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The evolution of life-history traits in plants and animals has taken place in the midst of complex
microbial communities. Biology is undergoing a fundamental reshaping where the phenotypic
expression of the individuals’ traits need to be considered as the combined expression of the host
and its associated microbial genomes, defined as forming the “holobiont” (i.e., the host and its
microbiota) [1,2]. This new concept has wide ranging implications and has led to the realization
that multicellular organisms coevolve with their microbial symbionts [3]. Although host–microbe
interactions can be understood and explained through ecological processes, much less is known about
the significance of evolutionary and eco-evolutionary processes in shaping the holobionts.

Given the complex structure of the microbiome, understanding the specific roles, adaptability,
and functions provided by the microbiome to its host is emerging as an exciting new scientific
frontier [4]. The close contact between the microbiota and their host means that the microbiota can
shape a variety of effects ranging from physiological trade-offs to behavioral and cognitive traits [5,6].

In this special issue we present four papers that provide empirical examples and review recent
developments in molecular and statistical techniques to discuss theoretical concepts and empirical
evidence on the potential role of the microbiota in shaping holobiont evolution. Although the papers
in this issue all focus on animal systems, we stress that the importance of host–microbiome interactions
can be readily transferred to any other multicellular organism including plants [7].

An exciting area of host–microbiome research relates to the function played by microorganisms in
olfactory communication among their host organisms and its evolutionary implications. While this
remains a little studied topic, Maraci et al. [8] provides an exhaustive review of this emerging field with
specific focus on (i) key body regions serving as microbial hotspots for olfactory signaling, (ii) sources
of microbes, (iii) functional aspects in social communication, and (iv) evolutionary implications.
They advocate the use of birds as model systems due to the fact that the effects of the microbiome
are establishing the importance of olfactory communication in birds coupled with uropygial gland
secretions used to preen and protect feathers. Indeed, the uropygial gland and its interactions with the
feather microbiota distinguish birds from other vertebrates for which mainly the gut microbiota has
been considered. They also draw on results from the literature on other taxa including humans and
insects, illustrating the relevance of studying host–microbiome interactions to better understand the
use of smells in communication.

Indeed, the key role played by the uropygial gland microbiome in birds is further scrutinized
in the study by Rodriguez-Ruano et al. [9]. The authors apply multiple methods to survey the
microbiota profile in the uropygial gland among sexes, life stages, and reproductive status of the
hoopoe (Upupa epops). All these parameters turned out to be relevant in that a denser and more diverse
microbiota were observed in the darker secretions from the uropygial gland that are a characteristic
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of nesting individuals. Interestingly, this dark secretion was also characterized by having a higher
concentration of known antibiotic-producing bacteria such as Vagococcus and Parascardovia strains.
As such, the study exemplifies the multifunctional role of the uropygial gland microbiota by also
serving important anti-microbial functions. The authors hypothesize that this function is an adaptation
to the higher infection risk of nestling birds and thus adds to our understanding of the important role
of host-microbiome interactions in boosting anti-bacterial responses against pathogenic infections.
The hoopoe is a particularly relevant biological model since their preen glands are colonized by specific
bacterial strains, a pattern that seems to be present in a growing number of species.

Another outstanding question within this nascent field is to understand the relative contributions
of diet versus host genotypic background in shaping the gut microbiome composition. In this issue,
Ruiz-Rodriguez et al. [10] address this question in an elegant study design using the brood-parasitizing
great spotted cuckoo (Clamator glandarius) as a model system. They compare gut microbiome profiles
among adult cuckoos, nestling cuckoos, and the parasitized magpie (Pica pica) nestlings. Since vertical
transmission of microorganisms is considered to be very limited from parent to offspring cuckoos
because the eggs hatch in the parasitized species nest, any similarities between nestling cuckoos and
their parents can be explained by host genetic effects while similarities with the magpie nestlings can
be explained by the diet (environment). Their results show that both host genotypic background as
well as diet determines gut microbiomes in nestling cuckoos. While the importance of diet in shaping
the gut microbiota composition seems less surprising, it is interesting that they observe a clear effect of
host genetic background. Indeed, this tells us that evolutionary processes affect the gut microbiome
over generations.

In their review paper, Pasquaretta et al. [11] take as a given the feedback interactions between
diet and gut microbiota composition and propose to use models of nutritional ecology (nutritional
geometry) to explore the complex interactions between diet selection, microbiota composition, and host
fitness. Since both host and microbiota aim to reach their own intake target (theoretical amount and
ratio of different food types) it becomes relevant to examine the relative roles of the microbiota and
its host in achieving the holobiont intake target through different nutritional strategies mirroring the
action of the specific components. They propose that nutritional constraints imposed by the microbiota
on the host intake target can lead to deviations away from the host optimum. Pasquaretta et al.
also discuss how these individual level interactions can drive group level effects by shaping a wide
range of social behaviors and social structures in animal groups. The authors conclude that nutritional
geometry provides a powerful framework to examine the interplay between the host and its microbiota,
shaping the holobiont nutrition both theoretically and experimentally. The elegance of this approach is
that it can be applied to all animals.

Together, the studies and reviews presented in this issue reflect the broader scope of research fields
and applications where we foresee exciting and speedy developments of research on host–microbiome
coevolution. For example, individual case studies on host–microbiome interactions contribute to
a deeper understanding and development of the holobiont concept in evolutionary biology [12,13].
This will lead to wider impacts beyond the field of evolutionary biology including a more efficient use
of microbiome research in food production [14] and human disease studies [15]. It is our hope that this
special issue will help steer this development.
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