 6
to 9.26, with most proteins being alkaline, while only 3 are acidic (SiWOX4, SiWOX6, and
SiWOX13). The instability coefficients range from 50.26 to 78.12, with SiWOX6 being the
only member belonging to the ancient clade and its protein being the most stable. The
protein hydropathy coefficients are all negative, indicating that these family members are
hydrophilic proteins.Since WOX proteins are transcription factors, subcellular localization
results predict that all SiWOX proteins are located in the cell nucleus. Analysis of the
predicted protein spatial structures of SiWOX proteins reveals that all SiWOX proteins have
similar spatial structures (Figure 2). Among them, SiWOX1 and SiWOX13, SiWOX4 and
SiWOX5, and SiWOX11 and SiWOX12 have the most similar protein structures, and they
are also clustered into the same subfamily in the evolutionary tree. Detailed information
about the amino acids of SiWOX proteins is provided in Text S1.
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Table 1. The properties of SiWOX proteins.

Gene
Name Gene ID Number of

Amino Acids
Molecular

Weight
Isoelectric

Point
Instability

Index
Aliphatic

Index GRAVY Subcellular
Localization

SiWOX1 Si2g43190 263 27.50 7.84 62.06 63.57 −0.264 Nucleus
SiWOX2 Si3g03660 325 33.49 8.61 60.8 62.06 −0.306 Nucleus
SiWOX3 Si3g05200 273 28.59 7.66 66.92 69.3 −0.137 Nucleus
SiWOX4 Si3g14560 483 50.91 6.92 67.92 82.11 −0.19 Nucleus
SiWOX5 Si5g27130 531 54.80 7.16 57.26 70.96 −0.2 Nucleus
SiWOX6 Si5g36340 278 30.91 6 50.26 59.42 −0.733 Nucleus
SiWOX7 Si5g37740 331 35.19 8.93 78.12 62.51 −0.419 Nucleus
SiWOX8 Si5g38630 212 24.07 8.36 52.12 68.07 −0.703 Nucleus
SiWOX9 Si6g09430 257 27.89 7.22 64.8 65.41 −0.352 Nucleus

SiWOX10 Si7g26980 228 25.39 9.26 66.32 74.87 −0.534 Nucleus
SiWOX11 Si7g33510 220 24.01 8.83 68.04 52.95 −0.673 Nucleus
SiWOX12 Si8g01120 225 24.55 8.98 71.07 51.33 −0.732 Nucleus
SiWOX13 Si9g41130 312 32.00 6.74 69 63.27 −0.249 Nucleus
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Figure 2. Prediction of the spatial structure of SiWOX proteins. Modern clade: SiWOX2, SiWOX3,
SiWOX7, SiWOX8, SiWOX10, SiWOX11, and SiWOX12; Intermediate clade: SiWOX1, SiWOX4,
SiWOX5, SiWOX9, and SiWOX13; Ancient clade: SiWOX6. The spatial structure predictions of
SiWOX proteins links: https://alphafold.ebi.ac.uk/ (accessed on 5 December 2023).

3.3. Sequence Alignment, Gene Structure, and Conserved Motif Analysis of SiWOX Gene
Family Members

Visualization of the multiple sequence alignment results of identified SiWOX protein
amino acids (Figure S1) reveals that all SiWOX proteins contain a conserved homologous
domain composed of 60 amino acid residues, known as the HD. This number of amino acid
residues in the homologous domain is consistent with that found in WOX proteins from
rice, Arabidopsis, maize, and sorghum [47]. SiWOX2 has an additional tyrosine (Y) residue
in its homologous domain compared to other SiWOX proteins. Previous studies have
shown that the additional tyrosine residues in the homologous domains of WUS proteins
from Arabidopsis, maize, rice, and sorghum are highly conserved [47], further indicating

https://alphafold.ebi.ac.uk/
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that SiWOX2 likely functions similarly to the WUS gene in foxtail millet, Arabidopsis,
maize, rice, and sorghum, primarily maintaining the number and characteristics of stem
cell populations during foxtail millet SAM differentiation [12]. This also suggests that
this residue may play an important role in the functionality of WUS transcription factors.
Within the homologous domains of SiWOX, there are 17 highly conserved amino acid
residues, consistent with previous studies [47]. All modern clade members of SiWOX
proteins contain a WUS-box domain, with the amino acid sequence present in the form of
T-L-X-L-F-P-X-X (where X represents any amino acid). Previous studies have shown that
this domain is unique to modern clade members [3]. In Arabidopsis WOX transcription
factors, WUS, WOX5, and WOX7 contain a conserved ethylene-responsive element binding
factor-associated amphiphilic repression (EAR)-like motif at their C-terminus, the main
function of which is to suppress downstream gene expression [3], SiWOX2 and SiWOX8
also contain an EAR-like motif at their carboxyl terminus, with the amino acid sequence
L-E-L-X-L-X (where X represents any amino acid). In the phylogenetic tree, SiWOX2
clusters with AtWUS, while SiWOX8 clusters with AtWOX5 and AtWOX7, suggesting that
SiWOX2 and SiWOX8 in foxtail millet may have similar functions to AtWUS, AtWOX5,
and AtWOX7, which are homologous to Arabidopsis.

