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Abstract: The evolutionary impact of gene duplication events has been a theme of 

Drosophila genetics dating back to the Morgan School. While considerable attention has 

been placed on the genetic novelties that duplicates are capable of introducing, and the role 

that positive selection plays in their early stages of duplicate evolution, much less attention 

has been given to the potential consequences of ectopic (non-allelic) gene conversion on 

these evolutionary processes. In this paper we consider the historical origins of ectopic gene 

conversion models and present a synthesis of the current Drosophila data in light of several 

primary questions in the field. 
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1. Introduction 

Gene duplication is a central theme in evolutionary genetics due in large part to each duplicate’s 

potential for introducing genetic novelty. Gene family expansions have jointly contributed to genome 

size [1], and to the diversification of molecular functions, including those influencing morphology [2], 

digestion [3–5], immune defense [6], and possibly reproductive isolation between species [7–9]. While 

there is evidence for adaptive differentiation between duplicates [10–12], duplication events can also 

have deleterious consequences, by generating chromosomal instability and dosage abnormalities [13–16]. 

As a result, research on gene duplication is of both evolutionary and medical interest. 

OPEN ACCESS 



Genes 2011, 2              

 

 

132 

Though most duplicate alleles will eventually be lost from a population, a complex interaction 

between genetic drift, mutation and selection can occasionally lead to duplicate fixation and 

preservation [17]. Unlike single-copy genes, paralogous (or ―non-allelic‖) genomic regions can interact 

via ectopic (non-allelic) gene conversion (EGC). Gene conversion refers to a double-strand break 

(DSB) induced form of homologous recombination, with EGC occurring between paralogous regions 

with high sequence identity. The mechanism results in the transfer of a chromosomal region from the 

intact sequence to the region that contains the DSB, and can occur between homologous or 

nonhomologous chromosomes. From an evolutionary or population genetic perspective, this is often 

modeled as a ―copy and paste‖ process of nonreciprocal exchange ([18]; Figure 1), which introduces 

genetic interdependence between duplicates and partially governs their evolutionary fates [19]. Despite 

its name, EGC does not occur exclusively within genes (it can occur in noncoding sequences). 

Figure 1. A graphical model of gene duplication and paralog evolution with EGC. An 

ancestral single-copy gene (A) becomes duplicated, leading to initially identical 

paralogs (B). Independent accumulation of substitutions will lead to paralog divergence 

from the ancestral sequence and differentiation between paralogs ((C) with white, blue and 

gray representing divergent sequences). EGC events re-homogenize the sequences  

((D) with two conversion tracts shown), with substitutions from one duplicate being shared 

by the other. 

 

A large body of theoretical work illustrates that EGC can greatly influence the evolutionary 

dynamics of duplicates [17,19], yet empirical support of the theory, including its effect on the process 

of adaptation and gene family evolution, is less clear. In this article, we present a review and synthesis 

of the empirical literature on EGC as it pertains to Drosophila. After summarizing commonly used 

methods for detecting EGC, the paper is structured into two main sections. In the first, we briefly 

outline the historical context in which EGC came to be studied in Drosophila, and describe how EGC 

research emerged from a more general analysis of repetitive DNA and concerted evolution. The second 

section provides an up-to-date analysis of the Drosophila empirical literature concerning duplication 

and EGC. We anchor the synthesis around several broad and unresolved questions: 

 What is the relative contribution of EGC to patterns of concerted evolution? 

 How does genomic context (e.g., nucleotide base composition; linkage relationships between 

duplicates) affect EGC? 

 How do selection and EGC interact to influence adaptation? 
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 Does gene conversion between duplicates bias estimates of the gene duplication rate and the 

tempo of paralog differentiation? 

Our general conclusion is that EGC, at minimum, plays a consequential role during the early 

evolution of physically linked Drosophila duplications. However, the empirical limitations of jointly 

testing for interactions between conversion, selection, linkage, and gene family size preclude a strong 

conclusion about the temporal duration of conversion between duplicates, or its role in promoting or 

constraining adaptation. We describe future analyses that may shed light on these unresolved issues. 

2. Detecting Ectopic Gene Conversion 

Methods for detecting EGC have been developed for both divergence- (multi-species alignments of 

singly-sampled paralogs) and polymorphism-based sequence data sets (multiple alignments, per 

paralog, per population). Though the scope of this review does not include a detailed discussion of the 

methods used, it is helpful to introduce and highlight the most commonly used approaches for 

detecting EGC (Figure 2). Throughout the paper, we also highlight some of their limitations, when 

these are directly applicable to interpreting the data. 

Within the Drosophila literature, the two most cited divergence-based approaches utilize the 

GENCONV software package [20] or test for incongruities between a given species phylogeny and a 

gene tree that has been estimated from paralogous and orthologous DNA sequences from one or more 

of the same species represented in the phylogeny. GENCONV was originally designed to detect allelic 

conversion, but has subsequently been used to detect EGC. The software searches for stretches of 

sequence identity between duplicates (tracts) that extend further than would be expected by chance, 

given a model of independent evolution between the loci. Permutation tests are used to establish 

statistical significance [20]. 

