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Abstract: Finding non-coding RNA (ncRNA) genes has emerged over the past few years as
a cutting-edge trend in bioinformatics. There are numerous computational intelligence (CI) challenges
in the annotation and interpretation of ncRNAs because it requires a domain-related expert knowledge
in CI techniques. Moreover, there are many classes predicted yet not experimentally verified by
researchers. Recently, researchers have applied many CI methods to predict the classes of ncRNAs.
However, the diverse CI approaches lack a definitive classification framework to take advantage of
past studies. A few review papers have attempted to summarize CI approaches, but focused on the
particular methodological viewpoints. Accordingly, in this article, we summarize in greater detail
than previously available, the CI techniques for finding ncRNAs genes. We differentiate from the
existing bodies of research and discuss concisely the technical merits of various techniques. Lastly,
we review the limitations of ncRNA gene-finding CI methods with a point-of-view towards the
development of new computational tools.

Keywords: gene; DNA; non-coding RNA; micro RNA; computational intelligence; support vector
machine; Bayesian networks; genetic algorithm; neural network; deep learning

1. Introduction

Non-coding RNAs (ncRNAs) are a type of RNA [1] that is unable to produce a protein. However,
these ncRNAs contain unique information that yields other functional RNA molecules [2], and,
thereafter, these RNA molecules turn into proteins through gene transcription. This process is visually
represented in Figure 1 which shows the transcription step of ncRNA genes. In physiology and
disease development, these RNAs regulate numerous levels of gene expression. The current study
of the human genome [3] yielded many regulatory ncRNAs including microRNAs, small RNAs, and
various types of long ncRNAs (lncRNAs) [4]. In practice, ncRNAs also achieve regularity through
modularity, assembling diverse combinations of proteins and possibly RNA and DNA interactions [5].
A regulatory framework was proposed in [6] to construct a network between long ncRNAs (lncRNAs)
and protein-coding genes using the Bayesian network (BN). They utilized 762 prostate RNA-seq data
to construct this regularity network. In that system, it was noticed that the lncRNAs are utilized in
tissue development. Apart from the functions of ncRNAs sequences, the ncRNAs are also described
by specific secondary and tertiary structures [7]. Still, finding the function and structure of ncRNAs
is becoming a challenging task due to huge volumes of data involved in human next-generation
sequencing (NGS) [8]. For determining the function or annotation of ncRNAs, the computational
intelligence (CI) techniques were developed in the past studies. Currently, the CI techniques applied
on large human NGS datasets are a challenging task. Despite this fact, the prediction of ncRNAs [9] is
also a major issue for CI techniques.
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Figure 1. An example of the transcription process to produce protein with coding and non-coding
RNA genes.

We present a detailed review on state-of-the-art computational intelligence (CI) techniques from
2001 to 2016 in terms of automatic functional annotation and finding of non-coding RNA (ncRNAs)
genes. The primary aim of this review article is to attract both biologists and computer experts to show
the problems and importance of CI techniques for the finding of human disease in various domains.
In the literature, researchers are mainly using CI algorithms such as support vector machine (SVM),
neural network (NN), Bayesian networks (BNs), genetic algorithms (GAs), hidden Markov models
(HMMs), and hybrid classifiers to find ncRNA genes. The latest trend is to develop more advanced CI
techniques that will try to classify or annotate the ncRNA genes. Currently, the authors are widely
using deep neural network (DNN) learning and/or convolutional neural network (CNN) classifiers to
predict the ncRNAs sequences. The DNN is a more advanced CI technique to recognize multiclass
specific problems without using domain-expert knowledge.

However, there are a number of challenges to annotating ncRNAs [10] because there are many
classes that are predicted by medical and bioinformatics experts. This happened due to a lack
of an unambiguous classification framework in past studies. Similarly, the differentiation [11]
between lncRNAs and messenger RNAs (mRNAs) was also a challenging task. Compared to lncRNA
patterns, the microRNA (miRNA) [12] is a type of ncRNA that regulates the gene expression during
post-transcriptional operation. It was noticed that microRNA has some special roles in the development
of cancer cells. However, the review suggests that the functional identification of miRNAs continues
to be a thought-provoking task due to more than 1000 distinct genes of miRNAs in the human
genome. Furthermore, we also describe data sources that are provided to facilitate the researchers
in the development of computational algorithms. This review will serve as a good reference to the
newcomers in the computational domain field of ncRNA research. Moreover, this review article focuses
on the technical site and the limitations of state-of-the-art CI techniques.

