

Systematic Review Association of Gene Polymorphisms with Normal Tension Glaucoma: A Systematic Review and Meta-Analysis

Lijie Pan¹, Jian Wu^{2,3,*} and Ningli Wang^{1,*}

- ¹ Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing 100730, China; plj2761@163.com
- ² School of Life Sciences, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- ³ Henan Academy of Innovations in Medical Science, No. 2 Biotechnology Street, Hangkonggang District, Zhengzhou 450000, China
- * Correspondence: karena.wu@foxmail.com (J.W.); wningli@vip.163.com (N.W.); Tel.: +86-135-11086108 (J.W.); +86-010-58265922 (N.W.)

Abstract: Background: Normal tension glaucoma (NTG) is becoming a more and more serious problem, especially in Asia. But the pathological mechanisms are still not illustrated clearly. We carried out this research to uncover the gene polymorphisms with NTG. Methods: We searched in Web of Science, Embase, Pubmed and Cochrane databases for qualified case-control studies investigating the association between single nucleotide polymorphisms (SNPs) and NTG risk. Odds ratios (ORs) and 95% confidence intervals (CIs) for each SNP were estimated by fixed- or random-effect models. Sensitivity analysis was also performed to strengthen the reliability of the results. Results: Fifty-six studies involving 33 candidate SNPs in 14 genetic loci were verified to be eligible for our meta-analysis. Significant associations were found between 16 SNPs (rs166850 of *OPA1*; rs10451941 of *OPA1*; rs735860 of *ELOVL5*; rs678350 of *HK2*; c.603T>A/Met98Lys of *OPTN*; c.412G>A/Thr34Thr of *OPTN*; rs10759930 of *TLR4*; rs1927914 of *TLR4*; rs1927911 of *TLR4*; c.*70C>G of *EDNRA*; rs1042522/-Arg72Pro of *P53*; rs10483727 of *SIX1-SIX6*; rs33912345 of *SIX1-SIX6*; rs2033008 of *NCK2*; rs3213787 of *SRBD1* and c.231G>A of *EDNRA*) with increased or decreased risk of NTG. Conclusions: In this study, we confirmed 16 genetic polymorphisms in 10 genes (*OPA1*, *ELOVL5*, *HK2*, *OPTN*, *TLR4*, *EDNRA*, *P53*, *NCK2*, *SRBD1* and *SIX1-SIX6*) were associated with NTG.

Keywords: NTG; single nucleotide polymorphism; genetic polymorphism; meta-analysis

1. Introduction

Glaucoma is a disease characterized by optic neuropathy with the symptoms of visual impairment and visual field loss. It is usually associated with an increase in intraocular pressure (IOP) [1]. Normal-tension glaucoma (NTG) is always supposed to be a spectrum of primary open-angle glaucoma (POAG) [2,3] but with an IOP in the normal range [4], featured by normal anterior chamber depth, retinal nerve fiber layer (RNFL) thinning and progressing optic neuropathy [5]. NTG is becoming a more and more serious problem, with especially high prevalence in Asia. The morbidity of POAG in East Asians is from 1–4% [6], of which NTG contributes up to 95% [7]. However, it is reported that European Caucasians suffer less from NTG, which takes up about one-third of POAG patients [6]. It is plausible for us to suggest the incidence of NTG differs among various ethnicities. What is more, it should be noted that with the increased longevity, the incidence of NTG is likely to rise.

The pathological mechanisms of NTG are still not illustrated clearly and may be ascribed to multiple factors. Some hypotheses related to the pathogenesis include cardio-vascular and neurovascular diseases, vasospasm, oxidative stress, endothelial dysfunction and abnormal biomechanics of the lamina cribrosa and so on [6,8]. Genetic polymorphism is supposed to play an important role in NTG. For one reason, people could suffer from

Citation: Pan, L.; Wu, J.; Wang, N. Association of Gene Polymorphisms with Normal Tension Glaucoma: A Systematic Review and Meta-Analysis. *Genes* **2024**, *15*, 491. https:// doi.org/10.3390/genes15040491

Academic Editors: Julio Escribano and Albert Jeltsch

Received: 8 March 2024 Revised: 10 April 2024 Accepted: 12 April 2024 Published: 14 April 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). glaucoma at different ages, and genetic predisposition may mean an earlier onset [9]. For another, gene detection has come into effect in the recognition of allele mutations, especially for young Mendelian glaucoma [10]. Some genes have been found to be associated with NTG, including Optineurin (*OPTN*), TANK-binding kinase (*TBK1*) and Myocilin (*MYOC*) [10].

In recent years, more interest has been attracted to the topic of the association between gene polymorphisms and NTG. Many studies have pointed out the relationship and statistical significance of gene mutations in the disease [11,12]. However, it confuses us that the former research studies differ from each other in involved SNPs and statistical significance influenced by different study areas, population ethnicity and research heterogeneity.

Our meta-analysis aims to collect and summarize all the satisfactory literature, and analyze the effect of allele mutations and gene functions specific to the onset of NTG, so as to provide an extensive exploration and evidence for us to uncover the gene polymorphisms with NTG.

2. Materials and Methods

The research protocol has been registered in PROSPERO with the ID CRD42022326782.

2.1. Search Strategy

We conducted the literature search and selection mainly from the following four databases: Web of Science, Embase, Pubmed and Cochrane. Three groups of MeSH terms were put into the search interface to frame the Boolean search strategy as follows, "(((Genes[MeSH Terms]) OR ((((((((Genes[Title/Abstract]) OR (Gene[Title/Abstract])) OR (Cistron[Title/Abstract])) OR (Cistrons[Title/Abstract])) OR (Genetic Materials[Title/Abstract])) OR (Genetic Material[Title/Abstract])) OR (Material, Genetic[Title/Abstract])) OR (Materials, Genetic[Title/ Abstract]))) OR ((Polymorphism, Single Nucleotide[MeSH Terms]) OR (((((((Polymorphism, Single Nucleotide[Title/Abstract]) OR (Nucleotide Polymorphism, Single[Title/Abstract])) OR (Nucleotide Polymorphisms, Single[Title/Abstract])) OR (Polymorphisms, Single Nucleotide[Title/Abstract])) OR (Single Nucleotide Polymorphisms[Title/Abstract])) OR (SNPs[Title/Abstract])) OR (Single Nucleotide Polymorphism[Title/Abstract]))) AND (("Low Tension Glaucoma" [Mesh]) OR (((((Low Tension Glaucoma [Title/Abstract]) OR (Glaucoma, Low Tension[Title/Abstract])) OR (Low Tension Glaucomas[Title/Abstract])) OR (Normal Tension Glaucoma[Title/Abstract])) OR (Glaucoma, Normal Tension[Title/ Abstract])) OR (Normal Tension Glaucomas[Title/Abstract])))". In this way, a systematic retrospect of original articles of all types analyzing the association between gene polymorphisms and NTG risk was acquired.

2.1.1. Inclusion Criteria

- (1) The diagnostic standard of NTG should be indicated clearly;
- (2) Cohort studies involving NTG patients and healthy controls which evaluate the potential association of specific gene mutations, SNPs, allele variations related to pathogenesis of the disease;
- (3) Some important information should be included: demographic features such as age and sex, allele or genotype frequencies of SNPs in both case and control groups, index of association strength such as odds ratio (OR) with 95% confidence interval (CI).

2.1.2. Exclusion Criteria

- (1) Studies published in the form of meta-analysis, review, case report, patent, guideline, conference abstract and book chapters;
- (2) Studied objects are animals;
- (3) Studies not written in English;
- (4) Studies which lack OR value, only refers to POAG but not NTG or did not indicate a clear definition of POAG.

The included studies were come to by agreement of all the contributors of this article.

2.2. Data Extraction

Two reviewers independently screened and searched for the needed data from all the eligible literature. Disparities were discussed and solved by all the reviewers until consensus were reached. The following data were extracted and recollected in the table: reference (first author, year of publication), involved ethnicity, sample size of both case and control groups, demographic features including age and sex of two groups and genotyping method. If the basic or allele data of NTG were reported together with high-tension glaucoma (HTG) in POAG, we selected data specifically for NTG to document.

2.3. Quality Assessment

The methodological quality of all the eligible articles were assessed according to the Newcastle–Ottawa scale (NOS) [13]. There are three evaluation criteria in consideration: case selection, comparability and exposure. The quality of studies was recorded in the form of stars and the maximum star was 9. Studies acquired 6 stars or greater were considered up to our analyzing standard and qualified for further assessment.

2.4. Meta-Analysis

SNPs and gene mutations were qualified for meta-analysis if they were investigated by at least two studies. The statistical significance was recorded as OR [95% CI]. Allele frequency in eligible studies was calculated and screened after data organization, and minor allele for specific SNP was determined if it was consistent in all ethnic groups. Metaanalysis was processed by pooling OR values from eligible studies for the allele model (B versus A), dominant model (BB+ AB versus AA), recessive model (BB versus AA+ AB), heterozygote model (AB versus AA) and homozygote model (BB versus AA), respectively. Stata version 15.1 software (Stata Corporation, College Station, TX, USA) was used to perform statistical analyses. The difference was considered to be of statistical significance if the p value was less than 0.05.

The heterogeneity tests for independent studies orienting the same SNPs were conducted by means of Q test and I^2 test. p value was used as testing statistics for Q test, and heterogeneity existed if it was below 0.05. Similarly, if that I^2 value was greater than 50% it suggested a possibility of heterogeneity [14]. Then we chose fixed-effect model for studies without obvious heterogeneity to analyze the OR value for each gene polymorphism. On the contrary, random-effect model was chosen. What is more, Begg's Test was used to evaluate the publication bias among included articles [15].

Subjects with NTG were further classified into different ethnicities and stratified meta-analysis was conducted for them. Sensitivity analysis was alco carried out.

3. Results

3.1. Selection of Qualified Literature

The procedure of our selection strategy can be acquired from Figure 1.

A total of 1377 studies could be searched through the four databases, of which 925 were from Web of Science, 219 from Embase, 230 from Pubmed and the remaining 3 from Cochrane Database. Among them, 493 were duplicated articles which should be excluded. We then screened for the title as well as abstract of the other 621 studies and removed a large part of the literature, for there were 272 unrelated articles, 140 meta-analyses and reviews, 65 conference abstracts, 59 animal studies, 12 case reports, 7 non-English articles and 1 guideline. Two hundred studies were left for us to be read through and the articles were to be excluded if important information was absent such as if there was no calculation of the OR value, no NTG group but only POAG group, no control group or POAG was not defined clearly. Finally, 56 articles were verified to be eligible for our meta-analysis [16–71].

Figure 1. The procedure of literature selection for meta-analysis.

3.2. Characteristics of Qualified Studies

The basic information of the included articles is summarized in Table 1. The qualified studies were published between November 2001 and January 2024. Among these studies, 55 were case control studies conducted in 11 countries and regions: 10 in China [22,26, 37,40,53,54,57,66,69,70], 13 in Korea [20,25,30,39,47,58–60,62–64,67,71], 18 in Japan [18,19, 23,24,27,31–34,38,41,42,46,48,49,51,52,56], 3 in Poland [55,61,65], 2 in the U.S [36,50], 3 in England [16,17,45], 2 in Australia [21,35] (one involving ethnicities of Caucasian and Asian with the other only Caucasian) and 1 each in four other countries or regions [28,29,43,68]. These studies involved 10,804 cases with NTG and 217,540 controls in all. Data from one GWAS were available whose cohort consisted of 305 Japanese NTG patients and 355 healthy controls [44]. The NOS scores of all the studies were above 6 stars (thus qualifying for the meta-analysis). Genotype frequency and minor allele frequency are shown in Table S1.

			6	1.01								(Genotype	Frequency		
No.	Reference	Country/City (Ethnicity)	Sam	ple Size	Male/	Female	Ag	e, y	Quality	Genotyping Mothodo		Cases			Controls	
		(Eunierty)	Cases	Controls	Cases	Controls	Cases	Controls	Assessment	Methods	AA	AB	BB	AA	AB	BB
1	Lee et al., 2022 [70]	China Taiwan (Chinese)	222	236	122/100	127/109	69 ± 9	68 ± 10	8☆	allelic	126	80	16	108	101	27
2	Shin et al., 2022 [71]	Korea (Korean)	210	117	NA	NA	NA	NA	8☆	allelic	130	76	4	64	45	8
3	He et al., 2022 [69]	China Hongkong (Chinese)	537	496	278/259	184/312	63.2 ± 12.8	70.2 ± 10.8	9☆	allelic	NA	NA	NA	NA	NA	NA
		(Chinese)	135	543	79/56	283/260	$61.6\pm14.6~7$	74.4 ± 6.9								
4	Liuska et al., 2021 [68]	Finland (Finnish)	892	205,435	NA	NA	NA	NA	9☆	allelic	884	8	0	204,378	1053	4
5	Kim et al., 2021 [67]	Korea (Korean)	282	213	127/155	120/93	54.3 ± 13.3	54.6 ± 9.7	9☆	allelic	NA	NA	NA	NA	NA	NA
6	Milanowski et al., 2021 [65]	Poland (Caucasian)	204	258	48/156	80/178	71.6 ± 11.1	70.9 ± 11.6	8☆	allelic	121	70	0	168	79	6
7	Yue et al., 2021 [66]	China (Chinese)	402	425	226/176	254/171	63.8 ± 6.5	64.5 ± 5.1	7☆	allelic	311	79	12	338	79	8
8	Jung et al., 2020 [63]	Korea (Korean)	159	103	60/99	44/59	61.14 ± 11.94	68.78 ± 9.82	7☆	allelic	260	44	1	241	96	18
9	Lee et al., 2020 [64]	Korea (Korean)	435	419	206/229	231/188	58.8 ± 13.6	56.2 ± 10.3	7☆	allelic	288	127	20	290	116	13
10	Jung et al., 2019 [60]	Korea (Korean)	154	101	58/96	42/59	61.23 ± 11.95	67.29 ± 11.37	7☆	allelic	70	68	16	62	31	8
11	Jung et al., 2019 [62]	Korea (Korean)	157	106	57/100	43/63	61.06 ± 12.16	67.19 ± 10.53	7☆	allelic	148	9	0	98	8	0
12	Kosior-Jarecka et al., 2019 [61]	Poland (Caucasian)	143	165	43/100	NA	74	NA	8☆	allelic	77	57	6	90	68	6
13	Jeoung et al., 2017 [58]	Korea (Korean)	245	231	117/128	115/116	60.2 ± 12.7	58.6 ± 12.4	8☆	allelic	211	39	1	212	33	0
14	Suh et al., 2017 [59]	Korea (Korean)	140	352	NA	NA	NA	NA	7☆	allelic	62	61	16	158	151	33
15	Nishisako et al., 2016 [56]	Japan (Japanese)	292	500	140/152	246/254	46.7 ± 8.4	50.2 ± 10.6	7☆	allelic	93	135	64	147	248	105
16	Gao et al., 2016 [54]	China (Chinese)	55	50	29/26	31/19	52.5 ± 14.0	49.1 ± 13.6	7☆	allelic	39	15	1	38	12	0
17	Sang et al., 2016 [57]	China (Chinese)	181	266	104/77	114/152	53.5 ± 16.8	67.6 ± 11.3	7☆	allelic	131	45	5	140	103	23
18	Kosior-Jarecka et al., 2016 [55]	Poland (Caucasian)	160	165	50/110	50/115	72.01 ± 11.61	72.52 ± 11.06	6☆	allelic	83	6	71	81	15	69
19	Lin et al., 2014 [53]	China (Chinese)	249	262	123/117	140/122	63.2 ± 10.2	61.3 ± 11.4	6☆	allelic	231	18	0	241	21	0
20	Shi et al., 2013 [52]	Japan (Japanese)	163	180	86/77	95/85	61.8 ± 13.7	68.0 ± 7.7	6☆	allelic	147	16	0	168	11	1
21	Shi et al., 2013 [51]	Japan (Japanese)	stage 1 120	121	61/60	61/59	54.0 ± 12.2	70.3 ± 10.2	6\$	allelic	159	111	16	130	105	36
	,	, , , , , , , , , , , , , , , , , , ,	stage	271	139/147	145/126	56.4 ± 13.3	69.7 ± 9.3	074	allelic						
22	Wiggs et al., 2012 [50]	U.S. (Caucasian)	64	400	23/41	179/221	61.06 ± 11.6	66.06 ± 11.3	7☆	allelic	36	15	1	82	72	13
23	TAKANO et al., 2012	Japan (Japanese)	365	216	171/194	116/100	58.6 ± 13.1	69.7 ± 11.3	8☆	allelic	141	159	65	103	85	28
24	Suh et al., 2011 [47]	Korea (Korean)	147	380	NA	NA	NA	NA	9☆	allelic	52	72	23	126	191	63
25	Mabuchi et al., 2011 [46]	Japan (Japanese)	158	191	65/93	70/121	68.6 ± 11.8	65.7 ± 11.4	7☆	allelic	51	84	23	71	89	31

Table 1.	Characteristics	of qualified	l studies invo	lved in the	e meta-analysis.
----------	-----------------	--------------	----------------	-------------	------------------

Tabl	le	1. (Cont.
Iuv		I .	conn.