Tests of incongruity between species trees and gene trees are based on the following logic. If 

phylogenetic information suggests that a given duplication event preceded speciation between two or 

more species, but DNA sequence data for paralogs within species demonstrate greater sequence 

identity than orthologs between species, then the datasets are identified as ―irreconcilable‖. In these 

cases, EGC can be invoked to explain the disagreement between phylogenetic dating of duplication 

events and the relative sequence identity between paralogs and orthologs (e.g., [21]). Such reasoning 

can be extended to gene trees constructed from different sub-regions of a duplicate sequence, where 

variation between sub-regions can be used to identify conversion tracts (e.g., [22]). Such tests between 

gene trees and species trees will subsequently be referred to as ―reconciliation‖ methods. 

A third divergence-based method is based on analysis of two types of nucleotide substitutions 

between paralogous and orthologous sequence alignments: 1) substitutions between orthologs that are 

shared between paralogs; and 2) substitutions between paralogs that are shared between orthologs. The 

former pattern supports a conversion model, while the latter is indicative of evolutionary independence 

between paralogs [22]. Through parsimony-based arguments, one can test a hypothesis of EGC by 

calculating the probability of observing the data for each substitution type, given a null model that 

permits multiple mutations but no conversion. We refer to this as the ―site-specific‖ method. 

The least widely used (but most powerful) method relies on polymorphism data within a species. 

Alignments of the set of paralogs can be used to identify shared polymorphism. Given a low point 
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mutation rate (as expected), parallel mutations and shared polymorphism will be rare without EGC. 

The actual amount of shared polymorphism between paralogs can be used to identify recent conversion 

events, and to estimate the rate of conversion between the paralogs [23]. We refer to this approach as 

the ―shared polymorphism‖ method. 

Figure 2. Schematic illustration of data that can be used to detect EGC. Panel 1: A species 

tree for 4 arbitrary species with a single gene duplication event noted by the black diamond. 

Green tree tips indicate that the branches leading to species A and B carry the gene 

duplication. Species A and B are considered in the following panels, while C and D are 

ignored. Panel 2: Three examples of gene trees inferred from the paralog sequences. The 

duplicate copy is noted by the apostrophe. The top gene tree is expected if there is no EGC, 

while the bottom two trees may arise if there is gene conversion between one (bottom tree) 

or both paralog pairs (middle tree). Panel 3: Hypothetical divergence data sets associated 

with the gene trees from panel 2. Circles refer to molecular markers (e.g., nucleotide 

substitutions or restriction sites) that are fixed between orthologs or paralogs. Markers that 

align vertically are shared between sequences. Panel 4: Hypothetical polymorphism data 

sets associated with the gene trees from panel 2. Black circles indicate shared 

polymorphisms between paralogs and orange lines indicate unshared (―private‖) 

polymorphisms between paralogs. See the text for additional information. 
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3. Historical Background to Ectopic Gene Conversion 

3.1. Repetitive DNA and the Origin of Genome Size Variation 

Current debates about EGC can be traced to earlier ones over concerted evolution from the mid 

1960s to the 1970s. These debates, in turn, were intertwined with emerging interest in the evolution of 

genome size and the underlying importance of repetitive DNA. 

The first empirical evidence for genome size plasticity traces back to the Bar locus duplication, 

discovered by members of the Morgan lab [24–25]. During the interval between the discovery of the 

Bar duplication and the first evidence of concerted evolution in 1972 [26], advances in microscopy, 

chromosomal labeling, and DNA and RNA hybridization and denaturation methods, revealed striking 

variability in genome size [27–28]. Along with these observations came speculation over the 

mutational and evolutionary mechanisms driving genome size differences. Modern models of unequal 

crossing over and replication error were hypothesized as the primary mechanisms generating genome 

content differences [24,29–32], while subsequently discredited models, such as variability in the 

number of strands comprising chromosomes, were also considered at the time [31,33]. In addition to 

uncertainty surrounding duplication mechanisms, cytogeneticists found that the existence of multiple 

gene copies presented a significant challenge to the way chromosomes were conceptualized [32]. 

From this earlier research on genomic content, the model most relevant to ectopic conversion is the 

master–slave model [31,34]. Working with the giant lampbrush chromosomes of female newts, Callan 

and Lloyd [34] measured chromosome loop sizes within and between two subspecies. They argued that 

recombination took place within them, and that the loop morphologies were genetically determined and 

followed Mendelian segregation. They reasoned that the content of each loop was comprised of a series 

of identical, repetitive DNA units [31]. Such an observation was relevant to genome size differences, 

as variability in repeat copy number could contribute to the variation [34]. That a large number of 

functionally important repetitive units represented a large mutational target did not go unnoticed, and 

the master–slave model was introduced to explain how sequence identity between repeats could be 

maintained in the face of mutation [31,34]. As a predecessor to current models of (biased) EGC, this 

early model invoked a single ―master‖ and a series of ―slave‖ copies within each repeat family. 