In the phylogenetic evolution tree of foxtail millet WOX, SiWOX genes with similar
gene structures and identical conserved motifs often cluster into one subfamily (Figure 3A).
Gene structure analysis results (Figure 3B) show that SiWOX2 and SiWOX10 each contain
only one intron, while the remaining SiWOX genes contain one intron in both the N-
terminal and C-terminal regions. SiWOX3, SiWOX7, SiWOX8, SiWOX11, and SiWOX12
contain two exons, while SiWOX1, SiWOX2, SiWOX5, SiWOX6, SiWOX9, SiWOX10, and
SiWOX13 contain three exons, and only SiWOX4 contains four exons. Conserved motif
prediction results (Figure 3C) identified 12 conserved motifs among the 13 SiWOX genes,
with SiWOX1 and SiWOX13 containing the most conserved motifs, with a total of 7. All
SiWOX proteins contain motifs 1 and 2, indicating that motifs 1 and 2 are conserved
in SiWOX proteins, with the ancient clade SiWOX6 being the most conserved protein,
containing only motifs 1 and 2. Motif 1 and motif 2 correspond to the HD domain of
SiWOX. Motif 4 includes motif 11, with motif 11 corresponding to the WUS-box domain.
Motif 11 is only present in SiWOX2, SiWOX3, SiWOX7, SiWOX8, and SiWOX10, while
motif 4 is only present in SiWOX11 and SiWOX12. The WUS-box is only present in the
modern clade, and these proteins belong to the modern clade in the evolutionary tree.
Intermediate clade SiWOX proteins all contain motif 3, with SiWOX4 and SiWOX5 also
containing motif 10, and SiWOX1, SiWOX9, and SiWOX13 all containing motifs 5, 7, and 9.
In addition, SiWOX11 and SiWOX12 uniquely contain motif 8.
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3.4. Promoter Cis-Acting Element Analysis of SiWOX Gene Family Members

To further elucidate the potential functions of the SiWOX gene family in foxtail millet
growth, development, and response to abiotic stresses, upstream 2000 bp sequences of WOX
genes in foxtail millet were extracted for analysis using the PlantCare database (Table S3).
The results indicated an uneven distribution of various functional cis-acting elements on
each SiWOX gene, primarily including two major categories: Stress response and plant
hormone response cis-acting regulatory elements. SiWOX9 contained the highest number
of cis-acting elements, with 114, while SiWOX2 only contained 30 cis-acting elements. All
SiWOX promoters contained light-responsive elements, except for SiWOX13, suggesting
that the remaining SiWOX genes may be associated with environmental stresses, as they
contained cis-acting elements related to low temperature, drought, defense, and stress. Cis-
acting elements related to hormone responses in SiWOX included methyl jasmonate (50),
abscisic acid (36), gibberellin (13), auxin (6), and salicylic acid (3). The ancient clade SiWOX6
had all types of cis-acting elements, while SiWOX2 had only one salicylic acid-responsive cis-
acting element, with the other two distributed in SiWOX6 and SiWOX7. SiWOX1, SiWOX6,
SiWOX7, SiWOX9, SiWOX10, and SiWOX11 each had one auxin-responsive cis-acting
element, suggesting that these genes are involved in auxin regulatory feedback during
foxtail millet growth and development. Additionally, SiWOX1, SiWOX2, SiWOX4, SiWOX5,
SiWOX9, SiWOX10, SiWOX12, and SiWOX13 all contained cis-acting elements involved
in seed-specific regulation, with SiWOX2 and SiWOX4 also containing cis-acting elements
involved in endosperm-specific expression. These results suggest that SiWOX genes may
be associated with foxtail millet stress resistance and hormone response pathways.