			6	1.0								(Genotype	Frequenc	у	
No.	Reference	Country/City (Ethnicity)	Samj	ple Size	Male/	Female	Ag	е, у	Quality	Genotyping Mothodo		Cases			Controls	
		(Lunierty)	Cases	Controls	Cases	Controls	Cases	Controls	- Assessment	Wethous	AA	AB	BB	AA	AB	BB
26	Yasumura et al., 2011 [48]	Japan (Japanese)	295	518	142/153	NA	46.4 ± 8.1	NA	8☆	allelic	241	52	2	404	110	4
27	Wolf et al., 2010 [43]	Germany (German)	273	280	96/177	115/165	63.9 ± 14.2	66 ± 13	7☆	allelic	74	131	68	75	135	10
28	Meguro et al., 2010 [44]	Japan (Japanese)	305	355	145/160	174/181	46.6 ± 8.5	61.7 ± 8.9	8☆	genomic	51	138	116	100	162	93
29	Mabuchi et al., 2010 [42]	Japan (Japanese)	213	191	91/122	70/121	NA	NA	7☆	allelic	79	100	34	77	84	30
30	Mabuchi et al., 2010 [41]	Japan (Japanese)	213	191	91/122	70/121	NA	NA	7☆	allelic	59	107	47	49	84	58
31	Fan et al., 2010 [40]	China (Chinese)	100	201	54/46	120/81	63.2 ± 11.5	69.8 ± 8.7	8☆	allelic	89	9	1	173	27	1
32	Yu-Wai-Man et al., 2010 [45]	England (Caucasian)	70	75	NA	NA	NA	79.3	7☆	allelic	41	26	3	59	13	3
33	Fan et al., 2009 [37]	China (Chinese)	42	77	33/9	58/19	66.7 ± 10.1	72.0 ± 8.5	8☆	allelic	27	13	2	47	27	3
34	Clement et al., 2009 [35]	Australia (75 Caucasian, 1 Asian)	34	42	9/25	16/26	$\textbf{72.5} \pm \textbf{9.4}$	70.4 ± 7.8	9☆	allelic	21	11	2	25	14	3
35	Daugherty et al., 2009 [36]	U.S. (Caucasian)	52	167	18/34	62/105	69.8 ± 12.0	60.3 ± 12.0	7☆	allelic	29	28	5	109	57	12
36	Mabuchi et al., 2009 [38]	Japan (Japanese)	213	189	91/122	70/119	63.9 ± 13.7	65.5 ± 11.4	7☆	allelic	92	95	26	83	83	23
37	Woo et al., 2009 [39]	Korea (Korean)	78	100	32/46	47/53	46.2 ± 11.7	49.3 ± 9.2	8☆	allelic	25	34	19	31	50	19
38	Shibuya et al., 2008 [34]	Japan (Japanese)	250	318	119/131	157/161	46.1 ± 7.7	61.2 ± 8.3	8☆	allelic	81	127	42	137	141	40
39	Tosaka et al., 2007 [33]	Japan (Japanese)	290	241	142/148	114/127	55.8 ± 13.0	69.7 ± 11.3	7☆	allelic	106	130	54	67	130	44
40	Mabuchi et al., 2007 [31]	Japan (Japanese)	194	185	NA	NA	63.6 ± 13.3	65.3 ± 11.5	8☆	allelic	190	4	0	182	3	0
41	Miyazawa et al., 2007 [32]	Japan (Japanese)	103	118	53/50	62/56	61.8 ± 11.7	68.0 ± 7.7	7☆	allelic	76	25	2	72	41	5

Table 1.	Cont.
----------	-------

			6	-1- C'			4.0					C	Genotype	Frequenc	у	
No.	Reference	Country/City (Ethnicity)	Samj	pie Size	Male/I	emale	Ag	e, y	Quality	Genotyping Methods		Cases			Controls	
		(Lunicity)	Cases	Controls	Cases	Controls	Cases	Controls	Assessment	Methous	AA	AB	BB	AA	AB	BB
42	Jeoung et al., 2007 [30]	Korea (Korean)	67	100	28/39	47/53	48.8 ± 10.2	49.3 ± 9.2	8☆	allelic	53	13	1	83	16	1
43	How et al., 2007 [29]	Singapore (Chinese)	94	79	64/30	32/47	72.9	67.7	7☆	allelic	71	17	1	64	13	2
44	Kim et al., 2006 [25]	Korea (Korean)	67	100	28/39	47/53	48.8 ± 10.2	49.3 ± 9.2	8☆	allelic	29	32	6	44	39	17
45	Lam et al., 2006 [26]	China (Chinese)	106	300	NA	191/109	NA	70.4 ± 9.3	7☆	allelic	102	3	1	286	13	1
46	Inagaki et al., 2006 [24]	Japan (Japanese)	294	240	144/150	114/126	58.8 ± 13.2	69.7 ± 11.2	7☆	allelic	219	72	3	176	63	1
47	Mabuchi et al., 2006 [27]	Japan (Japanese)	131	106	NA	NA	62.8 ± 13.3	65.0 ± 10.5	7☆	allelic	54	58	19	48	39	19
48	Yao et al., 2006 [28]	Africa (African-Caribbean)	61	48	NA	NA	52.1	61.3	9☆	allelic	58	3	0	46	2	0
49	Hashizume et al., 2005 [23]	Japan (Japanese)	268	240	129/139	113/127	58.8 ± 13.4	69.7 ± 11.2	7☆	allelic	164	90	14	163	66	11
50	Dimasi et al., 2005 [21]	Australia (Caucasian)	62	178	NA	NA	NA	NA	8☆	allelic	34	43	22	38	108	55
51	Fan et al., 2005 [22]	China (Chinese)	106	281	NA	180/101	NA	69.8 ± 9.8	6☆	allelic	67	36	3	200	74	7
52	Funayama et al., 2004 [18]	Japan (Japanese)	217	218	97/120	92/126	60.3 ± 12.4	70.6 ± 10.9	7☆	allelic	169	43	5	182	35	1
53	Fuse et al., 2004 [19]	Japan (Japanese)	65	100	27/38	62/38	61.8 ± 13.7	68 ± 7.7	6☆	allelic	55	9	1	95	5	0
54	Woo et al., 2004 [20]	Korea (Korean)	65	101	26/39	48/53	47.0 ± 10.3	49.0 ± 9.2	8☆	allelic	62	3	0	101	0	0
55	Powell et al., 2003 [17]	England (Caucasian)	61	168	26/35	109/59	NA	NA	6☆	allelic	41	16	4	111	53	4
56	Aung et al., 2002 [16]	England (Caucasian)	163	186	NA	NA	NA	NA	7☆	allelic	57	26	0	86	14	0

NA: not applicable. ☆: The quality of studies was recorded in the form of stars and the maximum star was 9.

3.3. Meta-Analysis Results

Among all the SNPs extracted from the candidate gene literature, only 33 in 14 genetic loci were reported by at least two studies and met the criteria of this study. The association analysis and heterogeneity test in different genetic models are shown in Table 2 (since minor allele was opposite for SNP c.*1222C>T of *EDNRA* in the two studies incorporated, further analysis was not carried out in view of the heterogeneity. The related information is exhibited in Table S1). Of the 33 SNPs, 16 SNPs exhibited significant association with NTG, in which 11 variations (rs166850 of *OPA1*; rs10451941 of *OPA1*; rs735860 of *ELOVL5*; rs678350 of *HK2*; c.603T>A/Met98Lys of *OPTN*; c.412G>A/Thr34Thr of *OPTN*; rs10759930 of *TLR4*; rs1927914 of *TLR4*; rs1927911 of *TLR4*; c.*70C>G of *EDNRA* and rs1042522/-Arg72Pro of *P53*) showed positive NTG risk, whereas 5 others (rs2033008 of *NCK2*; rs3213787 of *SRBD1*; c.231G>A of *EDNRA*; rs10483727 of *SIX1-SIX6* and rs33912345 of *SIX1-SIX6*) showed negative correlation with the onset of NTG.

3.3.1. Gene Polymorphisms Associated with NTG

The source articles and sample size for analysis of each SNP were summarized in Table 2.

EDNRA Polymorphisms

SNP c.-231G>A was associated with a decreased risk of NTG in the homozygote model (OR 0.61, 95%CI: 0.39–0.97, p = 0.035), but not in other models (Figure S1A).

SNP c.*70C>G was significantly associated with NTG in the dominant model (OR 1.67, 95%CI: 1.08-2.56, p = 0.020), but not in other models (Figure S1B).

ELOVL5 Polymorphism

A significant association between rs735860 of *ELOVL5* gene and NTG was found in the heterozygote model (OR 1.51, 95%CI: 1.11–2.05, p = 0.009) (Figure S2A), but not in the other models (Figure S2B).

HK2 Polymorphism

A significant association between rs678350 and NTG could be seen in all genetic models (allele: OR 1.54, 95%CI: 1.23–1.91, p < 0.001; dominant: OR 1.75, 95%CI: 1.32–2.31, p < 0.001; recessive: OR 1.75, 95%CI: 1.09–2.80, p = 0.020; heterozygote: OR 1.65, 95%CI: 1.22–2.23, p = 0.001 and homozygote: OR 2.14, 95%CI: 1.31–3.48, p = 0.002) (Figure S3).

NCK2 Polymorphism

A significant association between rs2033008 and NTG could be seen in the allele (OR 0.70, 95%CI: 0.57–0.87, p = 0.001), recessive (OR 0.44, 95%CI: 0.27–0.70, p = 0.001) and homozygote models (OR 0.41, 95%CI: 0.25–0.67, p < 0.001) (Figure S4).

OPA1 Polymorphisms

A significant association between rs166850 and NTG was found in three genetic models (allele: OR 1.49, 95%CI: 1.03–2.15, p = 0.034; dominant: OR 1.93, 95%CI: 1.09–3.45, p = 0.025 and heterozygote: OR 1.82, 95%CI: 1.04–3.19, p = 0.038) (Figure S5A), but no evidence of an association was found in other models (Figure S5C).

A significant association between rs10451941 and NTG was found in all genetic models (allele: OR 1.49, 95%CI: 1.30–1.71, p < 0.001; dominant: OR 1.55, 95%CI: 1.29–1.87, p < 0.001; recessive: OR 1.87, 95%CI: 1.43–2.45, p < 0.001; heterozygote: OR 1.41, 95%CI: 1.16–1.71, p = 0.001 and homozygote: OR 2.16, 95%CI: 1.59–2.95, p < 0.001) (Figure S5B).

