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Abstract: RNA modifications regulate the complex life of transcripts. An experimental approach
called LAIC-seq was developed to characterize modification levels on a transcriptome-wide scale.
In this method, the modified and unmodified molecules are separated using antibodies specific for a
given RNA modification (e.g., m®A). In essence, the procedure of biochemical separation yields three
fractions: Input, eluate, and supernatent, which are subjected to RNA-seq. In this work, we present a
bioinformatics workflow, which starts from RNA-seq data to infer gene-specific modification levels by
a statistical model on a transcriptome-wide scale. Our workflow centers around the pulseR package,
which was originally developed for the analysis of metabolic labeling experiments. We demonstrate
how to analyze data without external normalization (i.e., in the absence of spike-ins), given high
efficiency of separation, and how, alternatively, scaling factors can be derived from unmodified
spike-ins. Importantly, our workflow provides an estimate of uncertainty of modification levels in
terms of confidence intervals for model parameters, such as gene expression and RNA modification
levels. We also compare alternative model parametrizations, log-odds, or the proportion of the
modified molecules and discuss the pros and cons of each representation. In summary, our workflow
is a versatile approach to RNA modification level estimation, which is open to any read-count-based
experimental approach.
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1. Introduction

Until recently, mRNA modifications were underrepresented in the scientific literature. Specifically,
internal modifications in mRNA and their roles in gene expression control were not considered in detail.
The development of new sequencing techniques and discoveries from genetic studies have renewed the
interest in understanding the effects of internal mRNA modifications [1]. Over 150 unique chemical
modifications of RNA are known to date. At the time of writing, the following mRNA modifications
have been studied in greater detail in eukaryotes: Inosine, mPA, m°C, m!A, and pseudouridine.
In particular, m®A was the first reversible RNA modification found in eukaryotes. It can be written
by several methyltransferases and erased by two known demethylases (FTO and ALKBHS5) [2].
Multiple reader proteins have been identified which, together with writers and erasers, indirectly
affect RNA metabolism, including maturation, translation, and decay of mRNAs [3]. The advancement
of the field stalled until the arrival of transcriptome-wide mapping techniques, such as methylated
RNA immunoprecipitation, followed by deep sequencing (MeRIP-seq).

In 2012, two groups independently developed MeRIP-seq methods to assess the in vivo
methylation state of m®A sites, which allowed the genome-wide mapping of m®A modifications [4,5].
These methods detected over 12,000 m®A peaks in more than 7000 genes in human and mouse cells.
These studies also showed that the methylation status of some m°A sites changes in response to stress.
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Global abundance level estimates in mRNA ranged from an mlA/A ratio of ~0.02% [6,7] to an mlA/A
ratio of ~0.4% [8], but these number certainly depend on the cellular context.

In this manuscript, we focus on the MeRIP-seq procedure, which allows to separate modified
molecules from the pool of total RNA, provided that suitable antibodies are available. A variant thereof
is the recently developed m®A-LAIC-seq approach [9], which addresses the question of quantifying
transcript m®A levels of particular genes or the relationship of m®A modification(s) to alternative
RNA isoforms. To deconvolute the m®A epitranscriptome, mRNAs are not fragmented prior to
RNA immunoprecipitation (IP), and full-length transcripts are sequenced in both m®A-positive and
m®A-negative fractions post-IP.

2. Results

The published m6A—LAIC-seq dataset (NCBI accession SRP055176) consists of three fractions:
The original pool, or input RNA, mPA modified RNA, or eluate, and m®A nonmodified RNA, referred
to as supernatent. PolyA+ RNA was collected from two independent cell lines (GM12878 and H1-ESC)
in 2 replicates and separated by antibody (Synaptic Systems, Gottingen, Germany, cat# 202 003)
into the aforementioned fractions. RNA-seq libraries were prepared as described in Reference [9]
and sequenced in paired-end format (2 x 50 nt) on an Illumina Hiseq 2000 (San Diego, CA, United
States). To estimate modification abundance for a given RNA molecule, the different fractions (input,
supernatent, and eluate) need to be normalized accordingly. It is not sufficient to measure RNA
abundances in the fractions alone, as one needs to know how fractions relate to each other by assessing
the efficiency of the IP. Moreover, fraction cross-contamination may affect the correctness of estimations,
resulting in over- or underestimation of modification rates (specificity). One way to tackle this problem
is to use synthetic RNA spike-ins. Adding them right before the IP allows to recover additional
normalization factors to account for differences in the efficiency of separation (Figure 1A). One has to
estimate expression and modification levels for every gene, while normalization factors are calculated
from the spike-ins’ read counts.
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Figure 1. Experimental design and modeling of a quantitative MeRIP experiment. Methylated RNA
species are shown in red and unmethylated in blue. y is the RNA abundance, « is the proportion of
methylated RNA, and 1 — « of unmethylated RNA. Normalization constants are denoted x7 to x4.