3.5. Chromosomal Localization and Collinearity Analysis of SiWOX Gene Family Members

To further analyze the evolutionary relationships of foxtail millet WOX family mem-
bers, the identified foxtail millet WOX genes were mapped onto chromosomes based
on gene annotation information, and the results were visualized using Advanced Circos
(Figure 4). Except for chromosome1 and chromosome4, WOX genes were distributed
on all other chromosomes, with chromosome5 having the most with four WOX genes,
and chromosome2, chromosome6, and chromosome9 each having one WOX gene. Gene
tandem duplication is an important internal driving force for crop domestication and
breeding, playing a significant role in plant phenotypic variation [60–62]. Using MCScanX,
the tandem repeat relationship of WOX genes in foxtail millet was analyzed, revealing
that there are three pairs of tandem repeats in foxtail millet WOX genes, namely SiWOX1
and SiWOX13, SiWOX4 and SiWOX5, and SiWOX11 and SiWOX12. Tandem repeats of
SiWOX11 and SiWOX12 occurred in the modern clade, while the other two pairs occurred
in the middle clade, with the ancient clade being the most conservative and having no gene
tandem repeats. Gene tandem repeats can lead to changes in gene structure [63], such as
SiWOX4 having one more intron than SiWOX5, indicating that gene tandem duplication
enriches the diversity of the SiWOX gene family.

Using the multiple synteny plot, a collinearity graph between green foxtail, foxtail
millet, maize, and rice was generated (Figure 5). From the graph, it can be observed that the
collinearity of WOX genes between green foxtail and foxtail millet is the highest, further
suggesting that they may share a common ancestor. The collinearity of WOX genes between
foxtail millet and maize is higher than that between foxtail millet and rice, possibly because
foxtail millet and maize both belong to C4 crops, while rice is a C3 crop.
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3.6. Analysis of the Expression Patterns of SiWOX Genes

Transcriptome data from various tissues at different growth and development stages
of Yugu1 were obtained from the Setaria-db database, and a heatmap of gene expression was
generated (Figure 6). The ancient clade member SiWOX6 exhibited the most conservative
function, with expression observed across different tissues at various stages of foxtail millet
development. Among the intermediate clade members, SiWOX1 was expressed in all other
tissues at various stages except for anthers, mainly during the vegetative growth and seed
maturation stages of foxtail millet, suggesting that its evolutionary rate is slower compared
to other intermediate clade genes. Genes clustered in the same clade of the phylogenetic tree
often share similar functions, but differences exist. For instance, SiWOX11 and SiWOX12
were primarily expressed in the later stages of stem apex meristem development, with
SiWOX12 also showing expression during the spikelet primordia and flowering stages.
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Additionally, expression of SiWOX4 decreased initially and then increased with seed
maturation, while SiWOX5 exhibited the opposite trend, indicating distinct functions
during foxtail millet seed maturation. SiWOX1, SiWOX6, SiWOX8, and SiWOX13 were
highly expressed in germinating seeds, suggesting their involvement in seed germination.
SiWOX1 and SiWOX13 showed high expression levels in various parts of foxtail millet
such as roots, stems, and leaves, indicating their association with cell proliferation, division,
differentiation, and tissue elongation. SiWOX10 exhibited high expression levels in the
stems and nodes of foxtail millet and contained cis-acting elements responsive to auxin,
suggesting its involvement in cytokinin and auxin synthesis. SiWOX1 and SiWOX6 were
highly expressed in primary branching during flowering, indicating their joint influence on
inflorescence development in foxtail millet. As foxtail millet seeds matured, expression of
SiWOX9 gradually decreased, indicating its involvement in early seed development. Only
SiWOX2 exhibited tissue specificity, with high expression only during the development
of stem apical meristems, suggesting its role in controlling panicle development in foxtail
millet. These results suggest that SiWOXs may play important roles in the vegetative and
reproductive growth processes of foxtail millet.
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values using RNA-seq data, with the color from red to blue indicating the expression levels from high
to low. Tissue information for SiWOX expression analysis is provided in Table S4.