Following meiotic recombination, each slave copy would pair with the master and become 

homogenized exclusively in the master-to-slave direction. Thus, all mutations accumulating in slave 

copies would be ―rectified‖ to their ancestral state (master copies were assumed to be largely protected 

from mutation accumulation). 

Later modifications to the ―rectifying‖ model attest to its appeal during this time. For example, the 

original master–slave model assumed that each master gene was separated by intervals comprised of 

repetitive slave copies, yet subsequent data indicated that unique genes (rather than copies) were likely 

to be physically linked [32]. Thus, the ―Cycloid Model‖ (in response to the emerging linkage data) 

proposed that a loop of slave genes became detached from the main chromatid prior to a cross over, 

and these genes were subsequently reinserted following homogenization with the master (for additional 

master–slave based physical models see [35]). Around the same time, Edelman and Gally [36–37] 

proposed a ―democratic‖ gene conversion model, which invoked symmetrical exchanges  

(non-biased, as in the master–slave) between repeated genes. The democratic model forwarded 
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arguments that selection could act more efficiently when a beneficial mutation arising on any gene 

copy was free to spread throughout the gene family. 

By the start of the 1970s, much emphasis had been placed on understanding the origins and 

implications of repetitive DNA, which raised questions about the evolutionary maintenance of repeats, 

conversion biases, interactions between selection and conversion, and the importance of chromosomal 

context in mediating concerted evolution. These questions remain important today. 

3.2. Concerted Evolution, rDNA, and Drosophila 

To improve understanding of the evolutionary dynamics of repetitive DNA, the pre-molecular 

biology world needed a more tractable model system. rDNA was well suited for this role [38,39], and 

served as an early model for duplication and conversion in Drosophila. 

The abundant transcriptional products of rDNA loci, together with hybridization and denaturation 

methods of the time, provided an opportunity to estimate copy number differences and sequence 

divergence of repetitive units within and between species. Detailed evolutionary studies of rDNA 

arrays across diverse taxa gained momentum starting in the mid 1960s [28]. Most notable is that of 

Brown et al. [26], which provided the first example of concerted evolution, using closely related 

Xenopus species. They showed that individual rDNA array units exhibited very high sequence identity 

within compared to between species. This suggested that a ―correction mechanism‖ between repeats 

resulted in ―horizontal evolution‖ within species. Though Brown et al. [26] did not initially refer to this 

observation as ―concerted evolution‖, the pattern has subsequently been referred to as such.  

With evolutionary models for repetitive DNA already developed, the field was situated to integrate 

empirical patterns of concerted evolution. One explanation for the pattern invoked the already popular 

model of unequal crossing over. High rates of unequal crossing over could permit the stochastic spread 

of identical copies throughout a given array, leading to a pattern of high sequence identity between 

individual copies. The alternative explanation harkened back to models of homogenization between 

duplicates, such as the master–slave model. Though not conclusive, initial support for unequal crossing 

over was provided by Xenopus DNA data [26,40], and was reinforced by mathematical theory [41,42].  

It had already been established that Drosophila had large rDNA arrays on both the X and Y 

chromosome. A role for unequal crossing over during the evolution of these arrays had been suggested 

from studies of the bobbed mutant, which was associated with deficiencies of X-linked rDNA 

genes [43]. Subsequent genetic analysis of the bobbed phenotype led to the discovery of ―DNA 

magnification‖, where male germlines deficient for both X- and Y-linked rDNA could revert to the 

wild-type rDNA gene number [39,44–46]. Though Ritossa [44] argued against the role of unequal 

crossing over in DNA magnification, subsequent work provided evidence that it occurred through 

unequal crossing over between sister chromatids during meiosis [47]. In addition to strain-specific (or 

germline) gains and losses of rDNA genes, signals of concerted evolution were also uncovered in 

rDNA arrays. This was first documented through comparative studies within the D. melanogaster 

species subgroup and D. hydei [48,49]. These studies provided two important insights. First, repeat 

units on nonhomologous chromosomes were shown to be capable of concerted evolution. Second, and 

in contrast to Xenopus, high sequence identity between repeats was found for the nontranscribed 
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regions (it was later shown that homogenization of nontranscribed regions did not persist between 

distantly related D. hydei and D. melanogaster; [49]).  

Following these early rDNA studies, patterns of concerted evolution have consistently been reported 

for this gene family [50]. While unequal crossing over and purifying selection were both thought to 

contribute to the homogenization of array units [51–53], there is currently less convincing evidence 

regarding a role for EGC [53]. 

