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Abstract: Embryonic stem (ES) and induced-pluripotent stem (iPS) cells can be grown 

indefinitely under appropriate conditions whilst retaining the ability to differentiate to cells 

representative of the three primary germ layers. Such cells have the potential to 

revolutionize medicine by offering treatment options for a wide range of diseases and 

disorders as well as providing a model system for elucidating mechanisms involved in 

development and disease. In recent years, evidence for the function of E-cadherin in 

regulating pluripotent and self-renewal signaling pathways in ES and iPS cells has 

emerged. In this review, we discuss the function of E-cadherin and its interacting partners 

in the context of development and disease. We then describe relevant literature highlighting 

the function of E-cadherin in establishing and maintaining pluripotent and self-renewal 

properties of ES and iPS cells. In addition, we present experimental data demonstrating that 

exposure of human ES cells to the E-cadherin neutralizing antibody SHE78.7 allows 

culture of these cells in the absence of FGF2-supplemented medium.  
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1. Introduction 

―Stemness‖ can be defined as a generic state of a cell that possesses the ability to self-renew and 

give rise to more differentiated progeny. As a result, stemness encompasses a large range of cell types, 

including embryonic stem (ES) cells, germ cells, tissue-specific stem cells and cancer stem cells. In the 

context of ES and induced pluripotent stem (iPS) cells, stemness is characterized by the ability of a cell 

to differentiate to all lineages of the three primary germ layers (pluripotency) and to symmetrically 

divide to produce pluripotent cells (self-renewal) (Figure 1). Studies on teratocarcinomas, a rare cancer 

of germ cells characterized by the presence within the tumoral mass of various differentiated cell 

types, led to the isolation of undifferentiated pluripotent cells called embryonal carcinoma (EC)  

cells [1,2]. The knowledge acquired from the isolation and culture of EC cells led to the derivation of 

ES cells from the inner cell mass of mouse pre-implantation blastocysts in 1981 (Figure 1) [3,4]. 

Isolation of ES cells from various other species followed, such as pig (1990) [5], rabbit (1993) [6] and 

chicken (1996) [7], with the first non-human primate ES cells isolated from Rhesus monkey [8] and 

common marmoset [9]. The first human ES cell lines were derived in 1998 by Thomson and 

colleagues [10], over 15 years after mouse ES cells. Characterization of mouse (m) and human (h) ES 

cells has shown that, whilst derived from similar tissues, they represent unique cell types with distinct 

features. In 2007, two groups isolated mouse stem cells from epiblast tissues of post-implantation 

stages, termed Epi stem (EpiS) cells, which exhibited properties more similar to hES cells than mES 

cells [11,12] (Figure 1).  

Recently, pluripotent cells have been isolated from different stages of mouse and human embryo 

development, including cleavage-stage embryos, individual blastomeres [13–15] and parthenogenic 

embryos [16–18]. Additionally, stem cells have been isolated from trophectoderm (trophoblast stem 

cells, TS) [19], extraembryonic endoderm (XEN cells) [20], primordial germ cells (germ stem (GS) 

cells) [21,22] (Figure 1) and various adult tissues [23]. These different stem cells represent unique cell 

lines with specific characteristics and distinct differentiation potential. Recently, to overcome 

immunological as well as ethical issues arising from the use of human embryos, Yamanaka and 

colleagues reprogrammed somatic cells to generate iPS cells [24,25]. These cells were obtained via 

forced expression of specific genes (Oct3/4, c-Myc, Sox2, Klf4) following viral transfection of adult 

fibroblasts. To date, various combinations of genes (e.g., Oct3/4, Sox2, Nanog and Lin28) [26] as well 

as different somatic cell types (e.g., liver and stomach cells [27], pancreatic β cells [28] and B  

cells [29]) have been successfully utilized to derive iPS cells. Whilst iPS cells provide a potentially 

useful alternative to ES cells for clinical therapy applications, they also allow the study of lineage 

specification of cells isolated from patients with genetic diseases [30]. 

ES and iPS cells can self-renew for prolonged periods in vitro whilst retaining a stable diploid 

karyotype (reviewed in [31]). ES cells were initially maintained in culture in the presence of  

non-proliferating primary mouse embryonic fibroblasts, called feeders, but considerable effort has 

been made to develop feeder-free culture medium and, more recently, fully-defined conditions for the 

culture of these cells [32]. ES cells grow as individual colonies, maintained via E-cadherin-mediated 

cell-cell contact, and express a panel of highly conserved epitopes of which some appear to be species-

specific [33,34]. Transcription profiling studies have revealed that over 60% of genes are expressed in 

ES cells (compared to only 10–20% in somatic cells) and most of these are involved in signal 
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transduction and regulation, making ES cells very responsive to the microenvironment [35,36]. Upon 

differentiation, pluripotent stem cells modify their gene expression resulting in a distinctive transcript 

expression profile dictated by lineage commitment.  

Figure 1. A generalized view of the derivation of stem cells from pre- and  

post-implantation stages. (A) Pre-implantation blastocysts (left) are formed by two 

different cell types; the external trophectoderm surrounds a cavity where the inner cell 

mass (ICM) is found. In post-implantation stages, the ICM differentiates into the epiblast 

(internal) and the extra-embryonic endoderm (in contact with the cavity); (B) List of cell 

types found in pre- and post-implantation stages and the relative stem cell lines that have 

been isolated and maintained in vitro (green). ES = Embryonic Stem cells from the ICM, 

TS = Trophoblast Stem cells from the trophectoderm, XEN = Extraembryonic  

endoderm-derived cells, EpiS = Epiblast Stem cells. The black arrows indicate the tissues 

that each cell type will develop into during embryogenesis. 

 

A circuitry of core genes with transcription factor activity has been identified to be essential for 

maintenance of the pluripotent state of ES cells. Oct3/4, Sox2 and Nanog form a key network in both 

mouse and human ES cells [37]. They regulate each other’s expression as well as functioning as 

transactivators of many other genes [38–41]. Maintenance of optimal levels of these genes is 

fundamental for ES cell pluripotency as both up-regulation or down-regulation of individual 

components of the network can induce differentiation of the cells [42–44]. Besides this core group of 

genes (Figure 2), other molecules have emerged as important regulators of ES cell pluripotency and 

self-renewal, such as c-Myc (for the control of cell cycle) and Tbx3 and Klf4 for maintenance of 

Nanog and Sox2 expression [45,46]. Moreover, recent progress in chromatin and microRNA analysis 

has unveiled the role of epigenetic modifications and miRNA in regulating stem cell pluripotency and 

self-renewal [47–49] and the differentiation of these cells [50]. 
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Figure 2. Diagrammatic representation of the pathways associated with leukemia 

inhibitory factor (LIF)-dependent pluripotency in mouse ES cells. 

 

 

2. Pluripotent Signaling Pathways in ES Cells 

2.1. Signaling Pathways in Mouse ES Cells 

mES cells were initially isolated in the presence of mitotically inactivated feeder cells [31]. In 1988, 

leukemia inhibitory factor (LIF), a member of the interleukin-6 family of cytokines, was identified as 

an essential factor for maintaining mES cell pluripotency in the absence of feeder cells [51,52]. 