The development of the foxtail millet panicle involves a continuous differentiation
process, starting from the SAM forming a “smooth round growth cone”, which elongates
and develops small protrusions to form primary branches. As primary branches grow, they
initiate the differentiation of secondary branches, and after tertiary branch differentiation,
spikelets and florets begin to differentiate at the tip of tertiary branches, completing panicle
development [64]. Analysis of transcriptome sequencing results of foxtail millet panicle
development (Figure 7A) revealed higher expression levels of SiWOX2, SiWOX3, SiWOX4,
SiWOX5, and SiWOX6 compared to SiWOX1, SiWOX10, SiWOX11, and SiWOX12. Among
them, the ancient clade member SiWOX6 exhibited the highest expression level, followed
by SiWOX3 and SiWOX5, while SiWOX7, SiWOX8, SiWOX9, and SiWOX13 showed almost
negligible expression levels. During the second stage of panicle development, the expres-
sion levels of SiWOX3 and SiWOX10 significantly increased, while SiWOX5 decreased, and
the expression levels of other genes remained almost unchanged. In foxtail millet seedling
roots, fewer SiWOX genes were expressed compared to panicle development, but their
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expression levels were relatively high (Figure 7B). Among them, SiWOX6 exhibited the
highest expression level, followed by SiWOX13, SiWOX8, SiWOX1, and SiWOX9. ABA
plays a crucial role in regulating plant root growth and development [65]. Compared to the
control, the expression levels of SiWOX6 and SiWOX13 were significantly upregulated in
seedling roots treated with ABA, while SiWOX1 and SiWOX9 also showed upregulation,
and SiWOX8 was downregulated. Overall, many members of the SiWOX gene family are
specifically involved in the development of panicle and root in foxtail millet.
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Figure 7. Expression patterns of SiWOX genes in foxtail millet panicles and roots. (A) Expression
patterns of SiWOX genes in panicles at different developmental stages: Stage 1, panicle length
approximately 1.0–1.5 mm; stage 2, panicle length approximately 2.5–3.0 mm. (B) Expression patterns
of SiWOX genes in 9-day-old seedling roots treated with ABA (2 µM) and without ABA (CK). Bar
graphs represent differences in transcriptome sequencing duplicates between spike samples (A) and
root samples (B). Statistical significance between panicle (A) and root (B) stages was determined by
t-test (* p < 0.05). TPM: transcripts per million.

3.7. SiWOX Gene Response to Plant Hormones

To investigate the response of SiWOX genes to various hormones, 28-day-old foxtail
millet seedlings were treated with six plant hormones: 6-BA (100 µM), ABA (100 µM),
GA3 (100 µM), SA (100 µM), MeJA (100 µM), and IAA (100 µM). The expression patterns
of SiWOX1, SiWOX2, SiWOX6, SiWOX7, SiWOX10, and SiWOX13 genes, distributed
across different subfamilies in foxtail millet seedling leaves, were analyzed (Figure 8).
Results showed that after treatment with MeJA, all six SiWOX genes exhibited an up-down-
up-down expression pattern, with expression peaking at 0.5 h after treatment. By 12 h
after treatment, except for SiWOX7, the expression levels of the other five SiWOX genes
decreased to levels observed at 2 h after treatment. Except for SiWOX7 and SiWOX10,
the expression levels of the remaining four SiWOX genes remained nearly unchanged
in response to GA treatment. Compared to the other four hormones, the ancient clade
member SiWOX6 showed minimal response to ABA and GA. SiWOX1 demonstrates
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analogous trends in response to JA and SA. The relative expression level at 0.5 h post-
hormone treatment surpasses that at 12 h by more than double. Conversely, under IAA
treatment, the relative expression level at 0.5 h is approximately half of that observed at
12 h. Additionally, SiWOX10 and SiWOX13 exhibited similar trends in response to the six
hormones. These results suggest that the SiWOX gene family may have different potential
functions during foxtail millet leaf development.
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4. Discussion

Foxtail millet holds significance as an important cereal crop due to its resilience to
drought, tolerance to poor soil, and salinity, characterized by well-developed roots [66–68].
WOX transcription factors, unique to plants, play a pivotal and conserved role in plant
growth, development, response to various abiotic stresses, and plant hormone
signaling [69–71]. While extensively studied in plants such as Arabidopsis, maize, rice, and
tomato [8,47,72], the WOX gene family in foxtail millet has not been previously reported.
This study employed two methods and conservative domain prediction to identify 13 WOX
genes in foxtail millet (Table 1), consistent with the number in green foxtail and rice, as
evidenced by phylogenetic analysis (Figure 1), underscoring the highly conserved distri-
bution of unique clades (ancient, intermediate, and modern) within this family in foxtail
millet. Previous studies on WOX family members have primarily focused on evolution.
The foxtail millet WOX gene family exhibits only one member in the ancient clade, with the
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maximum number of members in the modern clade being seven, akin to findings in other
species [47]. Unlike the AtWUS protein sequence, which features a non-conservative acidic
amino acid sequence between the HD homologous domain and the WUS-box domain [47],
the multiple sequence alignment results (Figure S1) indicate the absence of such an amino
acid sequence in the SiWOX protein sequence, suggesting that the acidic region domain
may predominantly influence Arabidopsis WOX transcription factors.