4. Distinguishing Ectopic Gene Conversion and Gene Turnover as Drivers of Concerted 

Evolution in Drosophila 

Debates over the role of EGC in generating patterns of concerted evolution in Drosophila have 

persisted to the present. The current form of the debate is strikingly similar to what one finds in the 

early concerted evolution literature, where competing hypotheses included homogenizing and 

―expansion-contraction‖ processes. Today, the debate is often framed as a contrast between EGC and 

―birth-and-death‖ models [54,55]. The birth-and-death model invokes the continuous generation of 

duplicate genes, with the rate of origin balanced by a steady rate of gene loss by pseudogenization or 

deletion. Assuming that duplicates rarely evolve novel functions (for which individual gene copies 

might be maintained by selection), then gene copy turnover will cause young duplicates to gradually 

replace older copies, in a process analogous to the neutral theory of molecular evolution (e.g., steady, 

clock-like replacement of older alleles with younger, neutral substitutions). Birth-and-death is expected 

to be most common in multigene families with members exhibiting variable degrees of divergence, 

relatively high sequence identity within gene families, and pseudogenes [55]. Though the name of the 

model is relatively recent, it is conceptually similar to concepts developed during the 1960s and 

1970s (see above). 

4.1. Ectopic Conversion from a Case Studies Perspective 

There is little doubt that gene turnover and EGC both occur in Drosophila, and their relative 

contributions to patterns of concerted evolution are expected to vary on a case-by-case basis, as we 

describe below. Because of their idiosyncrasies, case studies have limited ability to address  

genome-wide frequencies of EGC and gene turnover. As such, we consider specific properties of gene 

families that make them susceptible to processes of EGC and turnover, and outline some experiments 

that will be necessary to better resolve the issue. 

Heat Shock Proteins (HSP). As an ancient and evolutionarily conserved gene family, HSPs are 

good a priori candidates for sustained EGC over relatively long timescales (paralogs are expected to 

have high sequence similarity due to concordant purifying selection). In the D. melanogaster species 

group, there are two pairs of HSP genes (Hsp70Aa/Hsp70Ab and Hsp70Ba/Hsp70Bb), with each pair 

tightly linked in a ―palindromic‖ (i.e., mirror image) orientation on the Muller E chromosome 

(chromosome 3R of D. melanogaster). This type of orientation has an interesting property with respect 

to ectopic recombination. A double-strand break in one of the paralogs can become resolved by gene 

conversion (resulting in sequence homogenization; e.g., Figure 1), or by crossing over, which can 

generate deleterious chromosomal abnormalities (inversions, and large-scale duplications and  

deletions [16]). Deleterious haplotypes caused by ectopic crossovers should contribute marginally to 
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evolution, whereas conversion resolution of double-strand breaks will contribute to concerted 

evolution [16]. Thus, a palindromic orientation may minimize the generation of copy number 

polymorphism and evolution under a birth/death process. Two lines of evidence support ongoing 

conversion within each paralog cluster of HSPs. First, despite the relatively ancient origin of duplicate 

pairs (each precedes species divergence), paralogs within each species have higher sequence identity 

than ortholog pairs between species, consistent with ongoing EGC within the Drosophila lineages [21]. 

Second, paralogs share silent polymorphisms, indicating recent conversion events [56]. Recent 

work [57] also reports concerted evolution between a young set of rapidly evolving Hsp70 cofactor 

paralogs: Hsc/Hsp70-interacting protein (HIP). HIP/HIP-R genes are X-linked, non-inverted 

duplicates that are confined to the D. melanogaster lineage. Like HSP genes, extensive shared 

polymorphisms indicate that these cofactor duplicates are undergoing conversion. 

Amylase. Another classic study system for Drosophila EGC is the amylase gene clusters. The 

D. melanogaster species group includes a conserved set of linked paralogs (Amy-p and Amy-d) in 

palindromic orientation (similar to Hsp70 genes). Early work based on restriction site analysis [58] 

showed the widespread sharing of substitutions between paralogs. Inference of EGC was reinforced by 

subsequent, sequence-based analysis, which showed high intraspecific sequence identity between 

paralogs relative to divergence between orthologs [59,60], with the pattern of concerted evolution 

confined to coding sequence (flanking regions appear to evolve independently; [61,62]). 

Subsequent work was extended to species outside of the melanogaster group, which carried an 

amylase cluster orthologous to D. melanogaster, and one or more additional clusters [63]. Concerted 

evolution between amylase paralogs within D. pseudoobscura inversion karyotypes were once again 

limited to coding regions [64,65]. Drosophila kikkawai and close relatives have two highly-divergent 

clusters of linked, palindromic amylase genes (Amy1/Amy2 and Amy3/Amy4), with each cluster 

showing high sequence identity [66]. Homogeneous coding and noncoding sequence between 

Amy3/Amy4 may indicate EGC or a duplication event. The Amy1/Amy2 pair, which appears to be 

orthologous to the melanogaster cluster, shows evidence of coding (but no noncoding) concerted 

evolution, which supports a model of continuous EGC [67,68]. 