This review article is organized as follows: Section 2 describes the detailed state-of-the-art
computational intelligence (CI) approaches for finding ncRNAs and miRNA genes. The online tools
and data sources are also presented for the researchers to analyze ncRNA genes. The discussions are
presented in Section 3 and conclusions and future works are presented in Sections 4 and 5, respectively.

2. Review of Computational Intelligence Techniques

There has been no clear review article about CI techniques for finding ncRNA and miRNA genes,
according to our knowledge, that focuses on CI methods from 2001 to 2016. This methodological
review about CI techniques is presented in Table 1 and summarized in Table 2. The primary aim
of this review article is to attract both computer and bioinformatics researchers and to make a key
reference for further study. In the literature from 2001 to 2016, the CI techniques are developed for
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finding ncRNA and miRNA genes by using neural networks (NNs), support vector machines (SVMs),
Bayesian Networks (BNs), Hidden Markov model (HMM), genetic algorithm (GA), and deep learning.
These computational approaches are described in detail in the following sub-sections. The identification
of ncRNA [5] functions are an emerging trend in the investigation of human diseases [2] such as cancer,
neurological, or cardiovascular disorders. As a result, there has been an increasing interest in the
prediction of ncRNA genes.

2.1. Predicting Non-Coding RNAs

The studies that used early systematic approaches did not focus on computational methods to
predict the function of RNA genes. In [13], the authors developed a CI approach for identification of
functional RNA genes. They used SVM and NN for prediction of RNA genes. They achieved 80%–90%
classification accuracy using the NN approach and 90%–99% classification accuracy using the SVM
classifier. Afterwards, the authors developed many systems for prediction of ncRNA by utilizing the
computational algorithms.

Whereas in [14], the SVM algorithm was implemented in graphics processing units (GPUs) based
parallel technology to classify ncRNA genes. Large-scale genomic sequence data was utilized to
detect these ncRNA sequences. In fact, the authors reported that the detection rate of ncRNA genome
sequences are fast using GPU and parallel based hardware implementation.

By using data mining algorithms, a new web-based interface was developed in [15] to
detect ncRNAs that are not transcribed into proteins. They named this project “ncRNAclass”
(https://biotools.ceid.upatras.gr), which can select efficient features and describe effectively the class
of ncRNAs compared to other online tools. The ncRNA class tool is used to differentiate between
well-known classes and to target predicted classes of mRNA.

Wang et al. [16] developed a positive sample only learning algorithm to identify ncRNA. Due to
a lack of appropriate negative training samples they developed a positive sample-only learning
algorithm to identify non-coding and coding RNAs. Using a supervised machine learning SVM, the
authors classified transcripts according to their features.

Liu et al. 2006 [17] introduced a coding or non-coding (CONC) method to differentiate non-coding
and coding RNAs. They trained a SVM on eukaryotic ncRNA from RNAdb [18] and NONCODE [19]
databases. The SVM predicted that coding RNAs were 97% and non-coding were 94%, where means
of F-measures were obtained from cross-validation and with a range of 96.66%–98.2% and a standard
deviation of 0.6.

The motivation of this study was from the above mentioned CONC method proposed by
Lei et al., named [20], coding potential calculator (CPC), which employed a SVM to identify ncRNA
using six features that have meaningful biological sequence extracts from the transcript’s nucleotide
sequence. The dataset used Rfam [21] and RNAdb [18] for noncoding and European Molecular Biology
Laboratory for coding sequence (EMBL CDS) [22].