In the phylogenetic tree (Figure 1), SiWOX2 clusters with WUS in maize, Arabidopsis,
and tomato, forming a distinct cluster. Through multiple sequence alignment of the foxtail
millet WOX gene family (Figure S1), we identified additional tyrosine (Y) residues in
the homologous domain of SiWOX2, which are highly conserved with the additional
tyrosine (Y) residues in the WUS domain of Arabidopsis, rice, maize, and tomato [47].
The main function of AtWUS is to maintain the number and characteristics of SAM stem
cells [12]. In the gene expression pattern (Figure 6), SiWOX2 shows specific expression
in the SAM, suggesting a similar function in regulating the size of the SAM in foxtail
millet. In maize BIF3 mutants, overexpression of ZmWUS1 leads to spherical spikes and
a significant reduction in yield [73]. Controlling the expression of meristem genes can
alter plant yield without affecting the growth of explants [74], highlighting the potential
importance of SiWOX2 in improving foxtail millet yield traits. Furthermore, collinearity
analysis (Figure 5) reveals a high degree of collinearity between the WOX family members
of foxtail millet and green foxtail. The differences between the inflorescences of foxtail
millet and green foxtail, such as changes in the number, density, and order of primary
branches [75], may be related to differences in the WUS gene between the two species,
warranting further investigation.

In Arabidopsis, rice, maize, and tomato, different members of the WOX gene family
have distinct functions, and phylogenetic tree studies provide references for predicting
the functions of WOX genes in foxtail millet. The WOX gene family plays a crucial role in
regulating plant growth and development processes [76–78]. The CLV-WUS feedback path-
way ensures the self-renewal of stem cells while forming new plant tissues and organs [79].
Recently, the foxtail millet CLE gene family has also been identified and reported [45].
In the evolutionary tree (Figure 1), SiWOX2, together with AtWUS, ZmWUS1, ZmWUS2,
SvWUS, and SlWUS, forms a subcluster and is specifically expressed during foxtail mil-
let inflorescence meristem development, indicating the possible existence of a CLV-WUS
feedback pathway in the SAM of foxtail millet, with SiWOX2 playing a crucial role in the
signal transduction of the SAM CLV-WUS feedback. AtWOX5 is specifically expressed in
the root apical meristem, and similar regulatory pathways to those in the SAM also exist in
Arabidopsis root apical meristem [23,24]. In the evolutionary tree, SiWOX8 clusters with
AtWOX5 in the same subcluster; in the gene expression pattern (Figure 6), SiWOX8 shows
higher expression levels in the roots of foxtail millet seedlings and at the one-leaf-two-heart
stage, indicating that SiWOX8 may play an important role in the development of the root
apical meristem in foxtail millet. OsWOX11 is a key regulator of crown root development
in rice, and its expression is induced by auxin and cytokinin. Recently, a dynamic feedback
regulation mechanism formed by WOX11-JMJ706-LBD16 was discovered in the growth
process of rice crown roots, ensuring that LBD16 maintains an appropriate expression level
to ensure the growth of rice crown roots [80]. In the evolutionary tree (Figure 1), SiWOX1
and OsWOX11 cluster together, and combined with the analysis of SiWOX gene expression
patterns in different tissues (Figure 6) and the expression pattern of SiWOX genes in the
roots of foxtail millet (Figure 7B), we found that SiWOX1 is highly expressed in the roots of
foxtail millet at different stages, indicating its important role in the root development of
foxtail millet.

5. Conclusions

This study provides a comprehensive analysis of the foxtail millet SiWOX gene fam-
ily, with 13 SiWOX genes divided into three subclusters. All SiWOX proteins contain a
conserved HD domain, with SiWOX2 featuring an additional tyrosine (Y) residue in this



Genes 2024, 15, 476 15 of 18

domain. SiWOX genes clustered in the same clade of the phylogenetic tree exhibit similar
protein spatial structures, gene structures, and conserved motifs. Tandem repeats analysis
reveals three pairs of repeats among the SiWOX genes, while collinearity analysis shows the
highest collinearity between foxtail millet and green foxtail, suggesting a common ancestor.
Analysis of SiWOX expression patterns and hormone responses reveals potential functional
diversity among different SiWOX genes in foxtail millet. Overall, this study provides a
foundation for further elucidating the functions of SiWOX genes in foxtail millet.
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