In many ways, these classical studies are representative of the case study approach to concerted 

evolution. Evidence for EGC is typically associated with the analysis of small gene families that are 

physically linked and/or evolving under purifying selection (e.g., larval cuticle protein cluster 

genes [69]; Idgf genes [70]; esterases [71,72]; histones [73]; HSP and amylase genes (see above)). 

High sequence similarity due to recent origin or sustained purifying selection, and tight linkage 

between paralogs, is expected to maximize opportunities for EGC. While neutral divergence at 

synonymous sites is certainly possible, purifying selection across a majority of coding sequence 

(nonsynonymous sites), coupled with relatively moderate levels of EGC can easily overwhelm 

divergence by genetic drift. It may therefore be unsurprising that these case studies provide the best 

evidence for ongoing EGC.  

This is not to suggest that these criteria are necessary for EGC. Immunity and reproductive-related 

genes are expected to have elevated opportunities for diversification (their sequences often exhibit 

modest to low constraint; [6]), yet these types of genes exhibit clear patterns of EGC [74,75]. While 

analysis of linked versus dispersed loci supports the prediction that EGC rates are negatively correlated 
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with the physical distance between paralogs [76–78], polymorphism-based data suggests that  

inter-chromosome interactions can persist between paralogs despite their distance and in the face of 

differential positive selection between paralogs [79]. 

On the other hand, a focus on small gene families will likely minimize the effect of gene turnover. 

Larger gene families are expected to be more permissive to the fixation of duplicates relative to smaller 

gene families because their sensitivity to deleterious dosage effects might be relatively low and their 

rate of copy number mutations might be relatively high. Consequently, the importance of birth/death 

gene turnover will likely be greatest for large gene families. Though EGC is expected to occur in such 

cases, disentangling EGC and gene turnover requires information about the age of individual members 

of a gene family, and polymorphism data to estimate the rate of EGC. Such data sets are difficult to 

obtain for large, repetitive gene clusters where individual copies cannot easily be distinguished [80,81]. 

4.2. Ectopic Gene Conversion from a Genome-Wide Perspective 

It is currently unclear how prevalent EGC is at a genomic scale. To date, there have only been three 

genome-wide studies that directly addressed this question in Drosophila. These studies utilize different 

methodologies, yield different results, and emphasize EGC between gene families of different ages and 

degrees of sequence divergence. The perspectives of these studies seemingly reflect different 

evolutionary questions regarding the interplay between duplication and EGC. One perspective is geared 

towards understanding how EGC might govern the evolutionary fates of young duplicates. The other 

emphasizes broad patterns of EGC and is less concerned with the relative age or size of the gene 

families. Despite their differences, these studies utilize partially overlapping distributions of 

gene family ages, and it is within this region of overlap where some of the more puzzling 

differences emerge. 

Analysis of the long-term effects of EGC was carried out by Hahn et al. [82] and Casola et al. [83], 

using genomic sequence from multiple Drosophila species ([84]; Hahn et al. analyzed gene families 

from 12 species’ genomes; Casola et al. analyzed previously defined paralog pairs from 9 of 12 

genomes). Hahn et al. applied maximum likelihood methods to infer rates of gene gain and loss along 

each branch of the species tree and then compared these results with those from a  

gene-tree/species-tree reconciliation analysis. If EGC has played a major role genome-wide, they 

expected that their reconciliation methods would infer multiple, parallel duplications across lineage. 

They estimated that approximately 17 genes were gained or lost every million years, with few 

signatures of EGC inferred by reconciliation analysis. The authors concluded that EGC leaves, at most, 

a minor genomic signature.  

Casola et al. used GENCONV to estimate the proportion of genes in each species with evidence for 

EGC, and to assess whether different species exhibited different EGC rates. Relatively low estimates of 

EGC were inferred, with the proportion of converted paralog pairs ranging between 7.47%  

(in D. melanogaster) and 14.15% (in D. grimshawi). Peak conversion activity was observed for 

paralogs with silent divergence between dS = 0.1 and dS = 0.3. Phylogenetic reconciliation methods 

were also consistent with low amounts of EGC, with 1% to 3% of gene trees within the D. melanogster 

subgroup, and up to 15% of gene trees within deeper branches of the Drosophila tree, showing signs of 

EGC. The authors concluded that EGC was relevant for relatively young duplicates having silent 



Genes 2011, 2              

 

 

140 

divergence ranging between 0.1 and 0.3. Casola et al. also reapplied the likelihood-reconciliation 

methods used by Hahn et al. [84], and again found little support for EGC. 

Osada and Innan [22] focused on the potential role of EGC during early duplicate evolution, and 

found widespread evidence for it. They restricted their analysis to duplication blocks within the 

sequenced genomes of D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta, to 

identify duplication events immediately prior to or following divergence between D. melanogaster,  

D. simulans, and D. sechellia. The motivation of this approach was based on the expectation that EGC 

should be more active and more easily estimated in young gene families. EGC was estimated with 

reconciliation (tree-based) methods (carried out using entire duplicated regions and also using a sliding 

window analysis to test for variation across the sequence), and site-specific tests (see above). Of  

28 post-speciation blocks available for the tree-based analysis, 24 provided evidence of EGC in the  

D. melanogaster lineage, the D. simulans lineage, or in both. The sliding window approach identified 

at least one signature of EGC in every block. Likewise, the site-based test identified a signal of EGC in 

29/30 pre-speciation blocks.  