Sætrom et al. [23] developed a boosted genetic programming method to automatically discover
a sequence pattern to predict ncRNAs. The main advantages of this method are that it can use the
DNA sequence directly as input, works well with larger sequences, is robust with noise training data,
can predict ncRNAs, and does not rely on sequence conservation. On the other hand, Sætrom et al. [24]
provided an overview of context sensitive Hidden Markov Models (csHMMs) to predict ncRNA genes.
The csHMMs can serve as an efficient framework for these purposes; they also provided an overview
of the role of csHMMs in the RNA secondary structure analysis and the prediction of ncRNA genes.

https://biotools.ceid.upatras.gr
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Table 1. State-of-the-art computational intelligence (CI) techniques for finding non-coding RNA (ncRNA) genes from 2001 to 2016.

Cited Approach 4 CMP Results (%) Methodology and Online Resource Tools

[13]
A computational approach to identify
genes for functional RNAs in genomic
sequences.

√ 2 S: 90%,
3 P: 99%

NN and SVM. Online tool unavailable.

[14] To detect ncRNA sequences. × −−−−−− The support vector machine (SVM) algorithm was implemented in graphical processing units (GPUs)
based parallel technology. Online tool unavailable.

[15]
To differentiate between well-known
classes and target predicted classes of
messenger RNA (mRNA).

√ −−−−−− A new web-based interface was developed to detect ncRNAs. Available at
http://biotools.ceid.upatras.gr/ncrnaclass/.

[16] To identify ncRNA a positive sample
only learning algorithm is introduced. × 1 A: 80%

The SVM used as the core learning machine assessed by 5-fold-validation in recovery of known
ncRNA. Data available online at
(http://bioinformatics.oxfordjournals.org/content/22/21/2590/suppl/DC1)

[17] To introduce a method to differentiate
between coding or non-coding RNA. ×

3 P: 97%,
2 S: 98%

Supervised machine learning SVM is used to classify transcripts according to features they would
have if transcripts coded for proteins. Online data source of mRNA at: RNAdb
(http://research.imb.uq.edu.au/rnadb).

[20]
To identify ncRNA using six features
extracted from transcript’s nucleotide
sequence.

× −−−−−−
SVM (coding potential calculator ((CPC)) to identify ncRNA using six features extracted from
transcript’s nucleotide sequence. Dataset used Rfam and RNAdb for noncoding and EMBL CDS for
coding. Online web-based interface available of CPC at http://cpc.cbi.pku.edu.cn.

[23] The prediction of ncRNA genes using
boosted genetic programming. × 1 A: 80%

The GA and 10-fold cross validation was used to train and test the learning machine.
Online tool unavailable.

[25]
To classify micro RNAs (miRNAs) and
to differentiate between normal and
tumor tissues.

√ −−−−−− A multi-objective algorithm was developed by using four classifiers such as random tree (RT),
random forest (RF), sequential minimal optimization (SMO) and logistic regression (LR).

[26] To automatically predict miRNA target.
√ F-measure:

0.95
The deep neural-network (DNN) was utilized to increase F-measure by 25% for prediction of miRNA
targets. Available at (http://data.snu.ac.kr/pub/deepTarget)

[27] To predict miRNAs targets. ×
1 A: 90%,
2 S: 88%,
3 P: 94%

Contrast relaxing and convolutional neural network (CNN) methods. Online tool unavailable.

[28] To predict new miRNA, known as
pre-miRNAs. ×

1 A: 99.9%,
2 S: 99.8%,
3 P: 100%

A neural networks (NNs) classifier was used to predict miRNA. Online tool unavailable.

[29] To improve the performance and to
predict the regulation of miRNA. × −−−−−−−− The authors utilized a NNs classifier to predict miRNA. Online tool unavailable.

[30] To predict a real pre-miRNA or a
pseudo pre-miRNA.

√ 1 S: 97.40%,
2 P: 95.85%

The authors utilized a multilayer artificial neural network (ANN) classifier. Online tool unavailable.

http://biotools.ceid.upatras.gr/ncrnaclass/
http://bioinformatics.oxfordjournals.org/content/22/21/2590/suppl/DC1
http://research.imb.uq.edu.au/rnadb
http://cpc.cbi.pku.edu.cn
http://data.snu.ac.kr/pub/deepTarget
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Table 1. Cont.

Cited Approach 4 CMP Results (%) Methodology and Online Resource Tools

[31]

A de novo prediction algorithm to
identify ncRNA using features derived
from sequence and structure of known
ncRNA.