Subsequent analysis has demonstrated that binding of LIF to its receptor (LIFR) leads to dimerization 

of LIFR with gp130 and activation of various parallel signaling cascades (Figure 2). LIFR/gp130 

dimerization activates the Janus-associated tyrosine kinases (JAK), which phosphorylate the signal 

transducer and activator of transcription factor 3 (Stat3) [53] (Figure 2). Phosphorylation of Stat3  

has been associated with prolonged maintenance of ES cells in LIF- and serum-supplemented  

medium in a Nanog-independent manner [54–56]. LIF activity has also been associated with the  

phosphoinositol-3-kinase (PI3K) and the Grb2/MAPK (ERK mitogen-activated protein kinase) 

cascades [57,58]. Recently, Niwa and colleagues have shown that these three parallel cascades of the 

LIF signaling pathway work via separate mediators on different members of the core pluripotency 

network [45]. Stat3 activates Klf4 which, in turn, sustains expression of Sox2. Both PI3K and 

Grb2/MAPK target the transcription factor Tbx3 but with opposing effects [59,60], the former 

positively regulating Tbx3 via Akt signaling, which results in Nanog expression [61,62] (Figure 2). 

Therefore, pluripotent signaling networks in mES cells are tightly controlled via both positive and 

negative regulation, with small perturbations in these pathways sufficient to induce differentiation of 

the cells to specific lineages [45,63]. 
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Albeit important, LIF alone is not sufficient to maintain ES cells in the absence of serum [64]. Bone 

morphogenetic protein 4 (BMP4), a member of the transforming growth factor beta (TGFβ) family, 

works in tandem with LIF in serum-free conditions to maintain ES cell pluripotency. BMP4 signals 

through a branch of the TGFβ cascade which involves the activation of the transduction molecules 

Smad1/5/8, which have been shown to activate the inhibitor of differentiation (Id) proteins  

(Figure 3) [64]. Ying and colleagues [64] have shown that overexpression of Id proteins allow culture 

of mES cells in the presence of LIF and absence of either serum or BMP4. They have subsequently 

demonstrated that mES cells can be cultured in the absence of LIF and BMP4 in medium 

supplemented with antagonists of mitogen-activated protein kinase (ERK1/2) and glycogen synthase 

kinase 3 (GSK3), defining a ―ground state‖ of ES cell self-renewal, which is independent of exogenous 

factor supplementation [63]. 

Figure 3. Diagrammatic representation of Activin, Nodal, TGFβ and BMP signaling pathways. 

 

 

2.2. Signaling Pathways in Human ES Cells 

Human ES (hES) cells can be maintained in an undifferentiated state on various types of feeder 

layers, such as mitotically-inactivated mouse embryonic fibroblasts (MEFs) and human foreskin 

fibroblasts [10,65,66]. However, unlike their mouse counterpart, hES cell pluripotency cannot be 

sustained by LIF [67,68] and the BMP pathway induces trophoblast differentiation in serum-containing 

medium [69] or extra-embryonic specification in chemically defined medium (CDM) [70]. Instead, 

hES cells utilize the fibroblast growth factor (FGF) and the Activin/Nodal/TGFβ signaling cascades 

(Figure 3), which appear to work in cooperation at low or moderate levels of the ligands as well as 

influencing each other at higher concentrations [71]. In serum-containing medium, high concentrations 

of FGF2 sustain hES cell pluripotency via inhibition of BMP cascades [72–74] and by inducing 

TGFβ1 expression [75]. However, in CDM, FGF2 activity appears to act independently of BMP 

signaling inhibition [71]. In serum-containing media, high concentrations of Activin A is sufficient to 

maintain hES cells in an undifferentiated state and this effect might be partially due to induction of 
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FGF2 expression [71,76]. In CDM, the activity of FGF2 and Activin/Nodal appear to be related and 

dose-dependent. For example, FGF2 alone causes neuroectoderm formation whereas a combination of 

high levels of Activin, BMP4 and FGF2 induces mesendoderm specification of hES cells [70]. 

Therefore, tight regulation of these two signaling pathways maintains hES cell pluripotency whereas 

small perturbations are sufficient to induce differentiation. 

Recently, mouse EpiS cells, isolated from the epiblast tissue of post-implantation blastocysts, have 

been shown to utilize FGF and the Activin/Nodal/TGFβ signaling pathways in a similar manner to hES 

cells [11,12]. Although these cells integrate poorly into blastocysts to form chimeras, they exhibit core 

pluripotent marker expression and self-renewal properties typical of ES cells. However, whilst 

expression of the basic pluripotent network proteins Oct3/4, Sox2 and Nanog are maintained, mouse 

EpiS cells exhibit a transcriptional signature more similar to hES than mES cells [12].  

2.3. Role of the Wnt Pathway in ES Cell Pluripotency and Self-Renewal 

The role of the canonical Wnt pathway in regulating ES cell pluripotency and self-renewal remains 

a question of debate. Various groups have described that sustained activation of the Wnt pathway can 

maintain pluripotency in both mouse and human ES cells [77–80]. In 2008, Chou and colleagues [81] 

described the isolation of cells from mouse blastocysts using a chemically defined medium containing 

FGF2, Activin A, BIO (a GSK3β inhibitor which mimics canonical Wnt activation by stabilizing 

active β-catenin protein levels) and a LIF inhibitor. These cells, termed FABS cells, showed similar 

gene expression profiles to EpiS cells, although with unique features. These results suggest a role of 

the canonical Wnt pathway in the maintenance of ES cell pluripotency. However, very low levels of 

Wnt activity are detected in ES cells cultured in either feeder or feeder-free conditions [77,78], 

suggesting that this pathway is not essential for maintaining pluripotency in these cells. Moreover, Wnt 

activity has also been associated with induction of cell differentiation in various cellular environments 

(e.g., bone morphogenesis and muscle specification), thus posing the question of how the  

canonical Wnt pathway can maintain pluripotency of ES cells and, at the same time, induce 

differentiation [81,82]. Dravid and colleagues have attempted to resolve this apparent conflict by 

suggesting a role for the Wnt pathway in the induction of ES cell proliferation (self-renewal) [83]. 

They suggest that the canonical Wnt pathway might not affect ES cell pluripotency or differentiation 

per se but, by sustaining cell proliferation, accelerate the outcome determined by other factors within 

the environment. Sineva et al. [84] have recently demonstrated that culture of mES cells in the GSK3 

inhibitor BIO accentuates both E-cadherin/β-catenin interaction and TCF/β-catenin transactivation and 

is associated with decreased proliferation of the cells. In contrast, Doble and colleagues [85,86] 

showed that deletion of all GSK3 isoforms in mES cells caused increased β-catenin protein levels and 

β-catenin/TCF trans-activation activity with no loss of ES pluripotency and no changes in proliferation 

rates compared to wildtype (wt) ES cells. However, GSK3 double-knock-out ES cells showed 

impaired differentiation abilities. In addition, we have described the culture of β-catenin null mouse ES 

cells in serum-containing media supplemented with LIF [87], suggesting that β-catenin does not play a 

role in the core pluripotent signaling network of mES cells. Therefore, the exact role of β-catenin in 

maintaining ES cell pluripotency and self-renewal remains unclear.  
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3. E-cadherin and Its Interacting Proteins 

Cell adhesion is essential for embryonic development [88,89] and cell-cell interaction has been 

shown to influence adult stem cell differentiation [90,91]. ES cells grow in individual colonies 

exhibiting cell-cell adhesion mediated by various complexes belonging to adherens junctions (AJs), 

tight junctions, desmosomes and gap junctions [31]. AJs are formed by E-cadherin and associated 

catenin proteins and are necessary for the establishment and maintenance of cell-cell contact [88].  