Discordant estimates of EGC between these studies are likely to stem from multiple causes. In 

addition to their different criteria of duplicate selection, Casola et al. note that additional differences 

might result from the failure of Osada and Innan to account for parallel duplications between species 

(rapid birth-and-death rate), which potentially generate gene trees mimicking those predicted under a 

conversion model. They highlight estimates of high copy number variation (CNVs; [85]) as supporting 

this possibility. Additional methodological differences between the studies might also account for their 

results. A recent simulation-based study examined the performance of four commonly used methods 

for identifying EGC: reconciliation methods using paralog and otholog gene trees, sliding-window 

gene tree contrasts along duplicate sequences, GENCONV, and tests based on shared  

polymorphism [86]. The authors observed that the statistical power of reconciliation and shared 

polymorphism methods were positively correlated with the true rate of EGC, while the other two 

methods decreased in power with increased EGC rate. The detection range for GENCONV was limited 

to intermediate levels of divergence, likely leading to a net underestimate of EGC among Casola et al.’ 

entire set of paralogs. The implementation of reconciliation methods also varied between studies, and 

while the performance of the approach taken by Osada and Innan was examined by Mansi and Innan 

[86], no comparison has been made between it and the particular approach of Casola et al.  

Recent genome-wide estimates of CNV show that they are pervasive ([85,87,88]; in agreement with 

inferences based on comparative genomic studies: e.g., [89,90]). As Casola et al. note, these data 

suggest a high copy number mutation rate, which may drive a high rate of birth-and-death evolution. 

Because studies of concerted evolution deal primarily with intact full-length genes, the number of 

complete-gene CNVs is of particular interest. Emerson et al. ([85]; after correcting for false positive 

and false negative rates) discovered 73 polymorphic duplications and 10 deletions encompassing 

complete genes. While this represents a minority of their dataset, it can potentially contribute to an 

overestimate of the rate of EGC for some gene families. Arguing against this, the paralogous 

alignments in Osada and Innan exhibit degrees of nucleotide divergence (often in the flanking edges) 

that is too high to be consistent with segregating CNVs. In addition, only two of Osada and Innan’s 

post-speciation duplicates were found to be CNVs in Emerson et al.’ data set [22]. For pre-speciation 
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CNVs, a birth-and-death interpretation would require parallel duplications between species that share 

the same (or very similar) breakpoints. Currently available CNV data in flies is insufficient to examine 

this possibility. However if parallel duplications have occurred between closely related species 

(evolutionarily young parallel duplicates), shared breakpoints should be detectable. To our knowledge, 

no such examples have been reported. Nevertheless, the amount of parallel duplications required to 

account for the disparate results of Osada and Innan [22] and Casola et al. [83] would likely have to 

be substantial. 

5. The Genomic Context of Duplication and Ectopic Gene Conversion 

A complete appreciation of EGC will require a deeper understanding of the genomic context in 

which it is most and least likely to occur, including simple factors such as DNA base composition  

(e.g., GC content) as well as complex factors, such as the three-dimensional conformation of  

chromosomes [91]. While there has been some effort to elucidate genomic features affecting EGC in 

Drosophila, there are currently more unresolved questions than answers. 

The growing availability of genomic data has shed some light on features correlated with EGC. One 

tractable question is how the physical distance between duplicates correlates with EGC. Several studies 

indicate a negative correlation between physical distance and conversion between paralogs (data are 

based on case studies from D. melanogaster and more distantly related species: e.g., [75,78,92]). This 

pattern appears to hold for gene families dispersed across chromosomes, with paralog pairs on the 

same chromosome arm exhibiting stronger signals of conversion than pairs between chromosome 

arms [83]. This relationship between physical distance and EGC makes intuitive sense given the 

double-strand break model of gene conversion: following DSB in one duplicate copy, the initiation of a 

nonhomologous DNA repair pathway via the other paralog is more likely if the pair is in close 

proximity. Nevertheless, it is unclear whether the physical location in terms of a linear chromosomal 

map corresponds to actual ―conversion proximity‖ in the context of a three-dimensional nucleus. 

Available analyses support the idea that chromosomal proximity facilitates EGC. However, this 

conclusion is tentative, given the typically conservative methods used to detect EGC (e.g., based on 

inter-paralog divergence data rather than more powerful polymorphism-based estimates) and the 

heterogeneous set of paralogs used in these studies (e.g., case studies and/or collections of duplicates 

of variable age). 