No. Symbol SNP Allele Cohors Cares Control Cares Control P(0) P(0) P(0) Effect Model OU Since P(0) P(0) Effect Model OU Since OU Since P(0) P(0) P(0) P(0) Effect Model OU Since OU P(0) P(0) Effect Model OU Since OU Since OU P(0) P(0) Effect Model OU Since OU P(0) P(0) D(0) D(0) <thd(0)<< th=""><th>N</th><th>Gene</th><th>CNIP</th><th>Minor</th><th>No. of</th><th>Etherisity</th><th>Pooled Sa</th><th>ample Size</th><th></th><th>Heteroge</th><th>eneity Test</th><th>Fixed or Random</th><th>0.10</th><th>05% CI</th><th>11</th><th>Begg</th><th>'s Test</th></thd(0)<<>	N	Gene	CNIP	Minor	No. of	Etherisity	Pooled Sa	ample Size		Heteroge	eneity Test	Fixed or Random	0.10	05% CI	11	Begg	's Test
1 APOE -491A>T T 2 Chinese 312 381 By s.A 0.0928 0.0 fixed 0.71 0.03-1.73 0.000 1.000 <th>INO.</th> <th>Symbol</th> <th>SNP</th> <th>Allele</th> <th>Cohorts</th> <th>Eunicity</th> <th>Cases</th> <th>Controls</th> <th>Genetic Model</th> <th>p (Q)</th> <th>I² (%)</th> <th>Effect Model</th> <th>ОК</th> <th>95%CI</th> <th>P</th> <th>z</th> <th>р</th>	INO.	Symbol	SNP	Allele	Cohorts	Eunicity	Cases	Controls	Genetic Model	p (Q)	I² (%)	Effect Model	ОК	95%CI	P	z	р
1 1	1	APOE	-491A>T	Т	2	Chinese	312	581	B vs. A	0.928	0.0	fixed	0.91	0.44 - 1.88	0.800	0.000	1.000
2 EDNRA -427T>C C 2 312 582 Bbys, AA 0.940 0.0 fixed 2.76 0.319-06 0.337 0.000 1.00 AB'rys, AA 0.940 0.0 fixed 2.21 0.316 0.037 0.00 1.00									BB + AB vs. AA	0.933	0.0	fixed	0.77	0.35-1.73	0.531	0.000	1.000
2 EDNRA c-231G>A A 2 312 582 582 Bys. AA 0.940 0.0 fixed 0.01 0.231 0.00 1.00 Bys. AA 0.941 0.0 fixed 0.50 0.11-225 0.363 0.000 1.00 Bys. AA 0.940 0.0 fixed 0.50 0.11-225 0.363 0.000 1.00 Bys. AA 0.940 0.0 fixed 0.50 0.11-225 0.363 0.000 1.00 AB bys. AA 0.940 0.0 fixed NA									BB vs. AA + AB	0.974	0.0	fixed	2.76	0.39-19.68	0.312	0.000	1.000
4271-5C C 2 312 582 Bb vs. An Bv s. An									AB vs. AA	0.940	0.0	fixed	0.63	0.25 - 1.54	0.307	0.000	1.000
42715-C C 2 312 582 By s, A 0.941 0.0 fixed 0.50 0.11-2.25 0.365 0.000 1.00 By s, AA + AB excluded excluded NA									BB vs. AA	0.973	0.0	fixed	2.71	0.38-19.36	0.321	0.000	1.000
2 EDNRA c-2107>C G 2 312 581 BF + AB vs. AA (BV s. AA + AB (BV s. AA - 0.940) 0.0 fixed (MA NA NB NB vs. NA 0.035 0.00 fixed 0.03 0.00 fixed 0.03 0.00 fixed 0.03 0.00 fixed 0.03 0.0			-427T>C	С	2		312	582	B vs. A	0.941	0.0	fixed	0.50	0.11-2.25	0.365	0.000	1.000
2 EDNRA c-219T>G G 2 312 581 Bfs vs. AA 0840 0.0 fixed 0.50 0.33 0.00 1.00 2 EDNRA c-219T>G G 2 312 581 Bfs vs. AA 0.865 0.0 fixed 0.80 0.73-1.22 0.899 0.000 1.00 2 EDNRA c-231G>A A 2 Caucasian Korean 227 265 B vs. AA 0.874 0.0 fixed 0.95 0.73-1.22 0.88 0.000 1.00 2 EDNRA c-231G>A A 2 Caucasian Korean 227 265 B vs. AA 0.578 0.0 fixed 0.95 0.73-1.22 0.88 0.000 1.000 2 EDNRA c-231G>A A 2 Caucasian Korean 227 265 B vs. AA 0.057 72.4 random 0.85 0.020 1.000 1.000 1.000 1.000 1.000 1.000 1.000									BB + AB vs. AA	0.940	0.0	fixed	0.50	0.11-2.25	0.363	0.000	1.000
2 EDNRA -2197>G G 2 312 581 Brys. AA 0.940 0.0 fixed 0.80 0.00 1.000									BB vs. AA + AB	excluded	excluded	NA	NA	NA	NA	NA	NA
2 EAR excluded excluded excluded excluded NA NA NA NA NA									AB vs. AA	0.940	0.0	fixed	0.50	0.11-2.25	0.363	0.000	1.000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									BB vs. AA	excluded	excluded	NA	NA	NA	NA	NA	NA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-219T>G	G	2		312	581	B vs. A	0.885	0.0	fixed	0.98	0.78 - 1.25	0.899	0.000	1.000
2 EDNRA c-231G>A A 2 Caucasian Korean 227 265 B vs. AA 0.974 0.00 fixed 1.39 0.83-2.33 0.215 0.000 1.00 2 EDNRA c-231G>A A 2 Caucasian Korean 227 265 B vs. AA 0.916 0.0 fixed 1.39 0.83-2.33 0.215 0.000 1.00 2 EDNRA c231G>A A 2 Caucasian Korean 227 265 B vs. AA 0.731 0.0 fixed 0.85 0.60-1.22 0.834 0.000 1.00 AB vs. AA A. A. AB 0.128 56.7 random 0.65 0.60-1.22 0.834 0.000 1.00 AB vs. AA 0.108 SA 0.015 77.4 random 0.61 0.39-97 0.033 0.000 1.00 AB vs. AA 0.010 BB vs. AA 0.005 S7.4 random 1.41 0.373.5 0.000 1.000 1.000									BB + AB vs. AA	0.865	0.0	fixed	0.80	0.59-1.10	0.172	0.000	1.000
2 EDNRA c231G>A A 2 Caucasian Korean 27 265 B vs. AA 0.076 0.00 fixed 0.70 0.87-0.38 0.021 0.000 1.00 2 EDNRA c231G>A A 2 Caucasian Korean 227 265 B vs. AA 0.075 0.0 fixed 0.95 0.73-1.22 0.683 0.000 1.00 4 B vs. AA 0.731 0.0 fixed 0.95 0.64-1.42 0.384 0.000 1.00 B vs. AA 0.057 7.24 random 0.65 0.64-1.42 0.385 0.000 1.00 B vs. AA 0.057 7.24 random 0.65 0.64-1.25 0.513 0.000 1.00 B vs. AA 0.005 87.4 random 1.29 0.60-2.78 0.513 0.000 1.00 B vs. AA 0.005 87.4 random 1.41 0.82-2.35 0.817 0.000 1.00 B vs. AA 0									BB vs. AA + AB	0.957	0.0	fixed	1.65	1.01 - 2.71	0.046	0.000	1.000
2 EDNRA c231G>A A 2 Caucasian Korean 27 265 B vs. A 0.578 0.00 fixed 0.95 0.73-122 0.68 0.000 1.00 2 EDNRA c231G>A A 2 Caucasian Korean 27 265 B vs. AA 0.751 0.0 fixed 0.95 0.73-122 0.68 0.000 1.00 B vs. AA + AB 0.128 56.7 random 0.95 0.64-142 0.816 0.000 1.00 B vs. AA 0.057 72.4 random 0.85 0.50-1.45 0.005 1.00									AB vs. AA	0.874	0.0	fixed	0.70	0.50-0.98	0.039	0.000	1.000
2 EDNRA c-231G>A A 2 Catacasian Korean 227 265 B vs. A 0.578 0.0 fixed 0.95 0.73-1.22 0.683 0.000 1.00 BB + AB vs. AA 0.731 0.0 fixed 0.95 0.64-1.42 0.384 0.000 1.00 AB vs. AA 0.057 72.4 random 0.85 0.50-1.45 0.554 0.000 1.00 AB vs. AA 0.057 72.4 random 0.85 0.50-1.45 0.554 0.000 1.00 AB vs. AA 0.005 87.4 random 0.61 0.39-0.97 0.00 1.00						Constant			BB vs. AA	0.916	0.0	fixed	1.39	0.83-2.33	0.215	0.000	1.000
3 ELOVL5 rs735860 C 2 Matrix More Japanese 463 566 mark BB vs. AA 0.01 fixed 0.86 0.66-1-12 0.816 0.000 1.00 3 ELOVL5 G G 2 227 265 Bv s. AA 0.118 59.0 random 0.61 0.39-7 0.03 0.000 1.00 3 ELOVL5 rs735860 G 2 227 265 Bv s. AA 0.161 59.0 random 0.61 0.39-3.05 0.000 1.00 3 ELOVL5 rs735860 C 2 Japanese 463 546 Bv s. AA 0.016 91.3 random 1.41 0.82-55 0.135 0.000 1.00 4 HK2 rs735860 C 2 Japanese 463 546 Bv s. AA 0.015 83.2 random 1.41 0.82-73 0.030 1.00 4 HK2 rs678350 G 2 <td< td=""><td>2</td><td>EDNRA</td><td>c231G>A</td><td>А</td><td>2</td><td>Korean</td><td>227</td><td>265</td><td>B vs. A</td><td>0.578</td><td>0.0</td><td>fixed</td><td>0.95</td><td>0.73-1.22</td><td>0.683</td><td>0.000</td><td>1.000</td></td<>	2	EDNRA	c231G>A	А	2	Korean	227	265	B vs. A	0.578	0.0	fixed	0.95	0.73-1.22	0.683	0.000	1.000
4 HK2 rs678350 G 2 2 227 265 Bv s. AA 0.007 72.4 random 0.05 0.50-1.45 0.505 0.000 1.00 Bb vs. AA 0.015 72.4 random 0.61 0.39-0.97 0.005 0.000 1.00 Bb vs. AA 0.016 87.4 random 0.61 0.39-0.97 0.005 0.000 1.00 Bb vs. AA 0.005 87.4 random 0.61 0.39-0.97 0.000 1.00									BB + AB vs. AA	0.731	0.0	fixed	0.86	0.60-1.22	0.384	0.000	1.000
4 HK2 rs678350 G 2 27 265 Bv s. AA 0.057 72.4 random 0.61 0.39 0.055 0.000 1.00 3 ELOVL5 rs735860 C 2 20 207 265 Bv s. AA 0.005 87.4 random 0.61 0.39-0.97 0.035 0.000 1.00									BB vs. AA + AB	0.128	56.7	random	0.95	0.64 - 1.42	0.816	0.000	1.000
BB vs. AA 0.118 59.0 random 0.61 0.39-097 0.005 0.000 1.00 B vs. AA 0.005 87.4 random 1.29 0.60-2.78 0.000 1.00 1.00 B vs. AA 0.168 47.4 fixed 1.67 1.08-2.56 0.020 0.000 1.00 B vs. AA<+ AB									AB vs. AA	0.057	72.4	random	0.85	0.50 - 1.45	0.554	0.000	1.000
c.*70C>G G 2 227 265 B vs. A 0.005 87.4 random 1.29 0.60-278 0.513 0.000 1.00 BB + AB vs. AA 0.168 47.4 fixed 1.67 1.08-2.56 0.020 0.000 1.00 BB vs. AA + AB 0.008 86.0 random 1.14 0.37-3.56 0.817 0.000 1.00 AB vs. AA 0.769 0.0 fixed 1.45 0.89-2.35 0.135 0.000 1.00 BB vs. AA 0.769 0.0 fixed 1.44 0.44-72 0.543 0.000 1.00 BB vs. AA 0.015 83.2 random 1.81 0.88-3.70 0.00 1.00 BB + AB vs. AA 0.015 83.2 random 1.81 0.88-3.70 0.00 1.00 BB + AB vs. AA 0.030 78.7 random 1.65 0.71-3.82 0.000 1.00 BB vs. AA + AB 0.403 78.7 random 1.65 1.11-2.05 0.009 0.000 1.00 BB vs. AA 0.580 <									BB vs. AA	0.118	59.0	random	0.61	0.39-0.97	0.035	0.000	1.000
3 ELOVL5 rs735860 C 2 Japanese 463 546 BB vs. AA 0.168 47.4 fixed 1.67 1.08-2.56 0.020 0.000 1.00 3 ELOVL5 rs735860 C 2 Japanese 463 546 Bvs. AA 0.026 79.7 random 1.44 0.37-3.56 0.001 1.00			c.*70C>G	G	2		227	265	B vs. A	0.005	87.4	random	1.29	0.60 - 2.78	0.513	0.000	1.000
3 ELOVL5 rs735860 C 2 Japanese 463 546 BV AA 0.069 0.00 fixed 1.44 0.037-3.56 0.017 0.000 1.00 3 ELOVL5 rs735860 C 2 Japanese 463 546 BV AA 0.026 79.7 random 1.44 0.44-22 0.03 0.000 1.00 BV rs735860 C 2 Japanese 463 546 BV 0.001 91.3 random 1.49 0.04-2.49 0.000 1.00<									BB + AB vs. AA	0.168	47.4	fixed	1.67	1.08 - 2.56	0.020	0.000	1.000
3 ELOVL5 rs735860 C 2 Japanese 463 546 Bvs. AA 0.00 79.7 random 1.44 0.44-4.72 0.533 0.000 1.00 3 ELOVL5 rs735860 C 2 Japanese 463 546 Bvs. AA 0.001 91.3 random 1.44 0.44-7.2 0.533 0.000 1.00 4 HK2 rs678350 G 2 Korean 463 546 Bvs. AA 0.015 83.2 random 1.49 0.79-2.49 0.447 0.000 1.00 4 HK2 rs678350 G 2 Korean 440 372 Bvs. AA 0.48 0.0 fixed 1.51 1.11-2.05 0.00 0.000 1.00 4 HK2 rs678350 G 2 Korean 440 372 Bvs. AA 0.689 0.0 fixed 1.51 1.11-2.05 0.00 0.000 1.00 BB + AB vs. AA 0.689 0.0 fixed 1.75 1.32-1.91 0.00 0.00 1.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>BB vs. AA + AB</td> <td>0.008</td> <td>86.0</td> <td>random</td> <td>1.14</td> <td>0.37-3.56</td> <td>0.817</td> <td>0.000</td> <td>1.000</td>									BB vs. AA + AB	0.008	86.0	random	1.14	0.37-3.56	0.817	0.000	1.000
3 ELOVL5 rs735800 C 2 Japanese 463 546 BB vs. AA BB + AB vs. AA 0.001 0.00 91.3 91.3 random random 1.44 0.44-4.72 0.79-2.80 0.543 0.216 0.000 0.000 1.00 3 ELOVL5 rs735800 C 2 Japanese 463 546 Bvs. AA BB + AB vs. AA 0.001 91.3 random 1.49 0.79-2.80 0.216 0.000 1.00 4 HK2 rs678350 G 2 Korean Japanese 440 372 Bvs. AA 0.049 74.2 random 1.29 0.07-2.49 0.447 0.000 1.00 4 HK2 rs678350 G 2 Korean Japanese 440 372 Bvs. AA 0.049 74.2 random 1.51 1.11-2.05 0.000 0.000 1.000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AB vs. AA</td> <td>0.769</td> <td>0.0</td> <td>fixed</td> <td>1.45</td> <td>0.89-2.35</td> <td>0.135</td> <td>0.000</td> <td>1.000</td>									AB vs. AA	0.769	0.0	fixed	1.45	0.89-2.35	0.135	0.000	1.000
3 ELOVL5 rs735860 C 2 Japanese 463 546 B vs. A 0.001 91.3 random 1.49 0.79–2.80 0.216 0.000 1.00 BB + AB vs. AA 0.015 83.2 random 1.81 0.88–3.70 0.106 0.000 1.00 AB vs. AA 0.015 83.2 random 1.29 0.67–2.49 0.447 0.000 1.00 AB vs. AA 0.448 0.00 fixed 1.51 1.11–2.05 0.009 0.000 1.00 AB vs. AA 0.448 0.00 fixed 1.51 0.11-2.05 0.009 0.000 1.00 BB vs. AA 0.030 78.7 random 1.53 0.71-3.82 0.246 0.000 1.00 BB vs. AA 0.689 0.0 fixed 1.54 1.23–1.91 0.000 0.000 1.000 BB vs. AA 0.689 0.0 fixed 1.75 1.02–2.31 0.000 0.000 1.000 AB vs. AA 0.489 0.0 fixed 1.65 1.22–2.23 0.001									BB vs. AA	0.026	79.7	random	1.44	0.44 - 4.72	0.543	0.000	1.000
BB + AB vs. AA 0.015 83.2 random 1.81 0.88-3.70 0.106 0.000 1.00 BB vs. AA + AB 0.049 74.2 random 1.29 0.67-2.49 0.447 0.000 1.00 AB vs. AA 0.030 78.7 random 1.65 0.71-3.82 0.046 0.000 1.00 AB vs. AA 0.030 78.7 random 1.65 0.71-3.82 0.046 0.000 1.00 BB + AB vs. AA 0.030 78.7 random 1.65 0.71-3.82 0.000 0.000 1.00 BB + AB vs. AA 0.689 0.0 fixed 1.75 1.32-2.31 0.000 0.000 1.00 BB vs. AA + AB 0.499 0.0 fixed 1.75 1.32-2.31 0.000 0.000 1.00 BB vs. AA + AB 0.499 0.0 fixed 1.65 1.22-2.23 0.001 0.000 1.000 BB vs. AA 0.633 0.0 fixed 1.65 1.22-2.23 0.001 0.000 1.000 BB vs. AA 0.633 0.0	3	ELOVL5	rs735860	С	2	Japanese	463	546	B vs. A	0.001	91.3	random	1.49	0.79 - 2.80	0.216	0.000	1.000
4 HK2 rs678350 G 2 Korean Japanese 440 372 BB vs. AA + AB AB vs. AA 0.049 74.2 random 1.29 0.67-2.49 0.447 0.000 1.00 4 HK2 rs678350 G 2 Korean Japanese 440 372 B vs. AA 0.630 78.7 random 1.65 0.71-3.82 0.246 0.000 1.00 BB + AB vs. AA 0.680 0.0 fixed 1.54 1.23-1.91 0.000 0.000 1.00 BB + AB vs. AA 0.689 0.0 fixed 1.75 1.32-2.31 0.000 0.000 1.00 BB vs. AA + AB 0.499 0.0 fixed 1.75 1.09-2.80 0.020 0.000 1.00 AB vs. AA 0.482 0.0 fixed 1.65 1.22-2.33 0.001 0.000 1.00 BB vs. AA 0.482 0.0 fixed 1.65 1.22-2.33 0.001 0.000 1.000 BB vs. AA									BB + AB vs. AA	0.015	83.2	random	1.81	0.88-3.70	0.106	0.000	1.000
4 HK2 rs678350 G 2 Korean Japanese 440 372 B vs. AA 0.048 0.0 fixed 1.51 1.11-2.05 0.009 0.000 1.00 4 HK2 rs678350 G 2 Korean Japanese 440 372 B vs. AA 0.580 0.0 fixed 1.54 1.23-1.91 0.000 0.000 1.00 BB + AB vs. AA 0.689 0.0 fixed 1.75 1.32-2.31 0.000 0.000 1.00 BB + AB vs. AA 0.689 0.0 fixed 1.75 1.09-2.80 0.020 0.000 1.00 BB vs. AA + AB 0.499 0.0 fixed 1.65 1.22-2.31 0.000 0.000 1.00 AB vs. AA 0.482 0.0 fixed 1.65 1.22-2.33 0.001 0.000 1.00 BB vs. AA 0.482 0.0 fixed 1.65 1.22-2.33 0.001 0.000 1.000 BB vs. AA 0.633 0.0 fixed 1.65 1.27-0.87 0.001 0.000 1.000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>BB vs. AA + AB</td> <td>0.049</td> <td>74.2</td> <td>random</td> <td>1.29</td> <td>0.67-2.49</td> <td>0.447</td> <td>0.000</td> <td>1.000</td>									BB vs. AA + AB	0.049	74.2	random	1.29	0.67-2.49	0.447	0.000	1.000
4 HK2 rs678350 G 2 Korean Japanese 440 372 B vs. AA 0.030 78.7 random 1.65 0.71–3.82 0.246 0.000 1.00 4 HK2 rs678350 G 2 Korean Japanese 440 372 B vs. AA 0.580 0.0 fixed 1.54 1.23–1.91 0.000 0.000 1.00 BB + AB vs. AA 0.689 0.0 fixed 1.75 1.32–2.31 0.000 0.000 1.00 BB vs. AA + AB 0.499 0.0 fixed 1.75 1.09–2.80 0.020 0.000 1.00 5 NCK2 rs2033008 A 2 440 372 Bvs. AA 0.633 0.0 fixed 1.65 1.22–2.33 0.001 0.000 1.00 5 NCK2 rs2033008 A 2 440 372 Bvs. AA 0.633 0.0 fixed 1.65 1.22–2.33 0.001 0.000 1.000 6 NCK2 rs2033008 A 2 440 372 Bvs. AA<									AB vs. AA	0.448	0.0	fixed	1.51	1.11-2.05	0.009	0.000	1.000
4 HK2 rs678350 G 2 Korean Japanese 440 372 B vs. A 0.580 0.0 fixed 1.54 1.23-1.91 0.000 0.000 1.00 BB + AB vs. AA 0.689 0.0 fixed 1.75 1.32-2.31 0.000 0.000 1.00 BB vs. AA + AB 0.499 0.0 fixed 1.75 1.09-2.80 0.020 0.000 1.00 AB vs. AA 0.482 0.0 fixed 1.65 1.22-2.23 0.001 0.000 1.00 5 NCK2 rs2033008 A 2 440 372 Bvs. AA 0.633 0.0 fixed 1.65 1.22-2.33 0.001 0.000 1.00 5 NCK2 rs2033008 A 2 440 372 Bvs. AA 0.633 0.0 fixed 1.65 1.22-2.33 0.001 0.000 1.00 6 NCK2 rs2033008 A 2 440 372 Bvs. AA 0.633 0.0 fixed 0.16-10.02 0.001 0.000 1.00									BB vs. AA	0.030	78.7	random	1.65	0.71-3.82	0.246	0.000	1.000
BB + AB vs. AA 0.689 0.0 fixed 1.75 1.32-2.31 0.000 0.000 1.00 BB vs. AA + AB 0.499 0.0 fixed 1.75 1.09-2.80 0.020 0.000 1.00 AB vs. AA 0.689 0.0 fixed 1.65 1.22-2.23 0.001 0.000 1.00 AB vs. AA 0.482 0.0 fixed 1.65 1.22-2.23 0.001 0.000 1.00 5 NCK2 rs2033008 A 2 440 372 Bvs. AA 0.633 0.0 fixed 1.37-0.87 0.001 0.000 1.00 5 NCK2 rs2033008 A 2 440 372 Bvs. AA 0.636 0.0 fixed 0.77 0.58-1.02 0.065 0.000 1.00 6 BB + AB vs. AA 0.636 0.0 fixed 0.77 0.58-1.02 0.065 0.000 1.00	4	HK2	rs678350	G	2	Korean Japanese	440	372	B vs. A	0.580	0.0	fixed	1.54	1.23–1.91	0.000	0.000	1.000
5 NCK2 rs2033008 A 2 440 372 BB + AB vs. AA 0.636 0.00 fixed 1.75 1.09-2.80 0.000 0.000 1.00 5 NCK2 rs2033008 A 2 440 372 BB + AB vs. AA 0.636 0.00 fixed 1.65 1.22-2.23 0.001 0.000 1.00 6 NCK2 rs2033008 A 2 440 372 Bvs. AA 0.636 0.0 fixed 0.77 0.58-1.02 0.001 0.000 1.00						· 1			BB + AB vs. AA	0.689	0.0	fixed	1.75	1.32-2.31	0.000	0.000	1.000
5 NCK2 rs2033008 A 2 440 372 B vs. AA 0.633 0.0 fixed 1.65 1.22-2.23 0.001 0.000 1.00 5 NCK2 rs2033008 A 2 440 372 B vs. AA 0.633 0.0 fixed 0.70 0.57-0.87 0.001 0.000 1.00 6 BB + AB vs. AA 0.636 0.0 fixed 0.77 0.58-1.02 0.065 0.00 1.00									BB vs. AA + AB	0.499	0.0	fixed	1.75	1.09-2.80	0.020	0.000	1.000
BB vs. AA 0.633 0.0 fixed 2.14 1.31-3.48 0.002 0.000 1.00 5 NCK2 rs2033008 A 2 440 372 B vs. AA 0.799 0.0 fixed 0.70 0.57-0.87 0.001 0.000 1.00 BB + AB vs. AA 0.636 0.0 fixed 0.77 0.58-1.02 0.065 0.000 1.00									AB vs. AA	0.482	0.0	fixed	1.65	1.22-2.23	0.001	0.000	1.000
5 NCK2 rs2033008 A 2 440 372 B vs. A 0.799 0.0 fixed 0.70 0.57–0.87 0.001 0.000 1.000 b Korcan BB + AB vs. AA 0.636 0.0 fixed 0.77 0.58–1.02 0.065 0.000 1.000									BB vs. AA	0.633	0.0	fixed	2.14	1.31-3.48	0.002	0.000	1.000
Korsap BB + AB vs. AA 0.636 0.0 fixed 0.77 0.58–1.02 0.065 0.000 1.00	5	NCK2	rs2033008	А	2		440	372	B vs. A	0.799	0.0	fixed	0.70	0.57-0.87	0.001	0.000	1.000
Koroan						V			BB + AB vs. AA	0.636	0.0	fixed	0.77	0.58 - 1.02	0.065	0.000	1.000
BB vs. AA + AB 0.526 0.0 fixed 0.44 0.27–0.70 0.001 0.000 1.00						Korean			BB vs. AA + AB	0.526	0.0	fixed	0.44	0.27-0.70	0.001	0.000	1.000
Japanese AB vs. AA 0.968 0.0 fixed 0.86 0.64–1.16 0.321 0.000 1.00						Japanese			AB vs. AA	0.968	0.0	fixed	0.86	0.64-1.16	0.321	0.000	1.000
BB vs. AA 0.558 0.0 fixed 0.41 0.25–0.67 0.000 0.000 1.00									BB vs. AA	0.558	0.0	fixed	0.41	0.25-0.67	0.000	0.000	1.000