3.1. E-Cadherin 

Cadherins are a large family of transmembrane or membrane-associated glycoproteins characterized 

by the presence of multiple repeats of a specific extracellular cadherin domain (ECD) [92]. Among the 

five major sub-families of cadherins, E-cadherin belongs to the type-I cadherin group and is 

generally considered the prototype of all cadherins due to its early identification and thorough  

characterization [93]. The E-cadherin gene (Cdh1) is located on chromosome 16 in human and 

chromosome 8 in mouse and are similarly organized into exon-intron tandems [94]. The  

spatio-temporal regulation of E-cadherin in embryonic development is tightly controlled by a complex 

promoter region containing multiple activating and silencing sequences [89,93] (Figure 4A). Positive 

regulators of E-cadherin expression include a CCAAT box, GC boxes [95] and a conserved epithelial 

specific enhancer (ESE) of transcription within intron 2, which regulates E-cadherin expression during 

embryogenesis. E-cadherin knock-out mice die before implantation as a consequence of lack of 

trophectoderm formation, demonstrating the critical role this protein plays during development  

[88,96–98]. E-cadherin expression is silenced by numerous transcription factors that bind various  

E-pal boxes within the E-cadherin promoter region (Figure 4A). Among these negative regulating 

binding factors are Snail, Slug, E12/E47 and the zing finger factors δEF1/ZEB1 and SIP1/ZEB2 [93]. 

These repressors of E-cadherin expression appear to act downstream of various signaling pathways, 

such as TGFβ, FGF, nuclear factor κB (NFκB) and integrin cascades. 

E-cadherin is a single-pass transmembrane glycoprotein with an extracellular region containing five 

tandemly organized domains, four of which are typical extracellular cadherin domains (ECD), whilst 

the fifth is defined as the Membrane Proximal Extracellular Domain (MPED) and consists of four 

conserved cysteines essential for E-cadherin function (Figure 4B) [93]. The ECDs are interspersed by 

Ca
2+

-binding regions which are essential for cell-cell contact. The cytoplasmic domain of  

E-cadherin contains binding regions for β-catenin/plakoglobin and p120-catenin (Figure 4B) as well as 

various regulatory elements (e.g., phosphorylation sites and regions recognized by the degradation 

machinery of the cell). In general, catenins allow the stabilization of the cytoplasmic cell adhesion 

complex, protecting it from degradation and maintaining anchorage of E-cadherin to the 

actin cytoskeleton. 
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Figure 4. Diagrammatic representation of the E-cadherin promoter and protein.  

(A) Promoter region of the Cdh1 gene encoding for E-cadherin. The figure shows both 

positive (GC boxes and CCAAT boxes) and negative (E boxes) regulatory elements. Note 

the location of E-box 4 after the transcription initiation site (orange arrow) and the 

presence of an epithelial specific enhancer (ESE) located within an unusually large  

intron 2. (B) Diagrammatic representation of the E-cadherin/catenin complex anchored to 

the actin cytoskeleton. The extracellular region of E-cadherin contains four extracellular 

cadherin domains (ECD) and an atypical membrane proximal domain (MPED). Calcium 

ion-binding sites are located between ECDs and are necessary for cell adhesion mediation. 

β-Catenin and p120-catenin bind specific regions within the cytoplasmic domain of  

E-cadherin. α-E-catenin might directly anchor the complex to the actin cytoskeleton by 

binding with F-actin and β-catenin or indirectly through an additional bridging molecule 

(e.g., EPLIN). ECD = extracellular cadherin domain; MPED = Membrane Proximal 

Extracellular Domain. 

 

 

E-cadherin interacts in a homophilic manner (preferential binding to another E-cadherin molecule) 

as well as in a homotypic fashion (binding to the same cell type) [99]. However, the exact topography 

of this interaction and the mechanisms that allow such exclusivity in the presence of other cadherins 

with similar extracellular domains remain unclear. E-cadherin appears to form cis-homophilic dimers 

with molecules on the same cell and trans-homophilic dimers with molecules on neighboring cells. 

The first ECD is essential for cell adhesion initiation but various hypotheses suggest stable cell 

adhesion might involve one or more of the other ECDs within the extracellular region of E-cadherin. 

For example, the antibody DECMA-1, which inhibits E-cadherin-mediated cell-cell contact, 
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recognizes an epitope in ECD4 and MPED [100,101]. Recent findings have highlighted the presence 

of a hydrophilic pocket within ECD1 with which the N-terminal region of a neighboring E-cadherin 

molecule may interact [102]. The conserved Histidine-Alanine-Valine (HAV) tripeptide in ECD1 has 

been shown to be important for trans-homodimerization of E-cadherin but its role is not fully  

clarified [103,104]. 

Regulation of E-cadherin expression is fundamental to vertebrate development [96]. E-cadherin is 

expressed in most adult epithelial tissues and has been shown to be a potent tumor invasion  

suppressor [105,106–108]. Loss of E-cadherin is associated with epithelial-mesenchymal transition 

(EMT), which is a crucial process in various stages of embryogenesis, tissue repair and tumor 

invasion [109,110]. EMT is characterized by loss of E-cadherin mediated cell-cell contact and 

acquisition of a more motile phenotype. Changes occurring during EMT comprise morphological 

modifications, altered cellular adhesion and motility, acquisition of anterior-posterior polarity, 

resistance to apoptosis and upregulation of matrix metalloproteinases [111]. EMT is characterized by a 

switch between E-cadherin, via upregulation of E-cadherin repressors (e.g., Slug and Snail), and a less 

adhesive cadherin, such as N-cadherin. During embryogenesis, regulation of E-cadherin and EMT is 

crucial for proper cell sorting, cell movement, polarity maintenance and barrier tissue formation.  

Our group has previously shown that ES cell differentiation is associated with an EMT-like  

event [112,113], and this is summarized in Figure 5. Loss of E-cadherin has been observed in many 

tumors of epithelial origin (e.g., gastric, gynecological and breast) and is often associated with EMT 

and poorer patient prognosis.  

3.2. β-Catenin 

β-catenin is a 90 kDa cytoplasmic protein characterized by the presence of 12 Armadillo repeats. It 

binds a specific region within the cytoplasmic domain of E-cadherin (Figure 4B) and this binding is 

essential for cell-cell adhesion, as shown by mutagenesis studies of the E-cadherin protein [114].  

β-catenin knock-out mice are nonviable and embryos die around gastrulation [115]. Plakoglobin 

appears to be able to substitute for β-catenin loss at adherens junctions during early stages of embryo 

development in β-catenin null mice, although β-catenin is subsequently necessary for the  

anterior-posterior axis formation. β-catenin null ES cells exhibit decreased cell-cell contact, similar to 

that observed in E-cadherin null ES cells [116,117]. Besides its structural role, β-catenin can also 

function as a transcriptional regulator in response to specific signals, in particular, as a molecular 

effector of canonical Wnt signaling [118]. In the nucleus, β-catenin interacts with the TCF/LEF 

complex and regulates expression of numerous Wnt target genes.  