×
2 S: 68%,
3 P: 70%,
1 A: 70%

NN-based meta-learner de novo predictor using folding, ensemble, and structure-based features.
Online data and program found at: http://csbl.bmb.uga.edu/publications/materials/tran/

[32]
The 15 disease related ncRNAs
sequences are utilized from the
ncRNAs with Alzheimer disease.

× −−−−−−

From the NONCODE database [19], 15 disease related ncRNA sequences were selected for mapping
and comparison. The ncRNA sequences in the cellular process and the base content in these
sequences have almost the same Z-curves even though they are coming from different organisms.
Online tool unavailable.

[33] To identify ncRNA genes using a
genetic algorithm (GA). × −−−−−− The observed sequence in real sequence data is used to motivate the use of GAs to quickly reject

regions of the search space of ncRNAs. Online tool unavailable.

[34] To identify ncRNA using covariance
searching. × −−−−−− The covariance models for ncRNA gene finding is extremely powerful and also extremely

computationally demanding. Online tool unavailable.

[35] A comparative genomic approach is
used to detect ncRNA. × −−−−−− Developed an efficient clustering method for finding potential ncRNAs in bacteria by clustering

genomic sequences. Online tool unavailable.

[36]
To identify real and pseudo miRNA
using SVM with features that are
present in local structure-sequence.

× 1 A: 90%
A method to classify real and pseudo miRNA by applying SVM using local structure sequence
features. Online tool unavailable.

[37]
Computational identification of
ncRNAs in Saccharomyces cerevisiae by
comparative genomics.

× −−−−−− Computational screen followed by Northern blot and transcript sequencing. Online tool unavailable.
Data set is available only at: http://genome.cshlp.org/content/13/6b/1301/suppl/DC1.

[38]
Identification of putative noncoding
RNAs among the RIKEN mouse
full-length cDNA collection.

× −−−−−− The authors identified nine ncRNAs. Online tool unavailable. Data set is available only at:
http://genome.cshlp.org/content/13/6b/1301/suppl/DC1.

[39]
The 19 candidate ncRNAs were
identified including one with
significant homology.

× −−−−−− The author used base-composition statistics method to find variety of ncRNAs.
Online tool unavailable.

[40] ncRNA gene detection using
comparative sequence analysis.

√ 2 S: 97.3%,
3 P: 100%

Comparative sequence analysis algorithm with “pair grammars” based on stochastic and hidden
Markov models (HMM). Online tool unavailable.

1 A: Accuracy, 2 S: Sensitivity, 3 P: Specificity, and 4 CMP: Comparisons,
√

: Compared and ×: Not compared.

http://csbl.bmb.uga.edu/publications/materials/tran/
http://genome.cshlp.org/content/13/6b/1301/suppl/DC1
http://genome.cshlp.org/content/13/6b/1301/suppl/DC1
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Table 2. A brief summary of CI techniques with respect to classification algorithms.

Year Computational Intelligence

2016 Multi classifiers (RT, RF, SMO) and Logic Regression LRDNN
2015 CNN, SVM, NN
2012 NN
2009 ANN, De novo NN, Hybrid Methods (HMs)
2008 Z-curve, GA
2007 SVM-Coding
2006 SVM and Covariance model parameter estimation
2005 GA, SVM, HMMs
2002 Local base-composition statistics
2001 Single-hidden layer NNs and SVMs, Comparative sequence analysis algorithm based on HMMs

Scott et al. [33] proposed a GA as an alternative to programming for searching ncRNAs.
The authors also used decision trees generated by GAs. Scott et al. [34] suggested a covariance
model with a different approach in which the space of the starting positions, sequence lengths, and
insertion/deletion patterns are searched using a GA. Yan-ling Y. et al. [32] used the Z-curve method
for the analysis and search of ncRNAs. DNA sequence can be uniquely represented in 3D space using
Z-curves. From the NONCODE [19] database, fifteen disease related ncRNAs sequences were selected
for mapping and comparison. The ncRNA sequences in the cellular processes and the base content in
these sequences have almost the same Z-curves, even though they are coming from different organisms.