Table 2. Significant association analysis of genetic polymorphisms with NTG.

Tabl	ما	2	Cont
Idv	LC.		Com.

	Gene		Minor	No. of	Ed. 1.1	Pooled Sa	ample Size		Heterogeneity Test		Fixed or Random	~ ~ ~		10	Begg	's Test
No.	Symbol	SNP	Allele	Cohorts	Ethnicity	Cases	Controls	Genetic Model	p (Q)	I² (%)	Effect Model	OR	95%CI	P	z	р
6					Causasian			B vs. A	0.923	0.0	fixed	1.02	0.79-1.33	0.855	0.000	1.000
		m207E07444 a 677			Acian			BB + AB vs. AA	0.828	0.0	fixed	1.05	0.73-1.52	0.778	0.000	1.000
		18397307444, C.877	Т	3	Koroan	243	248	BB vs. AA + AB	0.517	0.0	fixed	1.00	0.62-1.62	0.986	0.000	1.000
		C/1			Iananasa			AB vs. AA	0.582	0.0	fixed	1.07	0.72-1.60	0.725	0.000	1.000
	MTUTD				Japanese			BB vs. AA	0.813	0.0	fixed	1.01	0.59 - 1.72	0.969	0.000	1.000
	MIHER							B vs. A	0.604	0.0	fixed	0.94	0.65 - 1.34	0.720	0.000	1.000
		ma1217601062 a 1208			Koroan			BB + AB vs. AA	0.572	0.0	fixed	0.95	0.63-1.43	0.797	0.000	1.000
		1512170910050.1298	С	2	Iananasa	209	206	BB vs. AA + AB	0.712	0.0	fixed	0.55	0.12-2.65	0.459	0.000	1.000
		A/C			Japanese			AB vs. AA	0.574	0.0	fixed	0.97	0.64 - 1.47	0.873	0.000	1.000
								BB vs. AA	0.511	0.0	fixed	0.63	0.13-2.97	0.556	0.000	1.000
7	NOS3	rs1799983, 894 G>T	Т	2	Korean Chinese	350	446	B vs. A	0.248	25.0	fixed	1.03	0.71 - 1.47	0.888	0.000	1.000
								BB + AB vs. AA	0.219	33.7	fixed	1.00	0.68 - 1.46	0.989	0.000	1.000
								BB vs. AA + AB	0.865	0.0	fixed	2.43	0.30-19.58	0.404	0.000	1.000
								AB vs. AA	0.215	35.0	fixed	0.97	0.66-1.43	0.879	0.000	1.000
								BB vs. AA	0.833	0.0	fixed	2.38	0.30-19.03	0.414	0.000	1.000
		rs2070744, -786T>C	С	2		350	446	B vs. A	0.315	0.8	fixed	1.04	0.75-1.43	0.816	0.000	1.000
								BB + AB vs. AA	0.363	0.0	fixed	1.00	0.70-1.42	0.987	0.000	1.000
								BB vs. AA + AB	0.261	20.7	fixed	1.97	0.52-7.39	0.315	0.000	1.000
								AB vs. AA	0.427	0.0	fixed	0.96	0.67-1.37	0.814	0.000	1.000
								BB vs. AA	0.248	25.1	fixed	1.92	0.51 - 7.17	0.334	0.000	1.000
								B vs. A	0.034	52.1	random	1.49	1.03 - 2.15	0.034	0.940	0.348
		ma1668E0						BB + AB vs. AA	0.000	76.1	random	1.93	1.09-3.45	0.025	0.520	0.602
		VS8 + 4C - T	Т	9	Caucasian	904	1217	BB vs. AA + AB	0.174	39.6	fixed	0.96	0.41 - 2.24	0.931	1.020	0.308
		1030+4C 11			Chinese			AB vs. AA	0.000	73.0	random	1.82	1.04-3.19	0.038	0.310	0.754
8	OPA1				Japanese			BB vs. AA	0.216	32.6	fixed	1.04	0.44-2.43	0.930	1.020	0.308
0	01111				Korean			B vs. A	0.405	3.5	fixed	1.49	1.30 - 1.71	0.000	0.100	0.917
		rc10451941			African-			BB + AB vs. AA	0.243	22.5	fixed	1.55	1.29-1.87	0.000	1.150	0.251
		$W_{S} = 22T - C$	С	9	Caribbean	944	1220	BB vs. AA + AB	0.603	0.0	fixed	1.87	1.43 - 2.45	0.000	0.300	0.764
		IV 50+321 *C						AB vs. AA	0.130	36.0	fixed	1.41	1.16-1.71	0.001	0.520	0.602
								BB vs. AA	0.564	0.0	fixed	2.16	1.59-2.95	0.000	0.000	1.000
9	OPTN				Chinese Japanese			B vs. A	0.239	30.1	fixed	1.51	1.14-2.02	0.005	1.040	0.296
		c.603T>A,		2		200	500	BB + AB vs. AA	0.341	7.0	fixed	1.55	1.12-2.14	0.007	1.040	0.296
		Met98Lys	А	3		300	599	BB vs. AA + AB	0.417	0.0	fixed	2.20	0.82-5.95	0.119	1.040	0.296
								AB vs. AA	0.401	0.0	fixed	1.49	1.07 - 2.07	0.018	0.000	1.000
								BB vs. AA	0.459	0.0	fixed	2.41	0.88-6.58	0.087	0.000	1.000

Table 2. Cont.

	Gene		Minor	No. of	Ed. 1	Pooled S	ample Size		Heterogeneity Test		Fixed or Random				Begg'	's Test
No.	Symbol	SNP	Allele	Cohorts	Ethnicity	Cases	Controls	Genetic Model	p (Q)	I² (%)	Effect Model	OR	95%CI	p	z	р
		c.412G>A, Thr34Thr	A	3		388	599	B vs. A BB + AB vs. AA BB vs. AA + AB AB vs. AA BB vs. AA	0.185 0.346 0.272 0.529 0.258	40.8 5.7 23.3 0.0 26.3	fixed fixed fixed fixed fixed	1.66 1.69 3.72 1.58 4.22	1.29–2.13 1.27–2.25 1.41–9.79 1.17–2.12 1.59–11.18	0.000 0.000 0.008 0.002 0.004	0.000 0.000 0.000 0.000 0.000	1.000 1.000 1.000 1.000 1.000
		IVS6-5T>C	С	2		171	381	B vs. A BB + AB vs. AA BB vs. AA + AB AB vs. AA BB vs. AA	0.048 0.141 0.135 0.058 0.387	74.4 53.8 55.3 72.2 0.0	random random random random fixed	1.26 1.07 2.08 2.03 1.01	0.64–2.50 0.59–1.97 0.53–8.18 0.98–4.17 0.41–2.50	0.507 0.817 0.296 0.055 0.976	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000 \end{array}$	1.000 1.000 1.000 1.000 1.000
		IVS6-10G>A	А	2		171	381	B vs. A BB + AB vs. AA BB vs. AA + AB AB vs. AA BB vs. AA B vs. A	0.532 0.499 0.474 0.760	0.0 0.0 0.0 0.0	fixed fixed fixed fixed fixed fixed	1.31 1.33 1.55 1.32 1.56 1.58	0.79-2.18 0.78-2.27 0.10-25.17 0.77-2.28 0.10-25.40 0.99-2.51	0.296 0.299 0.759 0.316 0.757 0.053	0.000 0.000 NA 0.000 NA 0.000	1.000 1.000 NA 1.000 NA 1.000
		IVS7+24G>A	А	2		171	381	BB + AB vs. AA BB vs. AA + AB AB vs. AA BB vs. AA B vs. A	0.148 0.398 0.061 0.856 0.000	52.3 0.0 71.6 0.0 81.3	fixed fixed random fixed random	1.29 2.75 1.17 2.71 0.97	$\begin{array}{c} 0.60-2.75\\ 0.51-14.87\\ 0.42-3.32\\ 0.49-14.92\\ 0.64-1.45\end{array}$	0.241 0.761 0.253 0.868	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.240 \end{array}$	1.000 1.000 1.000 0.806
10	p53	rs1042522, -Arg72Pro	С	5	Caucasian Chinese Japanese	490	1135	BB + AB vs. AA BB vs. AA + AB AB vs. AA BB vs. AA B vs. A	0.000 0.013 0.003 0.001 0.050	93.3 68.5 75.1 79.3 66.6	random random random random random	2.32 1.140 0.880 1.020 0.40	1.02–5.28 0.58–2.25 0.53–1.46 0.41–2.51 0.30–0.52	0.045 0.704 0.630 0.973 0.001	0.240 0.240 -0.240 -0.240 0.000	0.806 0.806 1.000 1.000 1.000
11	SRBD1	rs3213787	G	3	Korean Japanese	622	649	BB + AB vs. AA BB vs. AA + AB AB vs. AA BB vs. AA BB vs. AA	0.080 0.082 0.067 0.075	60.4 60.1 63.0 61.4	random random random random	0.38 0.23 0.41 0.20	0.26–0.51 0.09–0.59 0.30–0.56 0.08–0.50	0.001 0.252 0.002 0.201	0.000 0.000 0.000 0.000	$ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 1.000 $
12	TLR4	rs10759930	С	3	Korean Japanese	762	914	B vs. A BB + AB vs. AA BB vs. AA + AB AB vs. AA BB vs. AA	0.087 0.095 0.186 0.178 0.151	59.0 57.6 40.5 42.1 47.1	random random fixed fixed fixed	1.21 1.29 1.20 1.27 1.43	0.97–1.53 0.94–1.78 0.91–1.58 1.02–1.59 1.06–1.94	0.097 0.114 0.192 0.031 0.001	1.040 0.000 0.000 0.000 1.040	0.296 1.000 1.000 1.000 0.296
		rs1927914	G	3		762	914	B vs. A BB + AB vs. AA BB vs. AA + AB AB vs. AA	0.002 0.074 0.489 0.129	84.2 61.7 0.0 51.1	random random fixed random	1.29 1.32 1.24 1.30	0.89–1.87 0.94–1.85 0.94–1.64 0.94–1.78	0.180 0.104 0.125 0.108	$\begin{array}{c} 1.040 \\ 0.000 \\ 1.040 \\ 1.040 \end{array}$	0.296 1.000 0.296 0.296