3.3. α-E-Catenin 

α-E-catenin (epithelial) is a member of the atypical α-catenin family, which also comprises  

α-N-catenin (neuronal) and α-T-catenin (heart). α-E-catenin exhibits a structure similar to vinculin and 

it considerably differs from other catenins in that it lacks Armadillo repeats [119]. Genetic studies have 

shown the importance of α-E-catenin in embryo development and ES cells, mainly due to its role in 

cell adhesion [120,121]. For example, inhibition of α-E-catenin protein expression in ES cells, via gene 

trap mutation, resulted in a phenotype similar to E-cadherin knock-out mice, suggesting that the main 
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function of α-E-catenin is to maintain and stabilize E-cadherin-mediated cell-cell contact [120]. Recent 

evidence suggests that an intermediate protein, such as epithelial protein lost in neoplasm 

(EPLIN) [122], may link β-catenin-bound α-E-catenin to the actin cytoskeleton (Figure 4B).  

Figure 5. Diagrammatic representation of the transcriptional and translational events 

associated with epithelial-mesenchymal transition during mouse and human ES cell 

differentiation. Undifferentiated ES cells exhibit E-cadherin-mediated cell-cell contact and 

this is associated with low levels of N-cadherin, E-cadherin repressors (Slug, Snail and 

SIP1) and matrix metalloproteinases (MMPs) [112,113]. Upon induction of ES cell 

differentiation, E-cadherin protein is rapidly lost from the cell surface and this is associated 

with increased N-cadherin, E-cadherin repressor (Slug, Snail and SIP1) and MMP 

expression [112,113]. Green denotes changes in both transcripts and protein; red denotes 

changes in transcripts only.  

 

3.4. p120-Catenin 

p120-Catenin is a typical catenin member containing 10 Armadillo repeats [123]. It binds a specific 

site within the cytoplasmic domain of E-cadherin and appears to function to prevent degradation of  

E-cadherin protein by inhibiting endocytic membrane trafficking [124–127]. It also promotes recycling 

of E-cadherin to the cell surface via interaction with kinesin motors [128]. Similar to α- and β-catenin, 

there is increasing evidence to suggest that p120-catenin might play additional roles besides cell 

adhesion [129]. For example, within the cytoplasm, p120-catenin modulates the opposing activity of 

the Rho and Rac families of GTPases, thus contributing to cytoskeletal organization [130].  

p120-Catenin can also translocate into the nucleus where it may interact with the transcription factor 
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Kaiso, resulting in gene transactivation [131–133]. The Kaiso/p120-catenin pathway seems to overlap, 

at least partially, with the TCF/β-catenin complex activity in the regulation of Wnt target  

genes [134,135]. Many of these p120-catenin activities have been associated with increased cellular 

proliferation and altered cell cycle in cancer cells [134,136]. 

4. The Function of E-Cadherin in ES and iPS Cell Pluripotency and Self-Renewal 

In recent years, evidence for the function of E-cadherin in regulating pluripotent and self-renewal 

signaling pathways in stem cells has emerged. Below we discuss some of the relevant literature 

describing the function of E-cadherin in human and mouse pluripotent stem cells. 

4.1. E-cadherin Regulates Localization of Cell Surface Molecules in ES Cells 

We and others have previously shown that loss of E-cadherin in ES cells induces major changes in 

cellular architecture and localization of plasma membrane-associated proteins. For example, 

abrogation of E-cadherin in ES cells results in altered actin cytoskeleton arrangement and induction of 

cell polarization [112,113]. Furthermore, E-cadherin expression in ES cells functions to inhibit cell 

surface localization of the 5T4 oncofetal antigen, a pro-migratory factor that is associated with poorer 

clinical outcome in ovarian, gastric and colorectal cancers [137–140]. Therefore, the specific cellular 

architecture induced by E-cadherin-mediated cell-cell contact is likely to facilitate correct localization 

of plasma membrane proteins. This is supported by observations that expression of Eph receptors and 

ephrins are differentially regulated by E-cadherin in ES cells [141]. In addition, our unpublished data 

suggests a role for E-cadherin in regulating correct plasma membrane localization of a range of 

proteoglycans in mES cells. Therefore, as well as its role in maintaining epithelial integrity, E-cadherin 

mediated cell-cell contact is critical for the correct presentation of a range of molecules at the cell 

surface of ES cells. 

4.2. E-Cadherin Expression Regulates Signaling Pathways in Pluripotent Cells 

FABS cells [81], isolated from mouse blastocysts in defined culture media containing FGF2, 

Activin A, BIO and LIF inhibitor, expressed markers of pluripotency although they were unable to 

form teratomas and failed to expand when grown in suspension. Culture of FABSCs in  

LIF/BMP-supplemented medium for seven days resulted in restoration of chimera forming ability and 

this was associated with increased expression of E-cadherin. In addition, abrogation of E-cadherin 

expression in these cells resulted in their differentiation. This data demonstrated that both the culture 

growth factor environment and cell-cell interaction play a critical role in defining specific stem cell 

pluripotent signaling pathways. 

Whilst E-cadherin
−/−

 ES cells maintain an undifferentiated phenotype in media supplemented with 

fetal bovine serum (FBS) and LIF [113], we have demonstrated that these cells do not require LIF 

under these conditions [87]. Instead, E-cadherin
−/−

 ES cells maintain pluripotency via Activin/Nodal 

signaling and optimal self-renewal is achieved via FGF2. Therefore, E-cadherin functions in mES cells 

to positively regulate LIF/BMP-dependent pluripotency. The ability of E-cadherin
−/−

 ES cells to 

maintain pluripotency in FBS- and LIF-supplemented medium reflects the presence of Activin, Nodal 
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and FGF2 within ES cell-screened serum. E-cadherin
−/−

 ES cells maintain pluripotent marker 

expression in serum-free medium supplemented with Activin, Nodal and FGF2 and exposure of these 

cells to the Activin-like kinase receptors (Alks)-4, -5 and -7 inhibitor (SB431542) induces 

differentiation of the cells [87]. Using mutant E-cadherin expression vectors, we determined that the  

β-catenin binding region of E-cadherin is essential for LIF/BMP-mediated pluripotency in ES cells. In 

addition, reversible Activin/Nodal-dependent pluripotency could be induced in wild type (wt)ES cells 

by their treatment with an E-cadherin homodimerization-inhibiting peptide, CHAVC. Furthermore,  

E-cadherin
−/−

 ES cells can also be maintained in an undifferentiated state in serum-free medium 

supplemented with LIF/BMP, suggesting that these cells exhibit altered hierarchy of pluripotent 

regulating pathways [63]. Interestingly, we also demonstrated that β-catenin
−/−

 ES cells maintain 

pluripotency via Activin/Nodal and self-renewal via FGF2, demonstrating that a functional  

E-cadherin/β-catenin complex is critical for LIF/BMP-mediated pluripotency in mouse ES cells. This 

was the first demonstration of multiple pluripotent signaling networks existing in ES cells and that the 

hierarchical activity of these pluripotent states is determined by the E-cadherin/β-catenin complex.  