Another question is whether EGC is biased. To date, there is no compelling evidence for this, yet 

the subject warrants future study. GC-biased conversion is often observed in cases of allelic  

(non-ectopic) conversion in mammals [93]. GC content in Drosophila duplicates is generally higher 

within conversion tracts relative to sequences that flank each tract, which suggests that the underlying 

conditions favoring conversion biases may commonly be present in paralogs [83]. Interestingly, when 

converted paralogs were compared with noncoverted paralogs belonging to the same family, GC 

content was not higher within converted relative to uncoverted regions. These patterns suggest that 

nucleotide composition might promote EGC rather than biasing the direction of conversion toward GC 

nucleotides [83]. 
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6. Interaction between Selection, Ectopic Gene Conversion and Evolutionary Divergence 

between Paralogs 

The interaction between EGC and natural selection is central to interpretations of concerted 

evolution patterns, as well as inferences about the rate of ongoing EGC. The likelihood of conversion 

between non-allelic sequences is, in part, a function of their degree of sequence identity. For gene 

family members evolving under strong purifying selection, relatively high sequence identity is 

expected in the absence of EGC. EGC will further reduce divergence between paralogs by 

homogenizing (putatively) neutrally evolving synonymous sites, introns and intergenic DNA, and by 

promoting parallel adaptation in functionally relevant sites (e.g., nonsynonymous or regulatory DNA). 

For example, the interaction between EGC and natural selection may prevent the accumulation of 

deleterious mutations [81,94–96], or facilitate the spread of new beneficial alleles among gene family 

members [97]. 

While EGC can promote adaptation among functionally redundant genes, it may also constrain 

adaptive differentiation between paralogs—a process that might impact the evolution of new gene 

functions [17,98–100]. The homogenizing effect of EGC is expected to limit opportunities for  

―neo-functionalization‖—the evolution of novel functions among young duplicates [18,23,101–103]. 

Some evidence from Drosophila supports both reinforcing and antagonistic interactions between 

selection and EGC. Positive selection between paralogs has been observed in several general  

contexts [76,104,105]. Some instances of positive selection also apply to gene families that are 

simultaneously experiencing EGC [22,75,79]. These latter studies suggest that EGC and selection 

occasionally come into conflict with one another. For example, if EGC and selection occurred 

simultaneously, the observed molecular signatures of adaptation indicate that selection was strong 

enough to counteract the process of homogenization. On the other hand, evidence that EGC 

overwhelms disruptive selection is unlikely to be detected on a case-by-case basis, because paralog 

homogeneity will be consistent with both strong EGC relative to selection, or with a lack of  

disruptive selection. 

Conflict between EGC and disruptive selection might potentially be examined by comparing 

patterns of divergence between paralog pairs experiencing markedly different rates of EGC. For 

example, if paralogs on different chromosomes experience reduced EGC compared to closely linked 

paralogs (as appears likely in Drosophila: e.g., [78,83,92,105]; but see [79]), one might systematically 

test for signatures of positive selection between duplicates within versus between chromosomes. 

Thornton & Long [104] compared inter- and intra-chromosomal paralog divergence throughout the 

D. melanogaster genome, and found a pattern of increased divergence (Ka/Ks) when both duplicates 

resided on the X chromosome, but otherwise no consistent effect of intra- vs. inter-chromosome 

paralog orientation. To the extent that amino acid divergence has been driven by positive selection, the 

pattern does not indicate any constraint imposed by EGC. 

There are two important caveats associated with such contrasts between linked and unlinked 

duplicates. First, any constraint imposed by EGC is expected to primarily occur during the early 

evolutionary divergence of paralogs, yet most duplicate genes are relatively ancient. Even if EGC 

provided constraint during the early evolution of duplicates, its signature will often be erased by 

sequence divergence subsequent to the cessation of EGC. Furthermore, retention of ancient duplicate 



Genes 2011, 2              

 

 

143 

genes might imply that they have evolved an important biological function, for which they are 

maintained. Ancient duplicates may therefore be enriched for genes that have ―overcome‖ the effect of 

EGC to evolve non-redundant functions (e.g., neo- or sub-functionalization); these ancient duplication 

events may represent a filtered (and therefore biased) set of duplicates. Osada and Innan [22] have 

emphasized the utility of using young gene duplicates to study the relative roles of EGC and selection 

during the early, ―fate-determining‖ stage of paralog evolution. In their dataset of young duplication 

events, they observed widespread signatures of EGC, including an apparent case of adaptive paralog 

differentiation in the face of concerted evolution. Analysis of young duplications represents a powerful 

means to address the potential conflict between selection and EGC. Deep resequencing efforts that are 

currently underway in D. melanogaster should enhance statistical power to identify and estimate the 

rate of EGC, particularly in small gene families or other low-copy repeat sequences. Polymorphism 

data will also permit discrimination between evolutionary models of genetic drift and positive selection 

(this latter goal may require an extension of MK-based statistical tests of positive selection, which 

currently apply to independently evolving orthologs [106,107], rather than gene families undergoing 

some degree of EGC).  