Pooled Sample Size Begg's Test Heterogeneity Test Fixed or Random Gene Minor No. of No. SNP Ethnicity OR p Genetic Model 95%CI Symbol Allele Cohorts Effect Model Cases Controls p (Q) I2 (%) zp 0.172 43.1 0.000 1.000 BB vs. AA fixed 1.43 1.06 - 1.940.020 85.5 B vs. A 0.001 1.33 0.91-1.96 0.000 1.000 random 0.141 BB + AB vs. AA 58.2 0.091 random 1.31 0.95 - 1.800.102 1.040 0.296 BB vs. AA + AB 0.486 0.0 1.25 0.94-1.66 0.125 0.000 1.000 rs1927911 3 762 914 fixed Α AB vs. AA 0.155 46.3 fixed 1.29 1.04 - 1.610.021 0.000 1.000 BB vs. AA 0.013 76.9 0.78-2.79 random 1.48 0.227 1.040 0.296 rs12377632 Т 3 762 914 0.93-1.44 B vs. A 0.114 54.0 random 1.16 0.181 1.040 0.296 BB + AB vs. AA 0.060 64.4 random 1.27 0.90 - 1.800.171 0.000 1.000 0.379 BB vs. AA + AB 0.0 random 1.08 0.81 - 1.450.589 0.000 1.000 AB vs. AA 0.057 65.0 1.29 0.89 - 1.870.179 0.000 1.000 random BB vs. AA 0.79-2.72 0.016 75.8 1.46 0.231 0.000 1.000 random 74.5 0.020 1.25 0.93-1.68 0.000 B vs. A random 0.133 1.000 BB + AB vs. AA 0.057 65.0 random 1.29 0.91-1.83 1.040 0.296 0.155 0.99-1.74 rs2149356 Т 3 762 914 BB vs. AA + AB 0.359 2.3 fixed 1.31 0.062 0.000 1.000 AB vs. AA 0.120 52.8 random 1.24 0.90 - 1.710.181 0.000 1.000 BB vs. AA 0.019 74.9 random 1.47 0.80-2.72 0.219 1.040 0.296 B vs. A 0.315 13.5 fixed 1.05 0.89 - 1.240.527 0.000 1.000 BB + AB vs. AA 0.000 93.8 0.37-1.98 0.720 1.040 random 0.86 0.296 rs11536889 С 3 914 BB vs. AA + AB 0.508 0.0 fixed 0.88 0.57-1.35 0.559 1.040 0.296 762 AB vs. AA 0.4480.0 fixed 1.13 0.92 - 1.400.247 0.000 1.000 0.017 75.5 BB vs. AA random 1.34 0.59 - 3.020.867 0.000 1.000 G 3 762 914 rs7037117 B vs. A 0.000 89.1 random 1.12 0.67 - 1.890.665 1.040 0.296 BB + AB vs. AA 0.051 66.4 random 1.34 0.93-1.92 0.112 1.040 0.296 BB vs. AA + AB 0.746 0.0 fixed 1.28 0.82 - 2.010.280 0.000 1.000 AB vs. AA 0.055 65.6 random 1.33 0.91-1.93 0.138 1.040 0.296 BB vs. AA 0.079 60.6 random 1.48 0.71 - 3.080.290 1.040 0.296 rs7045953 G 3 914 762 B vs. A 0.307 15.4 fixed 1.12 0.86 - 1.450.414 1.040 0.296 BB + AB vs. AA 0.339 7.5 fixed 1.11 0.84 - 1.470.467 1.040 0.296 BB vs. AA + AB 0.506 0.0 fixed 1.56 0.51-4.75 0.436 0.000 1.000 AB vs. AA 0.393 0.0 fixed 1.09 0.82 - 1.460.534 1.0400.296 BB vs. AA 0.491 0.0 1.42 0.46-4.35 0.542 0.000 1.000 fixed B vs. A 0.287 11.6 0.70 0.47 - 1.040.078 0.000 1.000 fixed BB + AB vs. AA 0.365 0.0 fixed 0.65 0.41-1.03 0.068 0.000 1.000 Chinese rs17553936, 0.440 0.0 0.000 1.000 G 2 145 195 BB vs. AA + AB fixed 0.68 0.20 - 2.280.528 13 WDR36 Japanese IVS16-30A>G AB vs. AA 0.469 0.0 0.66 0.41 - 1.060.086 0.000 1.000 fixed 0.378 0.0 0.426 1.000 BB vs. AA fixed 0.61 0.18-2.06 0.000 Korean 14 SIX1-SIX6 rs10483727 С 2 391 383 B vs. A 0.141 53.8 random 0.55 0.38-0.80 0.002 0.000 1.000 Japanese 0.047 0.000 1.000 BB + AB vs. AA 0.062 71.2 random 0.56 0.32-0.99 0.543 0.25 0.000 1.000 BB vs. AA + AB0.0 0.12-0.54 0.000 fixed AB vs. AA 0.041 76.0 0.000 1.000 random 0.65 0.34 - 1.240.188BB vs. AA 0.748 0.000 1.000 0.0 fixed 0.21 0.10-0.46 0.000 69.7 0.000 0.069 1.000 B vs. A random 0.56 0.35-0.89 0.013 BB + AB vs. AA 0.067 70.3 random 0.55 0.32-0.77 0.038 0.000 1.000 rs33912345 391 383 BB vs. AA + AB 0.856 0.0 0.001 0.000 1.000 А 2 fixed 0.24 0.11 - 0.54AB vs. AA 0.086 66.1 0.62 0.36-1.08 0.089 0.000 1.000 random 0.696 0.000 1.000 BB vs. AA 0.0 0.20 0.08 - 0.450.000 fixed

Table 2. Cont.

NTG: normal tension glaucoma; SNP: single nucleotide polymorphism; OR: odds ratio; CI: confidence interval; NA: not applicable. Bold value: OR (95%CI) >1 or <1 with p < 0.05.

OPTN Polymorphisms

For SNP c.603T>A/Met98Lys, random effects showed a significant association between it and NTG in the allele, dominant and heterozygote models (allele: OR 1.51, 95%CI: 1.14–2.02, p = 0.005; dominant: OR 1.55, 95%CI: 1.12–2.14, p = 0.007; heterozygote: OR 1.49, 95%CI: 1.07–2.07, p = 0.018), but no evidence of association was found in other models (Figure S6A).

Referring to SNP c.412G>A/Thr34Thr, a significant association was found in all genetic models (allele: OR 1.66, 95%CI: 1.29–2.13, p < 0.001; dominant: OR 1.69, 95%CI: 1.27–2.25, p < 0.001; recessive: OR 3.72, 95%CI: 1.41–9.79, p = 0.008; heterozygote: OR 1.58, 95%CI: 1.17–2.12, p = 0.002 and homozygote: OR 4.22, 95%CI: 1.59–11.18, p = 0.004) (Figure S6B).

The other three SNPs (IVS6-5T>C, IVS6-10G>A, IVS7+24G>A) exhibited no statistical significance with NTG (Figure S6C–G).

P53 Polymorphism

A significant correlation of rs1042522/-Arg72Pro with NTG risk was revealed in the dominant model (OR 2.32, 95%CI: 1.02–5.28, p = 0.045), but not in the other four models (Figure S7).

SRBD1 Polymorphism

A negative correlation of rs3213787 and NTG risk could be seen in allele (OR 0.40, 95%CI: 0.30–0.52, p = 0.001), dominant (OR 0.38, 95%CI: 0.26–0.51, p = 0.001) and heterozygote (OR 0.41, 95%CI: 0.30–0.56, p = 0.002) models but not in other models (Figure S8).

TLR4 Polymorphisms

For rs10759930, results showed a significant association between it and NTG in heterozygote (OR 1.27, 95%CI: 1.02–1.59, p = 0.031) and homozygote models (OR 1.43, 95%CI: 1.06–1.94, p = 0.001) (Figure S9A).

For rs1927914, there was a significant association between it and NTG risk in the homozygote model (OR 1.43, 95%CI: 1.06–1.94, p = 0.020) (Figure S9B).

For rs1927911, a significant association between it and NTG risk was found in the heterozygote model (OR 1.29, 95%CI: 1.04–1.61, p = 0.021) (Figure S9C).

Rs12377632, rs2149356, rs11536889, rs7037117, rs7045953 revealed no significant association with NTG (Figure S9).

SIX1–SIX6 Polymorphism

Significant associations between rs10483727 and rs33912345 with a decreased risk of NTG could be seen in all models except for the heterozygote model (Figure S10A,B).

3.3.2. Gene Polymorphisms Not Associated with NTG

Among all the genetic polymorphisms analyzed, 17 SNPs in 7 genes were found not to be statistically significant with NTG (see Table 2).

3.3.3. Stratified Analysis in Different Ethnicities

In the stratification analysis by ethnicity, four SNPs were further investigated, including *MTHFR* rs397507444, *OPA1* rs166850 and rs10451941 as well as *p53* rs1042522. These SNPs showed no significant association with NTG in Asians. However, *OPA1* rs166850, *OPA1* rs10451941 and *p53* rs1042522 were significantly associated with NTG in Caucasians (Table S2).

3.4. Measurement of Publication Biases and Sensitivity Analysis

Begg's Test did not reveal publication bias among the overall analysis for candidate SNPs and corresponding genes (z < 1.96, p > 0.05, Table 2), which strengthened the credibility of our results. In the sensitivity analysis, Suh's study [47] was excluded for rs7037117

in the *TLR4* gene; this followed with a different conclusion that this SNP was significantly associated with NTG risk in the allele model (OR 1.46, 95%CI: 1.19–1.81, p < 0.001; $I^2 = 0.0\%$; Figure S11). Other alterations were not detected.

4. Discussion

Results showed that 16 SNPs in 10 genes were significantly associated with NTG in at least one genetic model. Related functions and pathogenic mechanisms of these associated alleles are summarized in Table 3 and Figure 2.

Figure 2. SNPs significantly associated with the risk of NTG and their possible biological functions.

4.1. Oxidative Stress-Related Genes

The *OPA1* gene encodes a kind of protein located in the inner membrane of mitochondria and plays an important role in cellular metabolism and activities, including stabilizing the mitochondrial construction, regulating mitochondrial fusion and fissure, taking part in oxidative phosphorylation and inhibiting chromosome c oxidase leaking, thus preventing cell apoptosis [72–75]. Aung [16] first conducted a study in Britain demonstrating that SNP rs166850 was significantly associated with NTG in 2002. We incorporated nine studies in our analysis with Caucasian, Asian and African-Caribbean populations, and finally elucidated that mutations in rs166850 and rs10451941 took effect in NTG in overall populations. This discovery reached the same conclusion as Guo's meta-analysis in 2012 [76]. Compared with Guo, two more new studies were searched by us, thus confirming the reliability of the conclusion with a larger sample size. The interactions of the two polymorphisms with other genes may be a possible mechanism for NTG risk [65]. Interestingly, some scientists also found that TC/TC or CT/TT rs166850/rs10451941 combined genotype were more common in the Caucasian NTG population [16,45,65], which possibly indicated the overlapping pathogenetic effect of the two SNPs.

The *P53* gene lies on the chromosome 17p13.1, encoding transcription factor p53 which regulates the cell circle, cell metabolism and senescence as well as DNA repair [77–79]. It is also related to cell apoptosis by stimulating the transcriptional activity of redox-related genes and producing reactive oxygen species (ROS) which damage the physiological function of mitochondria [80]. SNP rs1042522 has been reported to be located in the proline-rich region of *p53* which would induce cell apoptosis by initiating the release of cytochrome c in the mitochondria into the cytosol [81]. Controversy exists about whether G allele or the mutant C allele would increase the susceptibility of POAG, with only different conclusions drawn in different ethnicities.

Gene						
Name	Symbol	– SNP	OR (95%CI)	<i>p</i> Value	Involved Mechanisms	Possible Function in NTG
optic strophy 1	0041	rs166850, IVS8+4C¬T	1.49 (1.03-2.15)	0.034	Encoding proteins crucial for	Downregulation of OPA1 gene is associated with increased
	OPAT	rs10451941, IVS8+32T¬C	1.49 (1.30–1.71)	0.000	normal mitochondrial function	mitochondrial fission in optic nerve, increasing cell death of RGC-5 cells
elongation of long-chain fatty acids family member 5	ELOVL5	rs735860	1.51 (1.11-2.05)	0.009	Encoding elongases of	Enhanced ELOVL5 expression may cause apoptosis and cell
non-catalytic region of tyrosine kinase adaptor	NCK2	rs2033008	0.70 (0.57–0.87)	0.001	Regulating the cellular actin dynamics and polarity	Participating in neural regeneration and protection, especially for the transition of glia cells into photoreceptors
hexokinase 2	HK2	rs678350	1.54 (1.23–1.91)	0.000	Catalyzing the first step of glycolysis	Important for photoreceptors' function and preventing cell apoptosis
optineurin	OPTN	c.603T>A, Met98Lys c.412G>A, Thr34Thr	1.51 (1.14–2.02) 1.66 (1.29–2.13)	0.005 0.000	An adaptor protein involved in many cellular functions	Inhibition of autophagy and induced cell death of RGCs
S1 RNA binding domain 1	SRBD1	rs3213787	0.40 (0.30–0.52)	0.001	Modulating signal transduction	Prevent cell proliferation, promote proinflammatory cytokines accumulation and accelerate cell apoptosis of RGCs
toll-like receptor 4	TI R4	rs10759930 rs1927914	1.27 (1.02–1.59) 1.43 (1.06–1.94)	0.031	Participating in innate immunity and initiating	Inflammation and immunity lead to RGC apoptosis and
	TERT	rs1927911	1.29 (1.04–1.61)	0.021	inflammatory response	optic nerve damage
and a thalin recentor type A		c231G>A	0.61 (0.39-0.97)	0.035	Bind with ET-1 to activate	Damaging optic nerve resulted from vascular dysfunction
endomenn receptor type A	EDINKA	c.*70C>G	1.67 (1.08-2.56)	0.020	vasoconstriction	and promoting astrocytes proliferation
tumor protein p53	p53	rs1042522, -Arg72Pro	2.32 (1.02–5.28)	0.045	Regulating cell circle, cell metabolism, senescence and DNA repair	Producing ROS causing mitochondria damage and inducing cell apoptosis
sine oculis homeobox homolog 1- sine oculis homeobox homolog 6	SIX1-SIX6	rs10483727 rs33912345	0.55 (0.38–0.80) 0.56 (0.35–0.89)	0.002 0.013	Regulating the development of the visual system	Reducing the number of retinal ganglion cells, especially during the aging process

Table 3. Possible functions and pathogenic mechanisms of the associated SNPs in the development of NTG.

NTG: normal tension glaucoma; SNP: single nucleotide polymorphism; OR: odds ratio; CI: confidence interval; *OPA1*: optic atrophy 1; *ELOVL5*: elongation of long-chain fatty acids family member 5; *NCK2*: non-catalytic region of tyrosine kinase adaptor 2; *HK2*: hexokinase 2; *OPTN*: optineurin; *SRBD1*: S1 RNA binding domain 1; *TLR4*: toll-like receptor 4; *EDNRA*: endothelin receptor type A; *p53*: tumor protein 53.

4.2. Neurodegeneration and Apoptosis-Related Genes

ELOVL5 is a member of the *ELOVL* gene family encoding a kind of elongase in the production of long-chain fatty acids [82], especially the polyunsaturated omega-3 and omega-6 fatty acids. The polyunsaturated fatty acids' (PUFAs) metabolites play an important part in neurogenesis, neuronal survival and synaptic transmission [83–85]. What is more, ω -3 PUFAs could inhibit the damage of ischemia, inflammation, light, oxygen and age to retina [86]. Others showed that lack of eicosapentaenoic, docosahexaenoic acid and total ω -3 PUFAs were correlated to POAG risk [87]. The evidence above implies that alteration of rs735860 in the *ELOVL5* gene may increase NTG susceptibility by affecting the neurons' metabolism and inducing apoptosis of retinal ganglion cells (RGCs). Overexpression of *ELOVL5* was also seen in prostate and gastric cancer cells for its incapability to regulate redox and mitochondrial homeostasis, and maintain appropriate production of reactive oxygen species (ROS) [88,89], which pointed out a new possible pathogenetic mechanism to be studied further.