Molinie et al. [9] used spike-in controls before anti-m®A IP and showed 100% efficiency in
pulling down m®A-positive transcripts. In this case, for simplicity, we can assume that fraction
cross-contamination is negligible, and we use the simpler model, where methylation level for a given
gene is proportional to the mean expression (Figure 1B).

Under this scenario, if no external spike-ins are available, the mean read counts in the input RNA
sample are taken as a reference and the relation between the fractions is inferred from the data, i.e.,
the model is identifiable as x; and x; are shared across all genes. Ideally, nonmodified spike-in sets
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can be used to determine the normalization constants x; and x;, provided they are added in equal
amounts after the IP, as in the original LAIC-seq experiment (ERCC RNA spike-In mix was added to
each fraction in equal amount right after the purification, allowing to recover the relation between the
modified and nonmodified RNA fractions). We thus consider two scenarios, without and with external
spike-ins, where normalization constants are either inferred from the data or estimated using the
spike-ins’ read counts. In the first case, sequencing of the input RNA fraction is required, while only
the sequencing of eluate and supernatent fractions is necessary for the latter.

In the following, we guide the reader through a bioinformatics workflow to estimate m®A levels
from a standard LAIC-seq experiment, assuming high efficiency of separation (Figure 1B), using the
pulseR package [10].

2.1. Read Processing and Mapping

All sequencing data were obtained from the original distribution through the short read archive
(accession SRP055176) at the National Center for Biotechnology Information (NCBI). We removed
adapter sequences and quality clipped reads using FLEXBAR 3.0.3 [11]. Ribosomal contaminant
sequences (nuclear encoded rRNA) were subtracted from the pool of reads by mapping against the
45S rRNA gene cluster with Bowtie2 v2.3.0[12]. All remaining reads were aligned against the
human reference genome (EnsEMBL 90) using STAR 2.5.3 [13]. Gene and transcript count tables were
estimated with Stringtie 1.3.3b and the complementary prepDE script [14]. For all analyses, we
required mean read count across input samples > 100 or, when using spike-ins, mean read count
across all eluate and supernatent samples > 100.

2.2. m® A Estimates Using the Ratio of RNA Abundances

We refer to this approach as the LAIC-seq method. m°A levels for each gene were quantified as in
Molinie et al. using the fragment counts of the ERCC RNAs [9]. A log-log linear regression was fitted
to estimate the intercept R for each of the four corresponding sample sets (two per cell type), such that
mO°A levels were calculated as follows:

E
E+S-2R’
using the eluate (E) and supernatent (S) counts (Supplementary Figure S1). The model was fitted
only using ERCC RNAs with at least 100 counts. We empabhize that this approach does not take
into account any particular aspects of the underlying sequencing data. With the pulseR package, by

mlA =

)

contrast, abundance levels are estimated assuming a negative-binomial distribution in maximum
likelihood of all parameters, and accounting for differences in sequencing depth between samples,
further allowing to obtain modification levels in the absence of spike-ins.

2.3. m°A Estimates Using pulseR

The pulseR package was developed specifically for metabolic labeling experiments, but can easily
be adapted to epitranscriptomics workflow, where RNA modification levels are estimated from read
count data. Intuitively, the RNA methylation level is represented as a proportion « of all molecules
in the input sample. In this case, & € [0, 1]. Alternatively, this can be represented as the logit of the
methylation level, which is the logarithm of the odds, or v = logit(«) = log 12, which ranges from
(7 o, +°°) :

In pulseR, samples are normalized for sequencing depth, and normalization between fractions is
performed during the fitting procedure or else directly estimated from spike-in read counts. To simplify
the notation, in the following sections, we do not include the normalization constants x; and x, in the
equations. We used the parametrization based on the logit transformation. For the fitting procedure,
we kept gene-specific parameters at the same (logarithmic) scale. An introductory workflow using the
pulseR package with a subset of the supplementary data from the original LAIC-seq experiment is
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available at https:/ /dieterich-lab.github.io/pulseR /articles /epitranscriptomics.html. We also provide
the complete workflow in the supplementary files, including data and analysis scripts, as well as a full
comparison between pulseR and the published estimates from Molinie et al. [9].

In the next section, we consider the case of m®A level analysis in the absence of spike-ins.

2.3.1. Estimates Without Spike-Ins

For the analysis, we write the model in Figure 1B into a set of logit-transformed formulas,
representing read counts for RNA input, modified and nonmodified RNA.

[input] = et 2
[eluate] = eV /(1 +€7) @)
[supernatent] = e /(1 +¢7) 4)

Additional information regarding counts, sample groupings, and how to specify boundaries on
parameters and usage can be found in the pulseR documentation (https:/ /dieterich-lab.github.io/
pulseR/). In summary, the model is fitted in several steps as follows:

e  Fitting of gene specific parameters: Expression level u and logit(a), referred to as -y (or log-odds
of methylation);

e fitting of normalisation factors (for a spike-ins free design): These are shared between the samples
from the same fraction;

e fitting of global parameters: Size parameter for the negative binomial distribution (overdispersion
in read counts).