We have previously demonstrated that inhibition of E-cadherin-mediated cell-cell contact in hES 

cells using a neutralizing antibody (nAb) does not induce differentiation of these cells [112], although 

it does decrease their proliferative capacity. Titration of nAb onto hES cells such that cell-cell contact 

and proliferation are unaffected allowed the prolonged culture of the cells in the absence of FGF2 

(Figure 6). After two passages in the presence of nAb and absence of FGF2, both HES4 (Figure 6a) 

and H1 (Figure 6b) ES cells exhibited characteristic colony morphology whereas cAb treated colonies 

were mostly differentiated. Cell surface expression of the pluripotent marker Tra-1-60 was assessed on 

cAb and nAb treated HES4 hES cells after three passages in the absence of FGF2 (Figure 6e).  

nAb-treated HES4 ES cells exhibited similar expression of Tra-1-60 compared to HES4 cells cultured 

under normal conditions. By contrast, cAb-treated HES4 hES cells exhibited significantly decreased 

expression of Tra-1-60. Similarly, H1 hES cells treated with nAb for five passages in the absence of 

FGF2 exhibited high levels of Tra-1-60 expression (Figure 6f) whereas all cAb treated cells had died. 

Following culture of H1 and HES4 ES cells for 10 passages (approximately 90 days) in the presence of 

nAb and absence of FGF2, RT-PCR analysis was performed to assess expression of transcripts 

associated with pluripotency (Oct4) and various lineage markers (Figure 6c(i) and 6d(i)). Both cell 

lines exhibited an undifferentiated transcript profile consistent with our previous observations [142]. 

To determine the differentiative potential of hES cells cultured for 10 passages in the presence of nAb 

and absence of FGF2, we allowed the cells to overgrow in the culture plates (i.e., no passaging) in 

normal ES cell culture medium (i.e., +FGF2) for 20 days to induce differentiation and assessed the 

cells for expression of lineage specific transcript markers (Figure 6c(ii) and 6d(ii)). Both hES cell lines 

expressed markers of differentiation, demonstrating that the cells maintained the ability to differentiate 

into cells representative of the three primary germ layers. Whilst the exact mechanism for self-renewal 

of human ES cells in the absence of FGF2 is unclear (for example, it may be due to exogenous FGF2 

expression induced by the nAb) it does illustrate that E-cadherin functions in both mouse and human 

ES cells to positively regulate pluripotent signaling pathways.  
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Figure 6. Culture of hES cells in the presence of E-cadherin neutralizing antibody 

SHE78.7 allows their culture in the absence of FGF2. HES4 and H1 human ES cell lines 

were cultured in the presence of a minimal fibroblast feeder layer (approximately  

1000 cells/dish) in the absence of FGF2 in serum replacement medium in the presence of 

cAb or nAb (0.5 µL/mL of media of 0.5 mg/mL stock solution). (a) Phase contrast 

microscopy of HES4 ES cells cultured in control antibody (cAb) or E-cadherin neutralizing 

antibody SHE78.7 (nAb) after 2 passages in the absence of FGF-2. Note that nAb cells 

exhibited normal colony morphology whereas cAb treated cells differentiated; (b) Phase 

contrast microscopy of H1 ES cells cultured in control antibody (cAb) or E-cadherin 

neutralizing antibody SHE78.7 (nAb) after 2 passages in the absence of FGF-2. Note that 

nAb cells exhibited normal colony morphology whereas cAb treated cells differentiated; 

(c) (i) HES4 ES cell colonies were cultured in nAb (0.5 µL/mL of media of 0.5 mg/mL 

stock solution) in the presence of a minimal fibroblast feeder layer in the absence of FGF2 

in serum replacement medium for 10 passages (approximately 90 days) and assessed for 

expression of transcripts associated with pluripotency and various lineage markers as 

previously described [142]. Note that the transcript profile expression is consistent with 

that observed for undifferentiated HES4 ES cells (as described in Ward et al. [142]).  

(ii) HES4 ES cell colonies described above were allowed to overgrow in the culture plates 

(i.e., no passaging) in normal ES cell culture medium (i.e., +FGF2) for 20 days to induce 

differentiation of the cells and assessed for expression of transcripts associated with 

pluripotency and various lineage markers (as described in [142]). Note that markers of 

differentiation expressed following differentiation of the cells included all three germ 

layers (endoderm-HNF, TF, AMY; mesoderm-FLK, CD34, AC133; ectoderm-NES, NFM, 

NSE, PAX and PLP) and extra-embryonic visceral endoderm (AFP); (d) RT-PCR analysis 

of (i) undifferentiated and (ii) differentiated H1 ES cells as described in (c). Oct-4 (OCT); 

α-fetoprotein (AFP); hepatocyte nuclear factor (HNF); nestin (NES); neurofilament middle 

chain (NFM); neuron-specific enolase (NSE); Pax-6 (PAX); proteolipid protein (PLP); 

amylase (AMY); α1-antitrypsin (TRP); Flk-1 (Flk); CD34 (CD); AC133 (AC); Transferrin 

(Tf); β-tubulin (BT); alpha-fetal protein (AFP); (e) Cell surface expression of the 

pluripotent marker Tra-1-60 was assessed on cAb and nAb treated HES4 ES cells (HES4) 

after 3 passages in the absence of FGF2 and HES4 ES cells cultured under normal 

conditions (HES4) on a fibroblast feeder layer containing FGF2 by fluorescent flow 

cytometry. Note that nAb-treated cells exhibited similar expression of Tra-1-60 compared 

to HES4 cells cultured under normal conditions; (f) Cell surface expression of the 

pluripotent marker Tra-1-60 was assessed on nAb treated HES4 ES cells (all cAb treated 

cells died) after 5 passages in the absence of FGF2. Note that >99% of the nAb treated 

cells exhibited Tra-1-60 expression. 

(a) (b) 
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Figure 6. Cont. 

(c) (d) 

  

(e) (f) 

  

4.3. Manipulation of Culture Surfaces with E-Cadherin Fusion Proteins 

Nagaoka et al. [143], have demonstrated that culture of mES cells on plates coated with an  

E-cadherin-Fc fusion protein exhibited decreased cell-cell adhesion and failed to form characteristic 

ES cell colonies. However, these cells maintained expression of pluripotent markers and were able to 

differentiate into cells of the three primary germs layers, demonstrating that pluripotency was 

unaffected in these cells. In addition, ES cells cultured on the E-cadherin-Fc fusion protein plates 

exhibited increased proliferation and decreased dependence on LIF, although removal of LIF from the 

cells induced differentiation. Similar results were also obtained for human ES and iPS cells using 

human E-cadherin-Fc fusion protein-coated plates [144]. Culture of hES or iPS cells in mTeSR1 

medium on E-cadherin-Fc fusion protein-coated plates resulted in maintenance of pluripotent marker 

expression, normal proliferation rates and, after >60 days in culture, no abnormal karyotype was 

observed. In addition, these cells were able to form embryoid bodies which expressed lineage-specific 

gene transcripts and teratomas generated from these cells exhibited evidence of differentiation to the 

three primary germ layers. Whilst the plating efficiency of disaggregated hES cells on E-cadherin-Fc 

fusion protein plates was decreased compared to that of matrigel-treated plates [144], this was found to 

be a result of proteolytic degradation of E-cadherin on the surface of the cells by the use of Accutase 

cell dissociation buffer. Where enzyme-free dissociation buffer was used, hES cell plating efficiency 

was equivalent to that observed on matrigel-treated plates. These results demonstrate that E-cadherin-

Fc coated culture plates may provide a useful method for the culture of hES and iPS cells on defined 

substratum. Whilst the pluripotent signaling pathways were not investigated in detail in these studies, it 

is possible that E-cadherin-Fc coated plates may alter dependence of ES cells to exogenous factors. 
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4.4. E-Cadherin Expression in Feeder Cells Can Enhance Maintenance of ES Cell Pluripotency 

Horie et al. [145] have demonstrated that forced expression of E-cadherin in mouse STO and 

NIH3T3 cells, which were utilized as a feeder layer for mES cells, resulted in improved expression of 

pluripotent markers in mES cells compared to feeder cells lacking E-cadherin expression. For example, 

mES cells cultured on untransfected STO and NIH3T3 cells exhibited low levels of expression of the 

pluripotent markers Oct3/4, Nanog and Rex-1. By contrast, mES cells cultured on STO and NIH3T3 

cells transfected with E-cadherin cDNA resulted in expression of the pluripotent markers comparable 

to ES cells cultured on primary MEFs. In addition, colony forming ability was increased in mES cells 

cultured on E-cadherin expressing STO or NIH3T3 feeder cells compared to untransfected cells. 