Rivas and Eddy [40] implement a comparative sequence analysis algorithm that tests the patterns
of substitutions in pairs of homologous sequence alignments. They developed “pair grammars”
based on stochastic models and HMM, whose results compare favorably when tested on known
RNAs from BLASTN queries [41]. McCutcheon et al. [37] extended this work with experimental
characterization. In addition to having a high false positive rate, QRNA fails to identify ncRNAs
without significant structure while also picking up cis-regulatory mRNA structures. The results
illustrate the importance of having multiple genome sequences at various evolutionary distances
available for comparative genomics.

Numata et al. [38] continued this two-tiered “genome based” and “transcripts based” approach
to try to identify mammalian mRNA-like processed ncRNAs. They initially eliminated sequences
showing homology with known protein sequences and mapped the remainder to the mouse genome
before comparing alignments with GENSCAN [42]. This helped them focus on a more manageable 13%
of the original set of some 33,000 transcriptional units. Schattner et al. [39] used local base-composition
statistics to identify regions of three test genomes that may hold ncRNAs by looking beyond the
local percentage of GC bases ((G + C)%) to Chargaff differences to try to eliminate false positives
in the filtering process. While reporting significant base-composition variations between RNAs and
the background genome, the results may not be applicable to cases with low background (G + C)%.
Thao et al. [31] presented an NN-based meta-learner for the de novo method to identify ncRNAs; this
method uses sequence and structure based features that are easily derivable from any organism that
may is newly or partially sequenced. The main advantage of this method is that it does not require
prior homology, multiple sequence alignments, or structural conservation and, thus, can be directly
used on any organisms that are newly or partially sequenced.

The significance of ncRNS classes like lncRNA and miRNA is increasing rapidly [43]. Therefore,
in this review, we focus on the recently identified novel mechanisms of action, and discuss the current
strategies of finding and designating miRNA genes. The development of miRNA and ncRNAs targeted
strategies is challenged by several obstacles.

2.2. Finding MicroRNAs

In 2005, Chenghai et al. [36] defined a method to classify real and pseudo mRNA by applying SVM
using local structure sequence features. They achieved 90% accuracy on human data. Similarly, in [29],
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a multilayer ANN classifier was proposed by training 17 parameters to predict a real pre-miRNA
or a pseudo pre-miRNA. On average, a sensitivity of 97.40% and a specificity of 95.85% were
obtained. This approach was also compared with another four state-of-the-art classification methods:
MiPred [44], MiPred [45], miRabela [46], microPred [47], and Triplet-SVM [36] classifier. A new
classifier was developed in [30] to predict the regulation of miRNA. In that study, they showed that
the state-of-the-art methods are adequate for determining the pre-miRNA. However, the authors
developed a system to improve the precision performance of pre-miRNA that can handle a new
multiple-stem and loop-secondary structure features by using neural networks. The real pre-miRNA
dataset was utilized to successfully construct this new classifier to manage these class imbalance
problems. The 5-fold cross-validation method was also used to evaluate the performance of the
proposed classifier. In [48] authors have used a hybrid approach to predict small noncoding RNAs
genes. In [29], a supervised NN machine learning approach was developed to predict new miRNA
known as pre-miRNAs on a set of coding sequence (CDS) human regions. In that research, the obtained
results (99.9% of accuracy (ACC), 99.8% of sensitivity (SN), and 100% of specificity (SP)) provided a
more reliable prediction. The experimental results indicated that the miRNA achieves better results
than other approaches and declares it to be the most effective tool to predict novel miRNAs. A miRNA
target prediction algorithm was proposed in [27] by contrast relaxing and CNN methods. In that
study, the input dataset was artificially generated by CNN for the prediction of the target of miRNA
when this mechanism is poorly known. To avoid inaccurate prediction, they used the contrast relaxing
method to construct a balanced training dataset. The obtained results indicate that they achieved
higher values of SN of 88%, SP of 94%, and ACC of 90%.