NCK2 encodes proteins that regulate the cellular actin dynamics and polarity by interacting with tyrosine-phosphorylated growth factor receptors [90,91]. *NCK2* is demonstrated to exist in the ganglion cell layer, inner nuclear layer and outer plexiform layer, which are highest in the ganglion cell layer [51]. D2S176, which is located in the locus *GLC1B* and is only 24 kb from the gene *NCK2*, was found to be associated with a genetic heterogeneity of adult-onset POAG, and recently was considered to increase NTG risk in the Japanese population [92,93], which indicated the possible correlation of *NCK2* and NTG. In our study, the A allele in rs2033008 was negatively related to NTG onset in Korean and Japanese populations; we speculate that this variation changed the interaction of *NCK2* with other genes resulting in a defensive effect of RGCs. Shi et al. [51] found that this SNP was associated with NTG but not POAG and supposed that the mechanisms of NTG were focused on optic nerve damage, but for POAG, changes in the anterior chamber weighed more heavily.

The *HK2* gene is located in the outer membrane of mitochondria and catalyzes the first step of glycolysis [51]. It is expressed widely in photoreceptors (PRs) and plays a role in the aerobic glycolysis metabolizing glucose entering the cells [94]. *HK2* inhibits the release of cytochrome c to prevent apoptosis through the Bax/Bak pathway [95]. Zhou et al. [96] found that the decreased expression of *HK2* would lead to irreversible rod degeneration in animal models. Given the importance of *HK2*-encoding proteins in mitochondria, it is reasonable to believe that the variant phenotypes could induce metabolic dysfunction and, furthermore, optic neuropathy.

OPTN is a 67 kDa protein which is expressed in many cells and tissues, especially in retina, brain, heart and skeleton muscle [97]. It acts as an adaptor protein and participates in many physiological activities such as signal transduction, cell division, cell survival, exocytosis, autophagy, protein trafficking and so on [97]. Mutations of *OPTN* have been widely considered a pathogenesis of POAG [98] as well as NTG [99,100], of which E50K (c.148G>A) is the most common to be associated with POAG, and another mutation H486R (c.1457A>G) is correlated with juvenile open-angle glaucoma (JOAG). In our study, we drew a conclusion that c.603T>A and c.412G>A in OPTN were significantly associated with NTG, but another POAG meta-analysis [101] only found the association between the former with NTG in the stratified analysis. The reason may lie in the difference in studies included: the POAG meta-analysis included four studies, while we included three studies for one of the four failed to define NTG clearly and was thus excluded.

SIX1-SIX6 belong to the *SIX* gene family containing two protein domains, which could encode homeobox domain transcription factors and may play a role in regulating the development of the visual system [102]. Studies have shown that a missense variant in rs33912345 of *SIX6* was associated with RNFL thinning [103,104], suggesting its function in RGC development or degeneration. The possible mechanism lies in its interaction with CDNK2A/CDNK2B and subsequently triggering RGC loss [105,106]. Our results, finding that the risk allele mutations of both rs10483727 and rs33912345 were associated with NTG,

were consistent with the findings of previous studies [104,107], which confirmed the results of this research.

4.3. Inflammation-Related Genes

SRBD1 encodes proteins which modulate signal transduction via binding with RNA. Its overexpression is considered to promote proinflammatory cytokines accumulation, prevent cell proliferation and accelerate cell apoptosis [108–110], which would do harm to RGCs in NTG. Kanemaki et al. stated that *SRBD1* polymorphisms were associated with NTG, despite IOP [111], suggesting the different pathogenetic factors of NTG from hyper-tension glaucoma (HTG). Rs3213787 was revealed to be negatively correlated with NTG, which indicates that the G allele may reduce *SRBD1* activity and protect RGC from apoptosis.

Toll-like receptors (TLRs) are a kind of pattern recognition receptor (PRR) which play an important role in innate immunity and initiate inflammatory response by recognizing and binding with pathogen-associated molecular patterns (PAMPs) [112]. Among them, TLR4 is expressed in the conjunctiva, cornea, uvea and retina [49]. A study found the overexpression of TLR4 in glaucomatous retina and the optic nerve [113], which indicates that inflammation and chronic stress would have an effect on the microenvironment of RGCs, change the construction of lamina cribrosa and increase the susceptibility of remaining axons, leading to irreversible optic neuropathy. Recently, it was suggested that *TLR4* was associated with POAG for its activation generates meshwork fibrosis via the TGF- β pathway, leading to elevation of IOP [114]; in addition, ligands of TLR4 (e.g., LPS and HSP) were considered as candidate antigens of NTG [115]. In our study, rs10759930, rs1927914 and rs1927911 were seen to show a significant association with NTG; we speculate that these polymorphisms change the expression of some important proteins by altering the translated regions or intron regions of mRNA in the translation process.

4.4. Microcirculation Disturbance-Related Gene

EDNRA is the specific receptor of endothelial-1 (ET-1), a 21-amino acid peptide performing as a vasoconstrictor [116], and can mediate ET-1 level in retinal blood flow. ET systems express greatly in most ocular tissues [117,118]. There have been studies which reported higher ET-1 concentration in the plasma of NTG patients compared with that of controls [119,120]. ET-1 system activation causes vasospasm, vascular endothelial injury and microvascular lesion, thus damaging the optic nerve. In addition, ET-1 affects the morphology and physiology of the optic nerve in rabbit models, resulting in optic disc excavation, loss of axons and demyelination of the optic nerve despite the level of IOP [121,122]. It also inhibits the anterograde axonal transport, lowers neural metabolic activity and promotes astrocytes' proliferation, which is responsible for the optic neuropathy in glaucoma [123].

Concerns regarding the limitation of utilizing duplicated datasets from the same researchers or groups (ex. Study 2, 8, 10 and 11 shown in Table 1) were also taken into account. In some specific scenarios, these overlapping data should be selected for further utilization according to standard, otherwise bias may occur if the same subject is incorporated repeatedly. In view of this, we searched further similar literature for advice [101,124,125]. As a result, we found that those SNP-associated meta-analyses also incorporated studies from the "same dataset". It seems reasonable because the overlapping data were not really included in the analysis for a specific SNP. Though duplicated in the cohort information in some studies, they were independent from each other because they targeted different genes and SNPs. Hence, a great deal of information would be missed once these data were deleted.

In this study, we summarized the reported genotype polymorphisms and obtained an insight into SNPs' association with the susceptibility to NTG. We adopted some measures such as Quality assessment, HWE test, Begg's Test and sensitivity analysis to control possible statistical errors and assure the credibility of our meta-analysis. However, there are

some limitations which should not be ignored in the meta-analysis. First, the sample size from different ethnicities should be enlarged. Second, only studies published in English met the inclusion criteria, which might cause a failure to incorporate other non-English articles, resulting in incomplete analysis. Finally, the functions and mechanisms of specific allele variants were not clearly explained, partly due to the different results of included articles and limited experimental evidence. Further studies should be conducted to explain the doubts.

5. Conclusions

In conclusion, the present study summarized the reported genotype polymorphisms and obtained an insight into SNPs' association with susceptibility to NTG. The mechanisms of these mutations on NTG could possibly be attributed to changing the metabolisms and activities of RGCs via mitochondria functional alteration, inflammation and immunity. Experimental evidence and more large-scale studies are required for a greater understanding of these genes and polymorphisms.

Supplementary Materials: The following supporting information can be downloaded at: https://www. mdpi.com/article/10.3390/genes15040491/s1, Figure S1. Associations between SNPs in EDNRA gene with NTG onset; Figure S2. Associations between SNPs in *ELOVL5* gene with NTG onset; Figure S3. Associations between SNPs in *HK2* gene with NTG onset; Figure S4. Associations between SNPs in *NCK2* gene with NTG onset; Figure S5. Associations between SNPs in *OPA1* gene with NTG onset; Figure S6. Associations between SNPs in *OPTN* gene with NTG onset; Figure S7. Associations between SNPs in *P53* gene with NTG onset; Figure S8. Associations between SNPs in *SRBD1* gene with NTG onset; Figure S9. Associations between SNPs in *TLR4* gene with NTG onset; Figure S10. Associations between SNPs in *SIX1-SIX6* gene with NTG onset; Figure S11. Sensitivity analysis for rs7037117 in *TLR4* gene; Table S1. Genotype frequencies for candidate SNPs in the involved studies; Table S2. Genetic associations of NTG in different ethnicities.

Author Contributions: Conceptualization, L.P. and J.W.; Methodology, L.P. and J.W.; Software, L.P. and J.W.; Formal Analysis, L.P. and J.W.; Writing—Original Draft Preparation, L.P.; Writing—Review and Editing, N.W.; Funding Acquisition, N.W. All authors have read and agreed to the published version of the manuscript.

Funding: The study is supported by National Natural Science Foundation of China (GZR-2012–009); Beijing Traditional Chinese Medicine Technology Development, Fund Project (JJ2018-50).

Institutional Review Board Statement: An ethics statement is not applicable because this study is based exclusively on published literature.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors confirm that the data supporting the findings of this study are available within the article and its Supplementary Materials.

Acknowledgments: We would like to express our thanks to all the colleagues who helped us.

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

- Stein, J.D.; Khawaja, A.P.; Weizer, J.S. Glaucoma in Adults-Screening, Diagnosis, and Management: A Review. JAMA 2021, 325, 164–174. [CrossRef] [PubMed]
- 2. Petrov, S.Y. [Modern view on normal-tension glaucoma]. Vestn. Oftalmol. 2020, 136, 57–64. [CrossRef] [PubMed]
- Esporcatte, B.L.; Tavares, I.M. Normal-tension glaucoma: An update. *Arq. Bras. Oftalmol.* 2016, 79, 270–276. [CrossRef] [PubMed]
 Killer, H.E.; Pircher, A. Normal tension glaucoma: Review of current understanding and mechanisms of the pathogenesis. *Eye*
- 2018, 32, 924–930. [CrossRef] [PubMed]
 5. Shields, M.B. Normal-tension glaucoma: Is it different from primary open-angle glaucoma? *Curr. Opin. Ophthalmol.* 2008, 19, 85–88. [CrossRef] [PubMed]
- 6. Gosling, D.; Meyer, J.J. Normal Tension Glaucoma. In *StatPearls*; StatPearls Publishing: Treasure Island, FL, USA, 2022.
- Chen, M.J. Normal tension glaucoma in Asia: Epidemiology, pathogenesis, diagnosis, and management. *Taiwan. J. Ophthalmol.* 2020, 10, 250–254. [CrossRef] [PubMed]

- 8. Leung, D.Y.L.; Tham, C.C. Normal-tension glaucoma: Current concepts and approaches-A review. *Clin. Exp. Ophthalmol.* 2022, 50, 247–259. [CrossRef] [PubMed]
- 9. Allen, K.F.; Gaier, E.D.; Wiggs, J.L. Genetics of Primary Inherited Disorders of the Optic Nerve: Clinical Applications. *Cold Spring Harb. Perspect. Med.* **2015**, *5*, a017277. [CrossRef]
- 10. Wiggs, J.L.; Pasquale, L.R. Genetics of glaucoma. Hum. Mol. Genet. 2017, 26, R21–R27. [CrossRef]
- Alward, W.L.M.; van der Heide, C.; Khanna, C.L.; Roos, B.R.; Sivaprasad, S.; Kam, J.; Ritch, R.; Lotery, A.; Igo, R.P., Jr.; Cooke Bailey, J.N.; et al. Myocilin Mutations in Patients With Normal-Tension Glaucoma. *JAMA Ophthalmol.* 2019, 137, 559–563. [CrossRef]
- 12. Lu, S.Y.; Rong, S.S.; Wu, Z.; Huang, C.; Matsushita, K.; Ng, T.K.; Leung, C.K.S.; Kawashima, R.; Usui, S.; Tam, P.O.S.; et al. Association of the CAV1-CAV2 locus with normal-tension glaucoma in Chinese and Japanese. *Clin. Exp. Ophthalmol.* **2020**, *48*, 658–665. [CrossRef] [PubMed]
- 13. Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur. J. Epidemiol.* 2010, 25, 603–605. [CrossRef]
- 14. Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. *BMJ* **2003**, 327, 557–560. [CrossRef] [PubMed]
- 15. Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. *BMJ* **1997**, *315*, 629–634. [CrossRef] [PubMed]
- Aung, T.; Ocaka, L.A.; Ebenezer, N.D.; Morris, A.G.; Brice, G.; Child, A.H.; Hitchings, R.A.; Lehmann, O.J.; Bhattacharya, S.S. Investigating the association between OPA1 polymorphisms and glaucoma: Comparison between normal tension and high tension primary open angle glaucoma. *Hum. Genet.* 2002, 110, 513–514. [CrossRef] [PubMed]
- 17. Powell, B.L.; Toomes, C.; Scott, S.; Yeung, A.; Marchbank, N.J.; Spry, P.G.; Lumb, R.; Inglehearn, C.F.; Churchill, A.J. Polymorphisms in OPA1 are associated with normal tension glaucoma. *Mol. Vis.* **2003**, *9*, 460–464. [PubMed]
- Funayama, T.; Ishikawa, K.; Ohtake, Y.; Tanino, T.; Kurosaka, D.; Kimura, I.; Suzuki, K.; Ideta, H.; Nakamoto, K.; Yasuda, N.; et al. Variants in optineurin gene and their association with tumor necrosis factor-α polymorphisms in Japanese patients with glaucoma. *Investig. Ophthalmol. Vis. Sci.* 2004, 45, 4359–4367. [CrossRef] [PubMed]
- Fuse, N.; Takahashi, K.; Akiyama, H.; Nakazawa, T.; Seimiya, M.; Kuwahara, S.; Tamai, M. Molecular genetic analysis of optineurin gene for primary open-angle and normal tension glaucoma in the Japanese population. *J. Glaucoma* 2004, *13*, 299–303. [CrossRef]
- 20. Woo, S.J.; Kim, D.M.; Kim, J.Y.; Park, S.S.; Ko, H.S.; Yoo, T. Investigation of the association between OPA1 polymorphisms and normal-tension glaucoma in Korea. J. Glaucoma 2004, 13, 492–495. [CrossRef]
- 21. Dimasi, D.P.; Hewitt, A.W.; Green, C.M.; Mackey, D.A.; Craig, J.E. Lack of association of p53 polymorphisms and haplotypes in high and normal tension open angle glaucoma. *J. Med. Genet.* **2005**, *42*, e55. [CrossRef]
- Fan, B.J.; Wang, D.Y.; Fan, D.S.; Tam, P.O.; Lam, D.S.; Tham, C.C.; Lam, C.Y.; Lau, T.C.; Pang, C.P. SNPs and interaction analyses
 of myocilin, optineurin, and apolipoprotein E in primary open angle glaucoma patients. *Mol. Vis.* 2005, 11, 625–631.
- Hashizume, K.; Mashima, Y.; Fumayama, T.; Ohtake, Y.; Kimura, I.; Yoshida, K.; Ishikawa, K.; Yasuda, N.; Fujimaki, T.; Asaoka, R.; et al. Genetic polymorphisms in the angiotensin II receptor gene and their association with open-angle glaucoma in a Japanese population. *Investig. Ophthalmol. Vis. Sci.* 2005, 46, 1993–2001. [CrossRef]
- Inagaki, Y.; Mashima, Y.; Fuse, N.; Funayama, T.; Ohtake, Y.; Yasuda, N.; Murakami, A.; Hotta, Y.; Fukuchi, T.; Tsubota, K. Polymorphism of β-adrenergic receptors and susceptibility to open-angle glaucoma. *Mol. Vis.* 2006, 12, 673–680.
- Kim, S.H.; Kim, J.Y.; Kim, D.M.; Ko, H.S.; Kim, S.Y.; Yoo, T.; Hwang, S.; Park, S.S. Investigations on the association between normal tension glaucoma and single nucleotide polymorphisms of the endothelin-1 and endothelin receptor genes. *Mol. Vis.* 2006, 12, 1016–1021.
- Lam, C.Y.; Fan, B.J.; Wang, D.Y.; Tam, P.O.; Yung Tham, C.C.; Leung, D.Y.; Ping Fan, D.S.; Chiu Lam, D.S.; Pang, C.P. Association of apolipoprotein E polymorphisms with normal tension glaucoma in a Chinese population. *J. Glaucoma* 2006, 15, 218–222. [CrossRef]
- 27. Mabuchi, F.; Tang, S.; Kashiwagi, K.; Yamagata, Z.; Iijima, H.; Tsukahara, S. Methylenetetrahydrofolate reductase gene polymorphisms c.677C/T and c.1298A/C are not associated with open angle glaucoma. *Mol. Vis.* **2006**, *12*, 735–739.
- Yao, W.; Jiao, X.; Hejtmancik, J.F.; Leske, M.C.; Hennis, A.; Nemesure, B.; He, Q.; Wu, S.Y.; Mendell, N.; Jiang, L.; et al. Evaluation of the association between OPA1 polymorphisms and primary open-angle glaucoma in Barbados families. *Mol. Vis.* 2006, 12, 649–654.
- How, A.C.; Aung, T.; Chew, X.; Yong, V.H.; Lim, M.C.; Lee, K.Y.; Toh, J.Y.; Li, Y.; Liu, J.; Vithana, E.N. Lack of association between interleukin-1 gene cluster polymorphisms and glaucoma in Chinese subjects. *Investig. Ophthalmol. Vis. Sci.* 2007, 48, 2123–2126. [CrossRef]
- 30. Jeoung, J.W.; Kim, D.M.; Ko, H.S.; Park, S.S.; Kim, J.Y.; Kim, S.Y.; Yoo, T.W. Investigation of the association between normal-tension glaucoma and single nucleotide polymorphisms in natriuretic peptide gene. *Korean J. Ophthalmol.* 2007, *21*, 33–38. [CrossRef]
- 31. Mabuchi, F.; Tang, S.; Kashiwagi, K.; Yamagata, Z.; Iijima, H.; Tsukahara, S. The OPA1 gene polymorphism is associated with normal tension and high tension glaucoma. *Am. J. Ophthalmol.* **2007**, *143*, 125–130. [CrossRef]
- 32. Miyazawa, A.; Fuse, N.; Mengkegale, M.; Ryu, M.; Seimiya, M.; Wada, Y.; Nishida, K. Association between primary open-angle glaucoma and WDR36 DNA sequence variants in Japanese. *Mol. Vis.* **2007**, *13*, 1912–1919.