Culture of mES cells in conditioned medium derived from E-cadherin expressing STO or NIH3T3 

feeder cells did not enhance expression of pluripotent markers, suggesting that direct contact between 

the ES cells and feeder layer, rather than secreted soluble factors, was a contributing factor to 

increased pluripotent marker expression and colony forming ability. Subsequently, the authors [145] 

showed that forced cell-cell contact between mES cells and the feeder cells, using magnetic 

interaction, increased pluripotent marker expression and colony forming ability in mES cells growing 

on untransfected STO or NIH3T3 cells. Whilst the precise mechanism for the ability of  

E-cadherin-expressing feeder cells to support the pluripotent state and self-renewal of mES cells is 

unclear, Horie and colleagues suggested that it may reflect enhanced signaling via either direct 

interaction between the cells or via the extracellular matrix.  

4.5. Inhibition of E-Cadherin Expression Allows Culture of mES Cells in Shake Flasks 

A fundamental requirement for the exploitation of ES cells in regenerative medicine is the ability to 

reproducibly derive sufficient numbers of cells of a consistent quality in a cost-effective manner. 

Adherent methods for ES cell culture are disadvantaged in that they result in heterogenous static 

conditions, leading to batch-to-batch variation, and are costly and labor intensive. Bioreactor culture of 

ES cells represents a useful tool since the method provides a scaleable, non-intensive and relatively 

homogenous high cell volume density microenvironment which can be easily monitored. Fok and 

Zandstra [146] demonstrated that E-cadherin protein is the cause of aggregation of mouse ES cells in 

suspension bioreactor culture and concluded that expression of E-cadherin protein is required to 

maintain viability of ES cells in bioreactor culture. In addition, Dang et al. [147] suggested that the use 

of an E-cadherin blocking antibody in bioreactor culture could adversely affect cell differentiation due 

to the importance of E-cadherin in embryogenesis. Despite these concerns, we have recently 

demonstrated that mES cells can be cultured as a near-single cell suspension in scalable shake flasks 

over prolonged periods without additional media supplements [148]. Wild-type D3 mES cells treated 

with an E-cadherin neutralizing Ab (DECMA1; EcadAb) exhibited doubling times of 15.6 ± 4.7 h and 

16 ± 0.9 h mean-fold increase in viable cell numbers over 48 h. Furthermore, EcadAb ES cells 

propagated as a dispersed cell suspension for 15 day maintained expression of pluripotent markers, 

exhibited a normal karyotype and high viability and were able to differentiate to cells representative of 

the three primary germ layers [148]. Therefore, inhibition of E-cadherin expression in mouse ES cells 

represents a useful method for the cost-effective suspension culture of these cells, significantly 
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decreasing the requirement for technical input and plastic consumables associated with adherent 

culture methods. 

4.6. E-Cadherin Expression Enhances hES Cell Colony Formation and Self-Renewal 

The Rho-associated kinase (ROCK) inhibitor Y-27632 has been demonstrated to increase survival 

of dissociated hES cells [149]. Li and colleagues [150] observed that whilst Y-27632 increased 

clonogenicity of hES cells, this was likely to reflect increased motility of the cells resulting in ~60% of 

colonies consisting of reaggregated cells rather than colonies originating from a single founding cell. 

They also utilized a doxycycline-inducible E-cadherin expression vector in hES cells to assess the role 

of E-cadherin in promoting cell survival. They found that E-cadherin expression was associated with 

expression of the apoptotic inhibitory gene Bcl-XL and inhibition of the pro-apoptotic gene Caspase-3, 

increasing clonogenicity of hES cells up to 20-fold [150]. Furthermore, they observed that >98% of 

individual hES cells which failed to maintain E-cadherin expression following single cell dissociation 

exhibited cell death or differentiation within 72 h of seeding. 

Xu and colleagues [151] identified two small molecules, Thiazovivin (Tzv) and Tyrintegin (Ptn), 

which increased survival of single hES cells over 30-fold whilst having little impact on proliferation. 

They observed that the compounds increased the level of HUTS-21 binding in hES cells, suggesting 

that they may function by stimulating integrin activity following interaction of cells with extracellular 

matrix (ECM). Small molecule Tzv was also found to promote suspended aggregate formation of hES 

cells by stabilizing cell surface E-cadherin expression, probably by inhibiting endocytosis of the 

protein. The authors also found that hES cell survival could be increased by seeding cells onto plates 

coated with an E-cadherin-Fc protein. They concluded that cleavage of E-cadherin itself following 

dissociation of hES cell colonies is not the direct cause of cell death but rather it is the destabilization 

of E-cadherin at the cell membrane leading to inhibition of cell-cell contact and apoptosis. ROCK was 

identified as a direct target of small molecule Tzv and inhibition of this pathway by Tzv is likely to be 

responsible for increasing hES cell survival by stabilizing E-cadherin protein at the plasma membrane. 

Interestingly, Xu et al. [151] demonstrated that treatment of hES cells with the mitogen-activated 

protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor PD0325901 and p38 

inhibitor SB203580 allowed their self-renewal under mES cell culture conditions (i.e., with LIF), and 

that abrogation of E-cadherin with a nAb significantly decreased proliferation of the cells under these 

conditions. They concluded that E-cadherin regulation and expression levels in human and mouse ES 

cells is likely to reflect the different culture conditions required for these cell lines. This is supported 

by our observations in mouse and human ES cells where aberrant expression of E-cadherin can alter 

cellular dependence on exogenous factors. Li et al. [152] have also demonstrated that functional 

interactions between small GTPase Rap1 and E-cadherin are responsible for regulating self-renewal of 

hES cells. They demonstrated that inhibition of Rap1 suppresses colony formation and self-renewal of 

hES cells by affecting the endocytic recycling pathway associated with formation and maintenance of 

E-cadherin-mediated cell-cell adhesion. They also observed that disruption of E-cadherin-mediated 

cell-cell contact induces degradation of Rap1, which may reflect our observations of decreased 

proliferation, although not pluripotency, of hES cells treated with an E-cadherin nAb [112]. 
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4.7. E-Cadherin Expression Enhances iPS Cell Derivation 

It has recently been demonstrated that a mesenchymal-epithelial transition (MET) event is required 

for nuclear reprogramming of mouse fibroblasts to iPS cells [153]. The authors showed that generation 

of iPS cells from mouse fibroblasts required suppression of pro-EMT signals and activation of an 

epithelial program within the cells. They observed that Sox2/Oct3/4 suppressed the E-cadherin 

repressor Snail, c-myc downregulated TGFβ1 and TGFβR2 and that Klf4 induced E-cadherin 

expression. In addition, when MET was blocked in the reprogramming of fibroblasts, iPS cell 

formation was impaired, and this was also observed in iPS cell formation using epithelial cells in 

which EMT was blocked. Low levels of E-cadherin protein expression in iPS cells was associated with 

decreased chimaera-forming efficiency, as observed in FABSCs [81], with the authors suggesting a 

state of ―near pluripotency‖ of the cells. Low chimera forming efficiency of these cells is likely to 

reflect inefficient incorporation of the cells within the ICM, rather than being a true lack of 

pluripotency of the cells [81]. 