In [25], the classification of miRNAs was proposed to differentiate between normal and tumor
tissues by using a multi-objective evolutionary-optimization technique. In that optimization strategy,
the automatic selection of the classifier, its parameters, and feature combination steps were performed.
This approach was divided into two steps. Firstly, they used a multi-objective algorithm with four
classifiers such as random tree (RT), random forest (RF), sequential minimal optimization (SMO), and
logistic regression. Afterwards, the multi-objective algorithm was automatically determined using the
classifier, its parameters, and feature sets. In that study, the authors implemented a multi-objective
evolutionary method to examine the search capability of non-dominated sorting genetic algorithm
(NSGA)-II. The obtained results were also compared with several state-of-the-art methods on mRNA
and miRNA datasets. An automatic miRNAs target prediction (deepTarget) algorithm was developed
in [26] by using the deep NN based approach to reduce manual selection of features. They showed that
many computational tools have been developed to solve this problem, but the false positive rate was
high. In that study, the performance of the deepTarget algorithm delivered more than a 25% increase
in the F-measure compared to that of the state-of-the-art target prediction algorithms.

3. Online Tools and Data Sources

The online tools and data sources are provided for researchers to develop new studies based on
new CI approaches. We did not only show the sources for finding ncRNA and microRNA genes, but
also other classes of non-coding RNAs—as displayed in Table 3. Whereas in Table 1, the online available
tools were described. As mentioned before, these databases are useful to test various annotation and
gene-finding techniques. The Rfam database [21] was one of the first. It integrated various new
and existing curated structural alignments into a common structure-annotated format. It also uses
covariance modeling and automated sequence annotation software.

The NONCODE database [19] brought together most publicly available information about
experimentally confirmed or computationally predicted ncRNAs with the exception of transfer RNAs
(tRNAs) and ribosomal RNAs (rRNAs). It also introduced a classification system termed process
function class (PfClass) based on the cellular processes and functions associated with the ncRNA.
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Table 3. State-of-the-art CI online databases for the development of CI techniques.

Cited Databases Web-Links

[9] RNALOSS http://clavius.bc.edu/~clotelab/RNALOSS

[18] RNAdb http://research.imb.uq.edu.au/RNAdb

[19] NONCODE http://noncode.bioinfo.org.cn

[21] Rfam http://www.sanger.ac.uk/science/tools/rfam

[49] RSEARCH
http://www.yeastgenome.org
ftp://ftp.tigr.org/pub/data/a_thaliana/ath1/SEQUENCES

[50] EICO http://fantom2.gsc.riken.jp/EICODB/

The RNAdb [18] was launched as a sequence repository for experimentally supported regulatory
mammalian ncRNAs (miRNAs, small nucleolar RNAs (snoRNAs), but not tRNAs, rRNAs, and
spliceosomal RNAs). Apart from bioinformatics analyses, it also was meant to facilitate microarray
chip characterization experiments. This database also includes a large number of commonly
accepted ncRNAs from reputable complementary DNA (cDNA) libraries. The authors described the
computational methods to identify genes and presented a brief technical reference for future studies.

One of the first programs for searching a sequence database for homologs of a single RNA
molecule on the basis of secondary structure was RSEARCH [49]. It relies on a local alignment
algorithm. The latter are a series of base pair and single nucleotide substitution matrices for RNA
sequences. The web-based tool RNALOSS [9] was developed to provide information about the
distribution of locally optimal secondary structures.

FastR [51] was applied to the discovery of riboswitches, a class of RNA domains, which regulate
metabolite synthesis. Given an RNA sequence with known secondary structure, FastR efficiently
computes all structural homologs in a genomic database. The tool relies heavily on filter design and
optimization as well as the actual filtering algorithms and computation.

4. Discussion

The interpretation and annotation of ncRNA gene finding is an emerging trend. There are
numerous challenges to annotate and interpret ncRNAs because there are many classes that are still
being predicted by medical and bioinformatics experts [52,53]. In recent years, the CI approaches
have attracted many researchers to perform those tasks. However, those CI approaches were lacking
a definitive classification framework that utilized the past studies. Some reviews have summarized CI
approaches but focused on the particular viewpoint on methodologies. In this article, the CI techniques
for interpretation and annotation of ncRNA gene finding are summarized in detail differently from the
existing body of research, and we attempt to deliver a short but concise technical discussion.