- 33. Tosaka, K.; Mashima, Y.; Funayama, T.; Ohtake, Y.; Kimura, I.; Glaucoma Gene Research, G. Association between open-angle glaucoma and gene polymorphism for heat-shock protein 70-1. *Jpn. J. Ophthalmol.* **2007**, *51*, 417–423. [CrossRef]
- Shibuya, E.; Meguro, A.; Ota, M.; Kashiwagi, K.; Mabuchi, F.; Iijima, H.; Kawase, K.; Yamamoto, T.; Nakamura, M.; Negi, A.; et al. Association of Toll-like receptor 4 gene polymorphisms with normal tension glaucoma. *Investig. Ophthalmol. Vis. Sci.* 2008, 49, 4453–4457. [CrossRef]
- 35. Clement, C.I.; Goldberg, I.; Healey, P.R.; Graham, S.L. Plasma homocysteine, MTHFR gene mutation, and open-angle glaucoma. *J. Glaucoma* **2009**, *18*, 73–78. [CrossRef]
- Daugherty, C.L.; Curtis, H.; Realini, T.; Charlton, J.F.; Zareparsi, S. Primary open angle glaucoma in a Caucasian population is associated with the p53 codon 72 polymorphism. *Mol. Vis.* 2009, 15, 1939–1944.
- 37. Fan, B.J.; Wang, D.Y.; Cheng, C.Y.; Ko, W.C.; Lam, S.C.; Pang, C.P. Different WDR36 mutation pattern in Chinese patients with primary open-angle glaucoma. *Mol. Vis.* **2009**, *15*, 646–653.
- 38. Mabuchi, F.; Sakurada, Y.; Kashiwagi, K.; Yamagata, Z.; Iijima, H.; Tsukahara, S. Lack of association between p53 gene polymorphisms and primary open angle glaucoma in the Japanese population. *Mol. Vis.* **2009**, *15*, 1045–1049.
- Woo, S.J.; Kim, J.Y.; Kim, D.M.; Park, S.S.; Ko, H.S.; Yoo, T. Investigation of the association between 677C>T and 1298A>C 5,10-methylenetetra- hydrofolate reductase gene polymorphisms and normal-tension glaucoma. *Eye* 2009, 23, 17–24. [CrossRef]
- 40. Fan, B.J.; Liu, K.; Wang, D.Y.; Tham, C.C.; Tam, P.O.; Lam, D.S.; Pang, C.P. Association of polymorphisms of tumor necrosis factor and tumor protein p53 with primary open-angle glaucoma. *Investig. Ophthalmol. Vis. Sci.* **2010**, *51*, 4110–4116. [CrossRef]
- Mabuchi, F.; Sakurada, Y.; Kashiwagi, K.; Yamagata, Z.; Iijima, H.; Tsukahara, S. Estrogen receptor β gene polymorphism and intraocular pressure elevation in female patients with primary open-angle glaucoma. *Am. J. Ophthalmol.* 2010, 149, 826–830.e821–e822. [CrossRef]
- Mabuchi, F.; Sakurada, Y.; Kashiwagi, K.; Yamagata, Z.; Iijima, H.; Tsukahara, S. Lack of association of common variants on chromosome 2p with primary open-angle glaucoma in the Japanese population. *Proc. Natl. Acad. Sci. USA* 2010, 107, E90–E91. [CrossRef]
- Wolf, C.; Gramer, E.; Muller-Myhsok, B.; Pasutto, F.; Gramer, G.; Wissinger, B.; Weisschuh, N. Lysyl oxidase-like 1 gene polymorphisms in German patients with normal tension glaucoma, pigmentary glaucoma and exfoliation glaucoma. *J. Glaucoma* 2010, 19, 136–141. [CrossRef]
- 44. Writing Committee for the Normal Tension Glaucoma Genetic Study Group of Japan Glaucoma Society; Meguro, A.; Inoko, H.; Ota, M.; Mizuki, N.; Bahram, S. Genome-wide association study of normal tension glaucoma: Common variants in SRBD1 and ELOVL5 contribute to disease susceptibility. *Ophthalmology* **2010**, *117*, 1331–1338.e5. [CrossRef]
- Yu-Wai-Man, P.; Stewart, J.D.; Hudson, G.; Andrews, R.M.; Griffiths, P.G.; Birch, M.K.; Chinnery, P.F. OPA1 increases the risk of normal but not high tension glaucoma. *J. Med. Genet.* 2010, 47, 120–125. [CrossRef]
- 46. Mabuchi, F.; Sakurada, Y.; Kashiwagi, K.; Yamagata, Z.; Iijima, H.; Tsukahara, S. Association between SRBD1 and ELOVL5 gene polymorphisms and primary open-angle glaucoma. *Investig. Ophthalmol. Vis. Sci.* **2011**, *52*, 4626–4629. [CrossRef]
- Suh, W.; Kim, S.; Ki, C.S.; Kee, C. Toll-like receptor 4 gene polymorphisms do not associate with normal tension glaucoma in a Korean population. *Mol. Vis.* 2011, 17, 2343–2348.
- Yasumura, R.; Meguro, A.; Ota, M.; Nomura, E.; Uemoto, R.; Kashiwagi, K.; Mabuchi, F.; Iijima, H.; Kawase, K.; Yamamoto, T.; et al. Investigation of the association between SLC1A3 gene polymorphisms and normal tension glaucoma. *Mol. Vis.* 2011, 17, 792–796.
- 49. Takano, Y.; Shi, D.; Shimizu, A.; Funayama, T.; Mashima, Y.; Yasuda, N.; Fukuchi, T.; Abe, H.; Ideta, H.; Zheng, X.; et al. Association of Toll-like receptor 4 gene polymorphisms in Japanese subjects with primary open-angle, normal-tension, and exfoliation glaucoma. *Am. J. Ophthalmol.* **2012**, *154*, 825–832. [CrossRef]
- 50. Wiggs, J.L.; Hewitt, A.W.; Fan, B.J.; Wang, D.Y.; Figueiredo Sena, D.R.; O'Brien, C.; Realini, A.; Craig, J.E.; Dimasi, D.P.; Mackey, D.A.; et al. The p53 codon 72 PRO/PRO genotype may be associated with initial central visual field defects in caucasians with primary open angle glaucoma. *PLoS ONE* **2012**, *7*, e45613. [CrossRef]
- Shi, D.; Funayama, T.; Mashima, Y.; Takano, Y.; Shimizu, A.; Yamamoto, K.; Mengkegale, M.G.; Miyazawa, A.; Yasuda, N.; Fukuchi, T.; et al. Association of HK2 and NCK2 with normal tension glaucoma in the Japanese population. *PLoS ONE* 2013, *8*, e54115. [CrossRef]
- Shi, D.; Takano, Y.; Nakazawa, T.; Mengkegale, M.; Yokokura, S.; Nishida, K.; Fuse, N. Molecular genetic analysis of primary open-angle glaucoma, normal tension glaucoma, and developmental glaucoma for the VAV2 and VAV3 gene variants in Japanese subjects. *Biochem. Biophys. Res. Commun.* 2013, 432, 509–512. [CrossRef]
- 53. Lin, K.H.; Feng, S.C.; Shen, Y.C.; Wei, L.C.; Liang, C.Y.; Chang, C.J.; Yang, Y.Y.; Chiu, C.H.; Wang, C.Y. Interleukin-6(-174) locus polymorphism and serum IL-6 levels in normal tension glaucoma. *Ophthalmic Genet.* **2014**, *35*, 255–257. [CrossRef]
- 54. Gao, Y.; Li, W.; Yin, Z.; Ma, Y.; Cai, H.; Tang, X. Association between Genetic Polymorphisms of the β Adrenergic Receptor and Diurnal Intraocular Pressure in Chinese Volunteers and Glaucoma Patients. *Curr. Eye Res.* **2016**, *41*, 1553–1560. [CrossRef]
- Kosior-Jarecka, E.; Wróbel-Dudzińska, D.; Łukasik, U.; Aung, T.; Khor, C.C.; Kocki, J.; Żarnowski, T. Plasma endothelin-1 and single nucleotide polymorphisms of endothelin-1 and endothelin type A receptor genes as risk factors for normal tension glaucoma. *Mol. Vis.* 2016, 22, 1256–1266.
- 56. Nishisako, M.; Meguro, A.; Nomura, E.; Yamane, T.; Takeuchi, M.; Ota, M.; Kashiwagi, K.; Mabuchi, F.; Iijima, H.; Kawase, K.; et al. SLC1A1 Gene Variants and Normal Tension Glaucoma: An Association Study. *Ophthalmic Genet.* **2016**, *37*, 194–200. [CrossRef]

- 57. Sang, J.; Jia, L.; Zhao, B.; Wang, H.; Zhang, N.; Wang, N. Association of three single nucleotide polymorphisms at the SIX1-SIX6 locus with primary open angle glaucoma in the Chinese population. *Sci. China Life Sci.* **2016**, *59*, 694–699. [CrossRef]
- Jeoung, J.W.; Kim, D.M.; Oh, S.; Lee, J.S.; Park, S.S.; Kim, J.Y. The Relation Between Endothelial Nitric Oxide Synthase Polymorphisms and Normal Tension Glaucoma. J. Glaucoma 2017, 26, 1030–1035. [CrossRef]
- 59. Suh, W.; Won, H.H.; Kee, C. The Association of Single-Nucleotide Polymorphisms in the MMP-9 Gene with Normal Tension Glaucoma and Primary Open-Angle Glaucoma. *Curr. Eye Res.* **2018**, *43*, 534–538. [CrossRef]
- 60. Jung, S.H.; Lee, Y.C.; Lee, M.Y.; Shin, H.Y. Association of HK2 and NCK2 with normal-tension glaucoma in a population from the Republic of Korea. *Graefes Arch. Clin. Exp. Ophthalmol.* **2019**, 257, 2717–2721. [CrossRef]
- 61. Kosior-Jarecka, E.; Sagan, M.; Wrobel-Dudzinska, D.; Lukasik, U.; Aung, T.; Khor, C.C.; Kocki, J.; Zarnowski, T. Estrogen receptor gene polymorphisms and their influence on clinical status of Caucasian patients with primary open angle glaucoma. *Ophthalmic Genet.* **2019**, *40*, 323–328. [CrossRef]
- 62. Jung, S.H.; Lee, Y.C.; Lee, M.Y.; Shin, H.Y. Lack of Correlation between ASB10 and Normal-tension Glaucoma in a Population from the Republic of Korea. *Curr. Eye Res.* **2020**, *45*, 521–525. [CrossRef]
- 63. Jung, S.H.; Lee, Y.C.; Lee, M.Y.; Shin, H.Y. Lack of correlation between S1 RNA binding domain 1 SNP rs3213787/rs11884064 and normal-tension glaucoma in a population from the Republic of Korea. *Medicine* **2020**, *99*, e20066. [CrossRef]
- 64. Lee, J.S.; Jeoung, J.W.; Oh, S.; Kim, D.M.; Ahn, J.H.; Kim, M.J.; Seong, M.W.; Park, S.S.; Kim, J.Y. No association between POU4F1, POU4F2, ISL1 polymorphisms and normal-tension glaucoma. *Ophthalmic Genet.* **2020**, *41*, 427–431. [CrossRef]
- Milanowski, P.; Kosior-Jarecka, E.; Lukasik, U.; Wrobel-Dudzinska, D.; Milanowska, J.; Khor, C.C.; Aung, T.; Kocki, J.; Żarnowski, T. Associations between OPA1, MFN1, and MFN2 polymorphisms and primary open angle glaucoma in Polish participants of European ancestry. *Ophthalmic Genet.* 2022, 43, 42–47. [CrossRef]
- 66. Yue, J.L.; Zheng, S.F. Analysis of association between MALAT1 haplotype and the severity of normal-tension glaucoma (NTG). *J. Cell Mol. Med.* **2021**, 25, 9918–9926. [CrossRef]
- 67. Kim, Y.W.; Bak, E.; Wy, S.; Lee, S.C.; Kim, Y.J.; Kim, Y.K.; Park, K.H.; Jeoung, J.W. Genetic Risk and Phenotype Correlation of Primary Open-Angle Glaucoma Based on Rho-Kinase Gene Polymorphisms. J. Clin. Med. 2021, 10, 1953. [CrossRef]
- Liuska, P.J.; Lemmela, S.; Havulinna, A.S.; Kaarniranta, K.; Uusitalo, H.; Laivuori, H.; Kiiskinen, T.; Daly, M.J.; Palotie, A.; Turunen, J.A.; et al. Association of the MYOC p.(*Gln*368Ter) Variant With Glaucoma in a Finnish Population. *JAMA Ophthalmol.* 2021, 139, 762–768. [CrossRef]
- 69. He, J.N.; Ng, T.K.; Lu, S.Y.; Tam, P.O.S.; Chan, P.P.; Tham, C.C.; Pang, C.P.; Chen, L.J.; Chu, W.K. Genetic association of ANGPT2 with primary open-angle glaucoma. *Eye Vis.* **2022**, *9*, 37. [CrossRef]
- 70. Lee, C.C.; Wang, T.C.; Wang, H.Y.; Hsu, B.; Shih, R.J.; Lo, N.W.; Wang, C.Y. Association between HSPA5 Promoter Polymorphisms and a Reduced Risk of Normal Tension Glaucoma. *Ophthalmic Res.* **2022**, *65*, 474–480. [CrossRef]
- Shin, H.Y.; Lee, Y.C.; Lee, M.Y. Association of Polymorphisms at the SIX1/SIX6 Locus With Normal Tension Glaucoma in a Korean Population. J. Glaucoma 2022, 31, 763–766. [CrossRef]
- 72. Olichon, A.; Emorine, L.J.; Descoins, E.; Pelloquin, L.; Brichese, L.; Gas, N.; Guillou, E.; Delettre, C.; Valette, A.; Hamel, C.P.; et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. *FEBS Lett.* 2002, 523, 171–176. [CrossRef]
- Frezza, C.; Cipolat, S.; Martins de Brito, O.; Micaroni, M.; Beznoussenko, G.V.; Rudka, T.; Bartoli, D.; Polishuck, R.S.; Danial, N.N.; De Strooper, B.; et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. *Cell* 2006, 126, 177–189. [CrossRef]
- 74. Varanita, T.; Soriano, M.E.; Romanello, V.; Zaglia, T.; Quintana-Cabrera, R.; Semenzato, M.; Menabò, R.; Costa, V.; Civiletto, G.; Pesce, P.; et al. The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. *Cell Metab.* 2015, *21*, 834–844. [CrossRef]
- 75. Liu, R.; Chan, D.C. OPA1 and cardiolipin team up for mitochondrial fusion. Nat. Cell Biol. 2017, 19, 760–762. [CrossRef]
- Guo, Y.; Chen, X.; Zhang, H.; Li, N.; Yang, X.; Cheng, W.; Zhao, K. Association of OPA1 polymorphisms with NTG and HTG: A meta-analysis. *PLoS ONE* 2012, 7, e42387. [CrossRef]
- Toledo, F.; Wahl, G.M. Regulating the p53 pathway: In vitro hypotheses, in vivo veritas. *Nat. Rev. Cancer* 2006, *6*, 909–923. [CrossRef]
- 78. Levine, A.J. p53, the cellular gatekeeper for growth and division. *Cell* **1997**, *88*, 323–331. [CrossRef]
- 79. Vousden, K.H.; Lane, D.P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 2007, 8, 275–283. [CrossRef]
- 80. Artandi, S.E.; Attardi, L.D. Pathways connecting telomeres and p53 in senescence, apoptosis, and cancer. *Biochem. Biophys. Res. Commun.* 2005, 331, 881–890. [CrossRef]
- 81. Jeong, B.S.; Hu, W.; Belyi, V.; Rabadan, R.; Levine, A.J. Differential levels of transcription of p53-regulated genes by the arginine/proline polymorphism: p53 with arginine at codon 72 favors apoptosis. *FASEB J.* **2010**, *24*, 1347–1353. [CrossRef]
- 82. Kihara, A. Very long-chain fatty acids: Elongation, physiology and related disorders. J. Biochem. 2012, 152, 387–395. [CrossRef]
- 83. Bazinet, R.P.; Laye, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. *Nat. Rev. Neurosci.* 2014, 15, 771–785. [CrossRef]
- Serhan, C.N.; Chiang, N.; Dalli, J.; Levy, B.D. Lipid mediators in the resolution of inflammation. *Cold Spring Harb. Perspect. Biol.* 2014, 7, a016311. [CrossRef]