Chen et al. [154] isolated two small molecules (Apigenin and Luteolin) that enhanced E-cadherin 

expression and showed that these could significantly improve iPS cell derivation from mouse 

embryonic fibroblasts (MEFs). They further showed that forced expression of human E-cadherin in 

MEFs resulted in a four-fold increased isolation of iPS cells when compared to iPS-inducing factors 

alone (Oct3/4, Sox2, Klf4 and c-Myc). When viewed in the context of observations by Li et al. [150], 

it is possible that enhanced iPS cell derivation upon forced expression of E-cadherin is a result of 

increased cell-ECM interactions. Inhibition of E-cadherin, using RNAi or an inhibiting peptide, during 

the iPS transformation process also resulted in decreased iPS cell derivation [154]. Furthermore, they 

demonstrated that the β-catenin binding domain of E-cadherin was not required for optimal iPS cell 

derivation and that absence of the entire cytoplasmic region of E-cadherin only partially inhibited this 

process. In contrast, mutation of Trp2 in the extracellular region of E-cadherin abolished  

E-cadherin-mediated iPS reprogramming efficiency. Whilst Chen et al. incorrectly stated that ―to 

maintain colony morphology has long been proposed to be the only known function of E-cadherin in 

ES cells‖ (for example, both ourselves [87] and Chou et al. [81] had already demonstrated a function 

for E-cadherin in altered cell signaling), their results do suggest that the mechanism of enhanced iPS 

cell-derivation via E-cadherin expression may be different to that for maintaining pluripotency in ES 

cells. For example, we have shown that the E-cadherin/β-catenin complex is necessary for  

LIF/BMP-dependent pluripotency in mES cells. Since the E-cadherin/β-catenin complex is required 

for cell-cell contact, these results suggest that the HAV domain within the extracellular region of E-

cadherin may function to promote cellular-ECM interactions, thereby increasing clonogenicity of the 

cells. ES cell-ECM interactions are not required for mES cell self-renewal since we have shown that 

abrogation of cell-cell contact in these cells using the DECMA-1 nAb allows prolonged single cell 

suspension culture of pluripotent cells in shaker flasks [148]. Therefore, E-cadherin expression in ES 

cells may function as both a regulator of pluripotent signaling pathways as well as an enhancer of ES 

cell-ECM interactions to aid cell survival. 
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5. Materials and Methods  

5.1. Human ES Cell Culture in Normal Medium 

HES4 hES cells [155] and H1 hES cells [10] were cultured in tissue organ culture dishes (BD 

Falcon, Bedford MA, USA) coated with 0.1% gelatin and 1 × 10
5
 irradiated 129 mouse embryonic 

fibroblast feeder cells per dish. Cells were grown in DMEM + F12 mix media supplemented with 20% 

serum replacement (synthetic serum; Invitrogen Corp.), L-glutamine (1 mM), 2-mercaptoethanol  

(50 μM), NEAA (100×, 1:100 dilution) and bFGF (FGF2; 0.2 μg/mL in 0.1% BSA) (all Invitrogen), as 

described by Thomson et al. [10] and incubated at 37 °C/5% CO2. The media was changed daily. Cells 

were passaged after 7–10 days by gently cutting and teasing the morphologically undifferentiated cells 

using a yellow pipette tip and transferring colony pieces to a fresh culture dish.  

5.2. Human ES Cell Culture in the Presence of E-Cadherin Neutralizing Antibody SHE78.7 in the 

Presence or Absence of FGF2 

HES4 hES cells and H1 hES cells were cultured in tissue organ culture dishes (BD Falcon, Bedford 

MA, USA) coated with 0.1% gelatin and 1 × 10
3
 irradiated 129 mouse embryonic fibroblast feeder 

cells per dish. Cells were grown in DMEM + F12 mix media supplemented with 20% serum 

replacement (synthetic serum; Invitrogen Corp.), L-glutamine (1 mM), 2-mercaptoethanol (50 µM) and 

NEAA (100×, 1:100 dilution) and presence or absence of bFGF (FGF2; 0.2 μg/mL in 0.1% BSA) (all 

Invitrogen) as described by Thomson et al. [10] and incubated at 37 °C/5% CO2 in the presence of a 

control antibody (Mouse IgG2a; Invitrogen Corp) or E-cadherin neutralizing antibody SHE78.7  

(0.5 µL/mL of media of a stock 0.5 mg/mL solution), the latter of which inhibits E-cadherin mediated 

cell-cell contact by binding the CD1 region of the extracellular domain. The media was changed daily. 

Cells were passaged after 7–10 days by gently cutting and teasing the morphologically undifferentiated 

cells using a yellow pipette tip and transferring undifferentiated colony pieces to a fresh culture dish. It 

should be noted that some spontaneous differentiation of the cells was observed in the early passage 

cultures in absence of FGF2, which is to be expected due to the stress of the altered culture conditions. 

5.3. Differentiation of hES Cells 

Control and neutralizing antibodies were removed from the cultures and the cells differentiated  

by overgrowth o in DMEM + F12 mix media supplemented with L-glutamine (1 mM),  

2-mercaptoethanol (50 μM), NEAA (100×, 1:100 dilution), and bFGF (0.2 μg/mL in 0.1% BSA) (all 

Invitrogen) without removal of the feeder layer. 

5.4. Fluorescent Flow Cytometry Analysis of ES Cells 

Human ES cells were trypsinized, washed once in 900 μL of PBS and resuspended in 100 μL of 

0.2% BSA in PBS (FACS buffer) containing the primary antibody. Primary antibodies were as 

follows: Tra-1-60 (phycoerythrin conjugated anti-Tra-1-60; Santa Cruz) and incubated for 1 h on ice. 

Cells were washed once in 900 μL of PBS, resuspended in 100 μL of FACS buffer containing a 

phycoerythrin-conjugated secondary antibody that recognized the primary antibody (all 1:100 dilution; 
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Santa Cruz) and incubated for 30 min on ice. The cells were washed once in 900 μL of PBS and fixed 

in 400 μL of 1% formaldehyde. Cell fluorescence was analyzed using a Becton Dickinson 

FACScaliber. Viable cells were gated using forward and side scatter and the data represent cells from 

this population. 

5.5. RT-PCR 

Total RNA was extracted from cells using RNAzol B according to the manufacturer’s instructions 

(Biogenesis, Dorset, UK), treated with DNase (Promega, WI, USA) and phenol/chloroform extracted. 