Biological sequences (such as DNA, RNA, and protein sequences) naturally fit the recurrent
NN that are capable of temporal modeling. Nonetheless, prior work on applying deep learning to
bioinformatics utilized only convolutional and fully connected NNs. The biggest novelty of our work
lies in its use of recurrent NNs to model RNA sequences and to further learn their sequence-to-sequence
interactions, without laborious feature engineering (e.g., more than 151 features of miRNA-target
pairs have been proposed in the literature). As shown in their experimental results, even without any
of the known features, deepTarget delivered substantial performance boosts (over 25% increase in
F-measure) over existing miRNA target detectors, demonstrating the effectiveness of recent advances
in end-to-end learning methodologies.

The training deepTarget [26] was focused on improving its capability to reject false positives
(i.e., bogus miRNA-mRNApairs) as a target predictor. The decision was based on the study that
more priority should be given to sensitivity in the search for potential targets of specific miRNAs,
whereas specificity should be emphasized in the examination of miRNAs that regulate specific genes.

http://clavius.bc.edu/~clotelab/RNALOSS
http://research.imb.uq.edu.au/RNAdb
http://noncode.bioinfo.org.cn
http://www.sanger.ac.uk/science/tools/rfam
http://www.yeastgenome.org
ftp://ftp.tigr.org/pub/data/a_thaliana/ath1/SEQUENCES
http://fantom2.gsc.riken.jp/EICODB/


Genes 2016, 7, 113 9 of 14

Depending on the specific needs, we could alternatively train deepTarget to put more priority on
specificity. For instance, this could be done by altering the composition of a mock negative dataset to
have additional mispairings between miRNA and mRNA sequences except the seed sequence.

Notably, deepTarget [26] does not depend on any sequence alignment operation, which has
been used in many bioinformatics pipelines as a holy grail to reveal similarity/interactions between
sequences. Although effective in general, sequence alignment is susceptible to changes in parameters
(e.g., gap/mismatch penalty and match premium) and often fails to reveal the true interactions between
sequences, as is often observed in most of the alignment-based miRNA target detectors. By processing
miRNA and RNA sequences with recurrent neural networks (RNN)-based auto encoders without
alignment, deepTarget successfully discovered the inherent sequence representations, which are
effectively used in the next step of deepTarget for interaction learning. Although the performance of
deepTarget is incomparably higher than that of the existing tools we compared it to, Fritah et al. [54]
there remains room for further improvements. An additional breakthrough may be possible by
enhancing the current step to learn sequence-to-sequence interactions. The current version of deepTarget
relies on concatenating the RNA representations from two auto-encoders and learning interactions
therein using a unidirectional two-layer RNN architecture. Although this architecture was effective to
some extent, as shown in their experiments [26], adopting even more sophisticated approaches may
further boost the capability of deepTarget to detect subtle interactions that currently go undetected.

As we are living in the era of big data, transforming biomedical big data [1] into valuable
knowledge has been one of the most important problems in bioinformatics. At the same time, deep
learning has advanced rapidly since early 2000s and has recently shown state-of-the-art performance
in various fields. This article reviews some research of deep learning [55] in bioinformatics. To provide
a big picture the authors in the past studies utilized deep learning architectures (i.e., deep neural
network, convolutional neural network, recurrent neural network, modified neural network) and
presented brief descriptions of each work. Additionally, we introduce a few issues of deep learning in
bioinformatics such as problems of class imbalance data and suggest future research directions [28]
such as multimodal deep learning. The authors believe that the study could provide valuable insights
and be a starting point for researchers to apply deep learning in their bioinformatics studies.

Certainly, bioinformatics is no exception in such trends. Various forms of biomedical data
including omics data, image, and signal have been significantly accumulated, and its great potential in
biological and health-care research has caught the interest of industry as well as academia. For instance,
IBM provided Watson for Oncology, a platform analyzing patients’ medical information and assisting
clinicians with treatment options [2,3]. In addition, Google DeepMind, achieving a great success with
AlphaGo in the game of GO, recently launched DeepMind Health to develop effective healthcare
technologies [4,5].

