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Abstract: Artificial intelligence research received more and more attention nowadays. Neural Evolution
(NE) is one very important branch of AI, which waves the power of evolutionary algorithms to generate
Artificial Neural Networks (ANNs). How to use the evolutionary advantages of network topology
and weights to solve the application of Artificial Neural Networks is the main problem in the field of
NE. In this paper, a novel DNA encoding method based on the triple codon is proposed. Additionally,
a NE algorithm Triplet Codon Encoding Neural Network Evolving Algorithm (TCENNE) based on this
encoding method is presented to verify the rationality and validity of the coding design. The results
show that TCENNE is very effective and more robust than NE algorithms, due to the coding design.
Also, it is shown that it can realize the co-evolution of network topology and weights and outperform
other neural evolution systems in challenging reinforcement learning tasks.
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1. Introduction

The birth of the computer made people’s lives more convenient. Research in the computer field
has also promoted the production of more advanced technology, which will improve people’s future
lives to a greater extent. At the end of the 20th century, Evolutionary Computing [1] and Artificial
Neural Networks, as two branches of Artificial Intelligence (AI), merged and produced a new field,
Neuroevolution (NE).

In nature, biological neural networks have evolved over a long period of time. After countless
evolution and elimination processes, the biological neural network has produced the best individual
characteristics to adapt to the present natural environment, and with the continuous changes in the
natural environment, this evolutionary process will continue. As a subfield of AI, NE imitates the
process of natural evolution using evolutionary algorithms to generate Artificial Neural Networks
(ANNs). It is widely used in areas such as Artificial Life, General Game Playing and Evolutionary
Robotics [2].

Basically, the learning algorithms of Artificial Neural Networks can be divided into supervised
learning algorithms, semi-supervised learning algorithms, and unsupervised learning algorithms [3–5].
Among them, supervised learning is the most important and widely used machine learning algorithm
in Artificial Intelligence. It uses the known data samples to train the algorithm model so as to achieve
the required performance [6,7], and it has led to remarkable achievements in many fields.

However, supervised learning algorithms have specific requirements for inputs and outputs,
and it often performs poorly when faced with the problems of the scarcity of known samples or the
difficulty in collecting samples. In addition, the design of the model often faces the problems of
parameter optimization and feature processing. Also, supervised learning algorithms often need to be
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trained many times (possibly millions), and need to consume huge computing resources, which is not
an efficient solution. In contrast, NE only needs to measure the performance of the neural network on
a task, greatly simplifying the problem and providing an efficient solution to the problem. NE can
effectively combine the adaptive mechanism of evolutionary computing and the learning mechanism
of the neural network to overcome many shortcomings of the traditional Artificial Intelligence learning
model. Therefore, it is a promising research model.

At present, there are many neural evolutionary algorithms, which are mainly divided into two
kinds [8]:

1. The traditional NE algorithm, which only evolves the connection weights of fixed network
topology;

2. The Topology and Weight Evolving Artificial Neural Network (TWEANN). This algorithm can
evolve the topology structure and connection weight of the network at the same time.

The development of the mainstream Deep Learning Neural Network (DNN) is based on the
Artificial Neural Network (ANN) which was born decades ago. To some extent, it is similar to the
brain. One of the key structures of the brain is the neuron, a small cell that sends signals to other
neurons by connecting. When many neurons are connected to each other in networks, they become
what we call neural networks. The research of ANN simulates the behavior of biological neurons and
their signal propagation by programming [9].

In the study of ANN, neurons are often connected according to artificial rules, and, on this basis,
the optimal weights are generated through algorithm training. Yet, brain behavior is determined not
only by the weight of connections, but also by the overall structure of the brain itself. The existing
learning algorithms of ANN can help to solve the weight problem, but where does the structure come
from? From the point of view of natural evolution, the structure of a neural network evolves through a
long history, that is, the evolution of a neural network structure is of great significance.