Synthesis of cDNA from mRNA transcripts was performed using the following method: RNA (10 μg), 

dNTP (250 µM), oligo (dT) (5.0 μg total), reverse transcriptase (40 U) in a total volume of 200 μL and 

incubated at 42 °C for 1 h. RT-PCR was performed using 1 μL of the cDNA solution and 35 cycles. 

Samples were run on 2% agarose gels containing 400 ng/mL ethidium bromide and visualized using an 

Epi Chemi II Darkroom and Sensicam imager with Labworks 4 software (UVP, CA, USA).  

Primers used were as follows (read 5' to 3'; forward-F, reverse-R; all 60 °C annealing):  

-Tub—F GGAACATAGCCGTAAACTGC, R TCACTGTGCCTGAACTTACC, 317 bp;  

Oct-4—F AGAAGGAGCTAGAACAGTTTGC, R CGGTTACAGAACCATACTCG, 415 bp;  

AFP—F CCA TGT ACA TGA GCA CTG TTG, R CTCCAA TAA CTC CTG GTA TCC, 338 bp; 

HNF—F GAG TTT ACAGGC TTG TGG CA, R GAG GGC AAT TCC TGA GGA TT, 390 bp; 

NES—F GCC CTG ACC ACT CCA GTT TA, R GGA GTC CTG GAT TTC CTT CC, 199 bp; 

NFM—F GAG CGC AAA GAC TAC CTG AAG A, R CAG CGA TTT CTA TAT CCA GAG CC, 

430 bp; NSE—F CCCACT GAT CCT TCC CGA TAC AT, R CCG ATC TGG TTG ACC TTGAGC 

A, 254 bp; PAX—F AAC AGA CAC AGC CCT CAC AAA CA, R CGG GAA CTT GAA CTG GAA 

CTG AC, 275 bp; PLP—F CCA TGC CTT CCA GTA TGT CAT C, R GTG GTC CAG GTG TTG 

AAG TAA ATG T, 354 bp (plp) and 249 bp (dm-20); Amy—F GCT GGG CTC AGT ATT CCC CAA 

ATA C, R GAC GAC AAT CTC TGA CCT GAGTAG C, 490 bp; TRP—F AGA CCC TTT GAA 

GTC AAG GAC ACCG, R CCA TTG CTG AAG ACC TTA GTG ATG C, 360 bp; Flk-1—F GGT 

ATT GGC AGT TGG AGG AA, R ACA TTT GCC GCT TGG ATA AC, 203 bp; CD34—F TGA 

AGC CTA GCC TGT CAC CT, R CGC ACA GCT GGA GGT CTT AT, 200 bp; AC133—F CAG 

TCT GAC CAG CGT GAA AA, R GGC CAT CCA AAT CTG TCC TA, 199 bp; Tf—F CTG ACC 

TCA CCT GGG ACA AT, R CCA TCA AGG; R CCA TCA AGG 307 CAC AGC, 367 bp; Oct-4 

(OCT); α-fetoprotein (AFP); hepatocyte nuclear factor (HNF); nestin (NES); neurofilament middle 

chain (NFM); neuron-specific enolase (NSE); Pax-6 (PAX); proteolipid protein (PLP); amylase 

(AMY); α1-antitrypsin (TRP); Flk-1 (Flk); AC133 (AC1); Transferrin (Tf); β-tubulin (β-Tub);  

alpha-foetal protein (AFP). 

6. Conclusions 

E-cadherin is emerging as a key regulator of human and mouse stem cell pluripotency and  

self-renewal. In mouse ES cells, for example, at least two pluripotent pathways exist which are 

dependent upon E-cadherin protein expression levels, and we have shown that this may also be true in 

human ES cells (Figure 6). Whilst expression of the core pluripotency genes, Oct3/4, Sox2 and Nanog, 

appear to be unaltered in wt and E-cadherin
−/−

 ES cells, the latter are capable of self-renewal via 
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LIF/BMP or FGF/Activin/Nodal signaling pathways, suggesting that these cells exhibit at least two 

independent pathways to maintain pluripotency. Indeed, we have demonstrated reversible 

Activin/Nodal-dependent pluripotency in wild-type mES cells treated with the CHAVC peptide, 

suggesting that these cells also exhibit at least two pluripotent signaling pathways. Whilst ES cell 

―ground state‖ pluripotency (described by Ying and colleagues [63]) is an interesting concept, in 

practice it is difficult to uncouple ES cell behavior from the culture environment. Whilst the exact 

mechanisms controlling the switch between LIF/BMP and Activin/Nodal pathways are not  

fully understood, it is clear that E-cadherin functions to maintain the hierarchy of these 

independent pathways.  

Cell-ECM interaction has been shown to be important for survival of dissociated pluripotent cells 

whilst E-cadherin-mediated cell-cell contact appears critical to pluripotent pathway regulation in both 

mouse and human cells. Since E-cadherin is a cell surface protein it may provide a useful target for the 

manipulation of culture conditions of pluripotent cells using exogenous compounds. We have 

previously described a cyclic peptide, CHAVC, which can alter pluripotent signaling pathways in 

mouse ES cells [87]. However, this peptide is unstable (due to disulphide bonds) and its use is further 

complicated by having to screen serum batches for optimal activity of the peptide. Therefore, the 

various small molecules described in this review that can enhance E-cadherin function or antagonise 

E-cadherin-mediated pluripotency pathways may be useful for manipulating culture conditions for 

optimal and cost-effective self-renewal of these cells. There appears to be some confusion in the 

literature as to which pathways are essential for pluripotency and which pathways simply enhance the 

pluripotent state of stem cells. One example of this confusion is that of β-catenin and activation of the 

Wnt pathway. Knock-out studies have revealed that β-catenin is not required for establishment of the 

ICM and epiblast, therefore, it can be concluded that this protein is not required for maintenance of 

pluripotency in a physiological setting. However, it is clear that manipulation of β-catenin activity can 

enhance stem cell pluripotency in vitro. In the context of clinical therapies these points are merely 

academic and non-physiological pathways that can enhance pluripotency/differentiation of stem cells 

will be of significant relevance, particularly where associated with increased cost-effectiveness.  

Whilst it would be satisfying for us to conclude that E-cadherin is the critical component in 

regulating pluripotent pathways in ES and iPS cells, this may not be correct. Microarray analysis of  

E-cadherin
−/−

 ES cells in our lab has revealed over 2000 gene transcript alterations compared to wtES 

cells. Interestingly, these changes were not restricted to adhesion-related genes but also to transcripts 

associated with a wide range of cellular processes (e.g., primary metabolic processes, catabolism and 

apoptosis). When viewed in the context of altered plasma membrane protein localization, it is clear that 

E-cadherin plays a major role in cellular homeostasis and that abrogation of this protein has a 

significant impact upon many cellular processes. Many of these changes are likely to be non-specific 

effects related to loss of epithelial integrity rather than direct regulation by E-cadherin. Therefore, the 

challenge for the near future is to elucidate and dissect processes associated with E-cadherin 

expression to allow delineation of pathways which are impacted directly by E-cadherin and those 

associated with non-specific events due to loss of epithelial integrity. However, the fact that  

E-cadherin has risen above its previous label of a mere ―cell adhesion protein‖ should be celebrated 

and future work is likely to realize more unexpected functions of this remarkable protein.  
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