- 85. Guillou, H.; Zadravec, D.; Martin, P.G.; Jacobsson, A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. *Prog. Lipid Res.* 2010, *49*, 186–199. [CrossRef]
- SanGiovanni, J.P.; Chew, E.Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. *Prog. Retin. Eye Res.* 2005, 24, 87–138. [CrossRef]
- 87. Ren, H.; Magulike, N.; Ghebremeskel, K.; Crawford, M. Primary open-angle glaucoma patients have reduced levels of blood docosahexaenoic and eicosapentaenoic acids. *Prostaglandins Leukot. Essent. Fatty Acids* **2006**, *74*, 157–163. [CrossRef]
- Centenera, M.M.; Scott, J.S.; Machiels, J.; Nassar, Z.D.; Miller, D.C.; Zinonos, I.; Dehairs, J.; Burvenich, I.J.G.; Zadra, G.; Chetta, P.M.; et al. ELOVL5 Is a Critical and Targetable Fatty Acid Elongase in Prostate Cancer. *Cancer Res.* 2021, *81*, 1704–1718. [CrossRef]
- 89. Lee, J.Y.; Nam, M.; Son, H.Y.; Hyun, K.; Jang, S.Y.; Kim, J.W.; Kim, M.W.; Jung, Y.; Jang, E.; Yoon, S.J.; et al. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. *Proc. Natl. Acad. Sci. USA* **2020**, *117*, 32433–32442. [CrossRef]
- Zhou, L.; Zhang, Z.; Zheng, Y.; Zhu, Y.; Wei, Z.; Xu, H.; Tang, Q.; Kong, X.; Hu, L. SKAP2, a novel target of HSF4b, associates with NCK2/F-actin at membrane ruffles and regulates actin reorganization in lens cell. J. Cell Mol. Med. 2011, 15, 783–795. [CrossRef]
- Dubrac, A.; Genet, G.; Ola, R.; Zhang, F.; Pibouin-Fragner, L.; Han, J.; Zhang, J.; Thomas, J.L.; Chedotal, A.; Schwartz, M.A.; et al. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neovascularization. *Circulation* 2016, 133, 409–421. [CrossRef]
- 92. Stoilova, D.; Child, A.; Trifan, O.C.; Crick, R.P.; Coakes, R.L.; Sarfarazi, M. Localization of a locus (GLC1B) for adult-onset primary open angle glaucoma to the 2cen-q13 region. *Genomics* **1996**, *36*, 142–150. [CrossRef]
- Akiyama, M.; Yatsu, K.; Ota, M.; Katsuyama, Y.; Kashiwagi, K.; Mabuchi, F.; Iijima, H.; Kawase, K.; Yamamoto, T.; Nakamura, M.; et al. Microsatellite analysis of the GLC1B locus on chromosome 2 points to NCK2 as a new candidate gene for normal tension glaucoma. *Br. J. Ophthalmol.* 2008, *92*, 1293–1296. [CrossRef]
- 94. Roberts, D.J.; Tan-Sah, V.P.; Ding, E.Y.; Smith, J.M.; Miyamoto, S. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. *Mol. Cell* **2014**, *53*, 521–533. [CrossRef]
- 95. Majewski, N.; Nogueira, V.; Bhaskar, P.; Coy, P.E.; Skeen, J.E.; Gottlob, K.; Chandel, N.S.; Thompson, C.B.; Robey, R.B.; Hay, N. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. *Mol. Cell* 2004, *16*, 819–830. [CrossRef]
- 96. Zhou, Z.; Doggett, T.A.; Sene, A.; Apte, R.S.; Ferguson, T.A. Autophagy supports survival and phototransduction protein levels in rod photoreceptors. *Cell Death Differ.* **2015**, *22*, 488–498. [CrossRef]
- 97. Medchalmi, S.; Tare, P.; Sayyad, Z.; Swarup, G. A glaucoma- and ALS-associated mutant of OPTN induces neuronal cell death dependent on Tbk1 activity, autophagy and ER stress. *FEBS J.* **2021**, *288*, 4576–4595. [CrossRef]
- 98. Liu, Y.; Allingham, R.R. Molecular genetics in glaucoma. Exp. Eye Res. 2011, 93, 331–339. [CrossRef]
- 99. Ayala-Lugo, R.M.; Pawar, H.; Reed, D.M.; Lichter, P.R.; Moroi, S.E.; Page, M.; Eadie, J.A.; Azócar, V.; Maul, E.J.; Ntim-Amponsah, C.T.; et al. Variation in optineurin (OPTN) allele frequencies between and within populations. *Mol. Vis.* **2007**, *13*, 151–163.
- Alward, W.L.; Kwon, Y.H.; Kawase, K.; Craig, J.E.; Hayreh, S.S.; Johnson, A.T.; Khanna, C.L.; Yamamoto, T.; Mackey, D.A.; Roos, B.R.; et al. Evaluation of optineurin sequence variations in 1048 patients with open-angle glaucoma. *Am. J. Ophthalmol.* 2003, 136, 904–910. [CrossRef]
- 101. Chen, M.; Yu, X.; Xu, J.; Ma, J.; Chen, X.; Chen, B.; Gu, Y.; Wang, K. Association of Gene Polymorphisms With Primary Open Angle Glaucoma: A Systematic Review and Meta-Analysis. *Investig. Ophthalmol. Vis. Sci.* **2019**, *60*, 1105–1121. [CrossRef]
- Kawakami, K.; Sato, S.; Ozaki, H.; Ikeda, K. Six family genes--structure and function as transcription factors and their roles in development. *Bioessays* 2000, 22, 616–626. [CrossRef] [PubMed]
- 103. Carnes, M.U.; Liu, Y.P.; Allingham, R.R.; Whigham, B.T.; Havens, S.; Garrett, M.E.; Qiao, C.; Neighborhood Consortium Investigators; Katsanis, N.; Wiggs, J.L.; et al. Discovery and functional annotation of SIX6 variants in primary open-angle glaucoma. *PLoS Genet.* 2014, 10, e1004372. [CrossRef]
- 104. Kuo, J.Z.; Zangwill, L.M.; Medeiros, F.A.; Liebmann, J.M.; Girkin, C.A.; Hammel, N.; Rotter, J.I.; Weinreb, R.N. Quantitative Trait Locus Analysis of SIX1-SIX6 With Retinal Nerve Fiber Layer Thickness in Individuals of European Descent. Am. J. Ophthalmol. 2015, 160, 123–130.e121. [CrossRef] [PubMed]
- 105. Skowronska-Krawczyk, D.; Zhao, L.; Zhu, J.; Weinreb, R.N.; Cao, G.; Luo, J.; Flagg, K.; Patel, S.; Wen, C.; Krupa, M.; et al. P16INK4a Upregulation Mediated by SIX6 Defines Retinal Ganglion Cell Pathogenesis in Glaucoma. *Mol. Cell* 2015, *59*, 931–940. [CrossRef] [PubMed]
- 106. Bailey, J.N.; Loomis, S.J.; Kang, J.H.; Allingham, R.R.; Gharahkhani, P.; Khor, C.C.; Burdon, K.P.; Aschard, H.; Chasman, D.I.; Igo, R.P., Jr.; et al. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. *Nat. Genet.* 2016, 48, 189–194. [CrossRef] [PubMed]
- 107. Cheng, C.Y.; Allingham, R.R.; Aung, T.; Tham, Y.C.; Hauser, M.A.; Vithana, E.N.; Khor, C.C.; Wong, T.Y. Association of common SIX6 polymorphisms with peripapillary retinal nerve fiber layer thickness: The Singapore Chinese Eye Study. *Investig. Ophthalmol. Vis. Sci.* 2014, *56*, 478–483. [CrossRef] [PubMed]
- 108. Sarkar, D.; Lebedeva, I.V.; Emdad, L.; Kang, D.C.; Baldwin, A.S., Jr.; Fisher, P.B. Human polynucleotide phosphorylase (hPNPaseold-35): A potential link between aging and inflammation. *Cancer Res.* **2004**, *64*, 7473–7478. [CrossRef] [PubMed]

- 109. Leszczyniecka, M.; Kang, D.C.; Sarkar, D.; Su, Z.Z.; Holmes, M.; Valerie, K.; Fisher, P.B. Identification and cloning of human polynucleotide phosphorylase, hPNPase old-35, in the context of terminal differentiation and cellular senescence. *Proc. Natl. Acad. Sci. USA* 2002, 99, 16636–16641. [CrossRef]
- Sarkar, D.; Leszczyniecka, M.; Kang, D.C.; Lebedeva, I.V.; Valerie, K.; Dhar, S.; Pandita, T.K.; Fisher, P.B. Down-regulation of Myc as a potential target for growth arrest induced by human polynucleotide phosphorylase (hPNPaseold-35) in human melanoma cells. J. Biol. Chem. 2003, 278, 24542–24551. [CrossRef]
- 111. Kanemaki, N.; Tchedre, K.T.; Imayasu, M.; Kawarai, S.; Sakaguchi, M.; Yoshino, A.; Itoh, N.; Meguro, A.; Mizuki, N. Dogs and humans share a common susceptibility gene SRBD1 for glaucoma risk. *PLoS ONE* **2013**, *8*, e74372. [CrossRef]
- 112. Tang, D.; Kang, R.; Coyne, C.B.; Zeh, H.J.; Lotze, M.T. PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. *Immunol. Rev.* 2012, 249, 158–175. [CrossRef] [PubMed]
- 113. Tezel, G.; Hernandez, R.; Wax, M.B. Immunostaining of heat shock proteins in the retina and optic nerve head of normal and glaucomatous eyes. *Arch. Ophthalmol.* **2000**, *118*, 511–518. [CrossRef] [PubMed]
- 114. Hernandez, H.; Medina-Ortiz, W.E.; Luan, T.; Clark, A.F.; McDowell, C.M. Crosstalk Between Transforming Growth Factor β-2 and Toll-Like Receptor 4 in the Trabecular Meshwork. *Investig. Ophthalmol. Vis. Sci.* 2017, 58, 1811–1823. [CrossRef] [PubMed]
- 115. Nakamura, J.; Meguro, A.; Ota, M.; Nomura, E.; Nishide, T.; Kashiwagi, K.; Mabuchi, F.; Iijima, H.; Kawase, K.; Yamamoto, T.; et al. Association of toll-like receptor 2 gene polymorphisms with normal tension glaucoma. *Mol. Vis.* **2009**, *15*, 2905–2910.
- 116. Inoue, A.; Yanagisawa, M.; Kimura, S.; Kasuya, Y.; Miyauchi, T.; Goto, K.; Masaki, T. The human endothelin family: Three structurally and pharmacologically distinct isopeptides predicted by three separate genes. *Proc. Natl. Acad. Sci. USA* 1989, *86*, 2863–2867. [CrossRef] [PubMed]
- 117. Ripodas, A.; de Juan, J.A.; Roldan-Pallares, M.; Bernal, R.; Moya, J.; Chao, M.; Lopez, A.; Fernandez-Cruz, A.; Fernandez-Durango, R. Localisation of endothelin-1 mRNA expression and immunoreactivity in the retina and optic nerve from human and porcine eye. Evidence for endothelin-1 expression in astrocytes. *Brain Res.* **2001**, *912*, 137–143. [CrossRef] [PubMed]
- 118. Fernandez-Durango, R.; Rollin, R.; Mediero, A.; Roldan-Pallares, M.; Garcia Feijo, J.; Garcia Sanchez, J.; Fernandez-Cruz, A.; Ripodas, A. Localization of endothelin-1 mRNA expression and immunoreactivity in the anterior segment of human eye: Expression of ETA and ETB receptors. *Mol. Vis.* **2003**, *9*, 103–109. [PubMed]
- 119. Sugiyama, T.; Moriya, S.; Oku, H.; Azuma, I. Association of endothelin-1 with normal tension glaucoma: Clinical and fundamental studies. *Surv. Ophthalmol.* **1995**, *39* (Suppl. S1), S49–S56. [CrossRef] [PubMed]
- Cellini, M.; Possati, G.L.; Profazio, V.; Sbrocca, M.; Caramazza, N.; Caramazza, R. Color Doppler imaging and plasma levels of endothelin-1 in low-tension glaucoma. *Acta Ophthalmol. Scand. Suppl.* 1997, 75, 11–13. [CrossRef]
- 121. Cioffi, G.A.; Sullivan, P. The effect of chronic ischemia on the primate optic nerve. *Eur. J. Ophthalmol.* **1999**, *9* (Suppl. S1), S34–S36. [CrossRef]
- 122. Oku, H.; Sugiyama, T.; Kojima, S.; Watanabe, T.; Azuma, I. Experimental optic cup enlargement caused by endothelin-1-induced chronic optic nerve head ischemia. *Surv. Ophthalmol.* **1999**, *44* (Suppl. S1), S74–S84. [CrossRef] [PubMed]
- 123. Stokely, M.E.; Brady, S.T.; Yorio, T. Effects of endothelin-1 on components of anterograde axonal transport in optic nerve. *Investig. Ophthalmol. Vis. Sci.* **2002**, *43*, 3223–3230.
- 124. Liang, Y.J.; Wang, Y.Y.; Rong, S.S.; Chen, Z.J.; Chen, S.Y.; Tham, J.A.; Chan, P.P.; Yam, J.C.; Wiggs, J.L.; Pang, C.P.; et al. Genetic Associations of Primary Angle-Closure Disease: A Systematic Review and Meta-Analysis. *JAMA Ophthalmol.* 2024, 123, e240363. [CrossRef] [PubMed]
- 125. Rong, S.S.; Tang, F.Y.; Chu, W.K.; Ma, L.; Yam, J.C.; Tang, S.M.; Li, J.; Gu, H.; Young, A.L.; Tham, C.C.; et al. Genetic Associations of Primary Angle-Closure Disease: A Systematic Review and Meta-analysis. *Ophthalmology* 2016, 123, 1211–1221. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.