To extract knowledge from huge data in bioinformatics, machine learning has been one of the most
widely used methodologies. Machine learning algorithms use training data to uncover underlying
patterns, build a model, and then make predictions on the new data based on the model. Some of
the well-known algorithms—SVM, HMM, BNs, Gaussian networks—have been applied in genomics,
proteomics, systems biology, and many other domains [7,55]. Conventional machine learning
algorithms have limitations in processing the raw form of data, so researchers put a tremendous
effort into transforming the raw form into suitable high abstraction level features with considerable
domain expertise [56]. On the other hand, deep learning, a new type of machine learning algorithm,
has emerged recently on the basis of big data, the power of parallel and distributed computing, and
sophisticated algorithms. Deep learning algorithms have overcome the former limitations and are
making major advances in diverse fields such as image recognition, speech recognition, and natural
language processing.

Certainly, bioinformatics is no exception in deep learning applications. Several studies have been
conducted [57] to apply deep learning in bioinformatics as in Figure 1. We categorized the research
by the form of input data into three domains: omics, biomedical imaging, and biomedical signal
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processing. Detailed lists of bioinformatics research topics where deep learning is applied and input
data examples of each domain are shown in Table 1.

Figure 2 shows the classification of CI techniques percentage used since 2001. This pie chart
clearly shows that most of the CI techniques have been used for this problem. It clearly shows that
most of the methods are based upon ANN such as CNN and DNN that is approximately 35% of all
these CI techniques. It clearly shows that ANN based approaches are the most promising as compared
to other CI techniques. Table 1 shows that the NN based approach achieved approximately 99%
accuracy to predict new miRNA known as pre-miRNAs [28] which is the maximum so far. Mostly
NN based approaches have been proposed recently. Figure 2 also clearly shows that SVM has also
been used for this problem around 25% of the time. But Table 1 shows that the maximum accuracy
achieved by the SVM based approach is 95%, which is less than that of the NN based approaches.
SVM based approaches were proposed before 2010 as shown in Table 1. Table 1 also shows that some
other classifiers such as RT, RF, SMO, HMM, GA, and logistic regression have also been used, but
these approaches do not show promising results as compared to NN based approaches. Thus, it can
be concluded that NN based approaches are the most suitable for the classification and prediction
of miRNA.
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In fact, the differentiation between normal and cancer tissues are dependent on the analysis of the
lncRNA transcription patterns. It was also noticed that the lncRNA expression in normal tissues is
highly abnormal for lncRNA expression in human cancers. Therefore, they utilized 272 human serial
analyses of gene expression (SAGE) libraries to detect transcription patterns of lncRNA [58].

State-of-the-art advances have been presented in three levels of lncRNAs (the primary sequence,
the secondary structure, and the function annotation) along with CI methods [59]. Computational
approaches for the analysis of ncRNA through deep sequencing techniques were discussed in [60].
One review of lncRNAs [23] also argues that the quality of annotations and the function of these
genes are important. In that research study, the authors proposed a novel cancer-related finding of the
lncRNAs gene and discussed the limitations.

5. Conclusions

This paper comprehensively reviews the state-of-the-art CI techniques starting from 2001 to up till
now in terms of automatic functional annotation and finding ncRNAs human genes. It concluded that
the past CI approaches lacked a definitive classification framework and focused on a specific usage
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of machine learning algorithms without doing methodological contribution. In order to functionally
annotate ncRNAs and find mRNAs, the researchers are widely using machine learning algorithms
such SVM, NN, BNs, GAs, and HMMs. In practice, these conventional machine learning algorithms
require domain-expert knowledge for pre-processing of raw input data and the selection of features
and to fine-tune some parameters for increasing the accuracy. A lot of effort is required for pre- and
post-processing to achieve the up-to-the-mark optimization results. Alternatively, a new machine
learning concept known as deep neural network (DNN) [26] has emerged recently to control the
problem of pre- and post-processing steps and domain-expert knowledge to select the features from
huge raw data which is especially required in the case of human genome sequencing. Most recently,
there were some studies [26,27] that focused on deep learning algorithms for the prediction of lncRNAs.
Definitely, the deep learning machine learning algorithms is a latest trend that did not require pre- and
post-processing classification steps to handle the big raw human genomics data. In brief, the up-coming
advances in the methodological formation of deep machine learning algorithms for ncRNAs can
provide excellent performance to further investigate functional annotation and to find mRNAs in
the future.
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