The second caveat concerns the potential relationship between selection and degree of dispersion 

between duplicates. While a negative relationship between EGC rate and distance is expected (see 

above), it is also possible that disruptive selection between duplicates might also covary with distance. 

If, for example, unlinked paralogs are exposed to different local chromatin states, or are influenced by 

distinct local promoter sequences, then the opportunity for disruptive selection might increase with 

greater dispersion between paralogs. Creative statistical and bioinformatic approaches will be required 

to control for possible spurious correlations between distance and adaptive differentiation. 

7. Temporal Dynamics of Duplication and Paralog Divergence 

EGC can influence both the temporal patterns of duplicate gene evolution, and interpretations of 

these patterns within the context of evolutionary theory. The inference of selection and genetic drift 

from empirical properties of duplicate genes (i.e., their ages and the distribution of inter-paralog 

divergence) will critically depend on whether or not EGC occurs between paralogs, as well as the  

long-term covariance between selection, EGC, and paralog divergence. Our understanding of the actual 

dynamics of EGC can have a major impact on our interpretation of: (1) the rates of duplicate birth and 

death, and the age distribution of duplicate genes and (2) the temporal patterns of selection during the 

course of duplicate evolution. 

The inferred rate of gene duplication is sensitive to assumptions about the degree of evolutionary 

independence between paralogs. Without EGC, neutral sequence divergence between duplications 

(e.g., the number of synonymous site differences, or dS, between them) should be clock-like, and 

proportional to the relative age of the duplication event. EGC will downwardly bias the distribution of 

dS, and lead to an overestimation of the duplicate ―birth‖ and ―death‖ rates (high rates of origin and 

loss will also skew the age distribution toward young duplicates). However, since birth-and-death and 

EGC rates are largely unknown, the distribution of dS is insufficient for inferring the evolutionary rate 

and maintenance of gene duplicates. Exploiting genome sequence data from closely related species can 

circumvent this methodological limitation. Osada and Innan’s [22] identification of 31 young 
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duplications since the D. melanogaster/D. simulans last common ancestor (about 2.3 million years ago) 

suggests a duplication rate of approximately 10
−9

, per gene, per year, which is approximately  

ten-fold lower than earlier estimates based entirely on dS. Given the relatively short time interval 

separating these species (and small number of duplication events), this estimate may differ from the 

true duplication rate in Drosophila, yet it should characterize the rate to an order of magnitude. 

Another common observation is a negative relationship between the ratio of nonsynonymous to 

synonymous divergence between paralogs (i.e., dN/dS) and the silent substitution rate (dS; [108]). 

dN/dS is often used as a metric of evolutionary constraint, with values close to zero associated with 

strong purifying selection at nonsynonymous sites, and larger values associated with some combination 

of neutral and adaptive divergence. Assuming there is no conversion between young paralogs, the 

negative relationship between dN/dS and dS suggests that evolutionary constraint is (on average) 

stronger for ancient relative to young duplicates (with data based on multiple taxa, including 

Drosophila; [108,109]): young duplicates either experience relaxed purifying selection or enhanced 

opportunities for adaptive differentiation. This relationship can be exacerbated when ―young‖ 

duplicates (those with high sequence identity) experience higher rates of EGC than ancient duplicates. 

EGC is generally expected to reduce dS between paralogs, and will similarly reduce dN if 

nonsynonymous substitutions are also evolving neutrally. If nonsynonymous substitutions are being 

driven by differential positive selection between paralogs, then EGC is expected to more strongly 

depress dS relative to dN (and upwardly bias dN/dS), and the correlation between dN/dS and dS may 

become more strongly negative. 

8. Conclusions  

EGC can profoundly influence the evolutionary fates of young duplicates, as well as the patterns of 

concerted evolution within gene families of varying size and age. In Drosophila, evidence for EGC is 

particularly strong in small gene families (e.g., of size two) with high sequence identity between 

paralogs (on a case-by-case basis, this might be due to strong evolutionary conservation of duplicates, 

or to their recent origin). For larger gene families, and/or ancient paralog pairs, evidence for EGC is 

weaker, and is often difficult to distinguish from birth-and-death models. 

Methodological limitations preclude a precise estimate for the rate of EGC, and are expected to 

cause a statistical bias towards type II error (by failing to detect EGC, even though it is occurring). The 

growing feasibility of collecting and analyzing whole-genome polymorphism datasets (already 

underway within Drosophila; [110]) will soon help to remedy this issue. Polymorphism-based methods 

greatly increase the power to detect EGC, and polymorphism-oriented statistical methods have already 

been developed for estimating rates of EGC.  

The confluence of three sources of data—improved EGC estimates, rapidly accumulating CNV data 

that can be used to infer mutational processes for duplicates, and multispecies phylogenies (e.g., the 12 

Drosophila genomes and beyond) for calculating the ages of gene family members—should soon favor 

an increasingly sophisticated analysis and interpretation of the evolutionary consequences of EGC, 

including its interaction with mutation, selection, and linkage. 
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