To make model fitting most efficient, it is helpful to initialize the parameters close to their expected
values. For example, the initial parameter value for y should be set close to the logarithm of genes
read counts in the total fraction.

We performed this procedure for the whole data set, ignoring the ERCC spike-in information.
Results were compared to those obtained with the LAIC-seq method (Figure 2), presented in terms
of methylation level and their logit transformation. In the absence of spike-ins, pulseR was able to
recover the fraction scaling factors such that the model fit yielded values that were significantly close
to those obtained with Equation (1), determined using ERCC counts only. However, we observed a
global bias between the two methods, which was particularly visible for replicate 2 of both cell lines
(Figure 3 and Supplementary Figures 52-S5).

2.3.2. Confidence Intervals

An additional feature of our workflow, which is not readily available with the LAIC-seq
method, is the computation of confidence intervals for the estimated model parameters (Figure 3).
Confidence intervals support the user in assessing the uncertainty and quality of point estimates.
For example, point estimates of RNA modification levels could very well differ across cell types
(or experimental conditions in general), but their respective confidence intervals (or probable range
of values) overlap. In that case, the observed difference is not statistically significant. This is
especially true for lowly covered and highly variable data sets that lead to point estimators with
wide confidence intervals.

In the pulseR package, the function ciGene allows to estimate confidence intervals for the
gene-specific parameters, such as expression and modification levels. In this example, the uncertainty
of normalization factors was neglected and the profile of the likelihood (see https:/ /dieterich-lab.
github.io/pulseR/articles/confidence. html) was computed, assuming that the normalization factors
and size parameter were fixed.
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Figure 2. Comparison of m®A methylation levels between pulseR estimates and the LAIC-seq method
for both cell lines without spike-ins, represented as a percentage (left) or using log-odds (right). Line of
equality in red, linear fit in yellow with coefficient of determination.
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Figure 3. Confidence intervals for GM12878 and H1-ESC cell lines, without spike-ins. Genes are sorted
by their log-odds of methylation v (black line). Estimates obtained with the LAIC-seq method are
shown as red dots with a running median. Upper and lower 95% confidence interval boundaries are
show in blue (above/below mean value in black).
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2.3.3. Estimates with Spike-Ins

If external spike-ins are available, we can use this information to determine the normalization
factors, speeding up the fitting procedure. In summary, the input RNA is neglected, and spike-ins
are used to directly relate eluate and supernatent fractions. This is possible because equal amounts
of ERCC RNA spike-In mix were added to both fractions after IP. These counts are thus added to
determine the scaling factors (without fitting). The formulas then reduce to:

leluate] = eV /(1 + "), ®)
[supernatent] = el /(1 +e7). (6)

To use this information in pulseR, it suffices to pass the list of spike-ins as an additional argument,
after adding the spike-ins to the count table with other genes. One of the fractions (e.g., supernatent)
must be assigned as a reference. As seen in Figure 4, pulseR estimates correlated very well with the
LAIC-seq method. When considering each sample individually, the fit was perfect and we observed no
global bias (Supplementary Figures S6-59). Similar to the case without spike-ins, confidence intervals
for v were also calculated (available in the supplement).
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Figure 4. Comparison of m®A methylation levels between pulseR estimates and the LAIC-seq method
for both cell lines using ERCC spike-in data, represented as a percentage (left) or using log-odds (right).
Line of equality in red, linear fit in yellow with coefficient of determination.
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3. Discussion

We have presented a comprehensive workflow to assess the modification status of RNA
molecules on a transcriptome-wide scale. We have demonstrated our approach based on a published
LAIC-seq experiment, which involves an antibody-driven biochemical separation step on intact
(i.e., not fragmented) RNA. Each input sample was separated into an eluate (modified) and supernatent
(nonmodified) fraction. Target molecules of interest were turned into a table of read counts by an RNA
sequencing experiment, which we had reanalyzed from raw data. Contrary to previous approaches,
such as in Molinie et al. [9], we set up a statistical model with the R package pulseR [10], which respects
the underlying nature of the data in a principled way [15].

We used a simple model to estimate the RNA methylation level, using a logit-transform in the
absence of cross-contamination in two alternative scenarios: (a) Without spike-ins and (b) with ERCC
spike-ins, to normalize read counts across fractions. In both scenarios, we showed that our estimates
correlate very well with those obtained with the LAIC-seq method, and also with the data published
in Molinie et al. [9], when considering the common set of genes for which methylation levels were
available. When no spike-ins were used, a global bias was observed in some cases, due to the estimation
of the scaling factors, including normalization constants for sequencing depth in pulseR. The LAIC-seq
method yielded higher methylation levels when compared to those obtained with pulseR. A unique
advantage of our workflow is the computation of confidence intervals for model parameters, such as
RNA modification levels.

Our workflow is applicable to any current and future technique based on read counts from both
fragmented and nonfragmented RNA, which can be separated into modified and unmodified fractions
by biochemical means, chemical, or metabolic RNA labeling.

Supplementary Materials: The following are available at http:/ /www.mdpi.com/2073-4425/9/12/619/s1.
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