The study of NE has been developed for decades and has been greatly promoted. At present,
the research focus of NE is the design of network encoding. The encoding methods of the neural
network can be divided into the direct encoding method and the indirect encoding method.

The two encoding methods have their own pros and cons. Direct encoding does not need to
consider the close relationship between gene composition and individual performance, but only needs
to prove that its coding design can promote the effective evolution of the network. However, indirect
encoding requires the design of a set of coding and decoding rules for the transformation of gene
sequences and individual phenotypes, so it is necessary to understand more about the genetic and
evolutionary mechanisms of biology.

The gene encoding mode of organisms is extremely efficient, and a very short gene sequence can
control the complex phenotypes of individuals. Many of the current studies of indirect encoding are
at the exploratory stage, but with the continuous development of the research on the mechanisms of
biological evolution, research on the NE algorithm based on indirect encoding still has great potential.

In this paper, we propose an indirect encoding method that is suitable for NE, which encodes
both the network structure and weights of network connections. Based on the proposed encoding
and decoding method, we can transform gene sequences to network representation and can efficiently
evolve the effective network of the target problem with the NE algorithm. This provides a reference
value for the research of NE and the encoding of ANN for future research.

The following is organized as follows: A literature review is given in Section 2. Section 3
discusses some basic concepts and our design motive. The encoding method is presented in Section 4.
In Sections 5 and 6, two different encoding strategies are discussed in detail. The Triplet Codon
Encoding Neural Network Evolving Algorithm (TCENNE) is proposed in Section 7. Experiments are
shown in Section 8. Finally, conclusions are given in Section 9.
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2. Literature Review

The encoding methods of the neural network can be divided into the direct encoding method and
the indirect encoding method.

2.1. Direct Neural Network Encoding Methods

Direct encoding is an encoding strategy that directly encodes the parameters of neural networks,
such as weights and connection information, into the genome. There are many different direct
encoding methods:

2.1.1. Connection-Based Direct Encoding Strategy

Most direct encoding strategies of neural networks are connection-based, that is, they encode and
optimize connections on a predetermined network structure. Geoffrey et al. proposed a NE system
called Innervator [10], in which each connection corresponds to one bit encoding. Each individual of
each generation is trained several times to evaluate fitness. Experiments showed that the design has
the ability to solve the problem and can converge quickly. Whitley et al. [11] presented the GENITOR
encoding method, which encodes the weights of a given hierarchical network topology using bit
strings, as shown in Figure 1 [11]. The Index Bit is used to indicate whether a connection exists or not.
Weight Encoding Bits encode weights in binary form. Montana et al. proposed a encoding strategy
similar to GENITOR [12,13], which encodes weights in real numbers, and some mutation operators
suitable for the encoding are also defined. This encoding strategy can also be successfully applied in
classification tasks. Maniezzo proposed an interesting improvement to Genitor encoding [14,15], where
the evolution of granularity is introduced into the encoding method. He believes that the weights
in binary encoding form make a bit string that is too long to evolve effectively in genetic algorithms.
He encodes the bits of each weight in the parameter, which enables the algorithm to find the topology
effectively with a small number of bits.

 -1565

  40
 -1

-102

1 01000001 1 10001111 1 11100110 1 10000001 0 10110110 1 00101000

Weight Encoding Bits

Index Bit

Figure 2.2: Binary Weight Encoding according to GENITOR
Figure 1. GENITOR encoding.

2.1.2. Node-Based Direct Encoding Strategy

The biggest drawback of the connection-based encoding strategy is that a basic network structure
must be designed in advance, so the number of neurons is difficult to control. The node-based encoding
strategy can solve this problem. In node-based encoding design, the parameter string is no longer
composed of weights, but contains information about the whole node. Schiffmann et al. proposed a
simple node-based encoding strategy [16], where the parameter string is a list of nodes that contain
connection information. The crossover operator of their method is shown in Figure 2, which can only
be set between nodes, and does not divide the existing connections. They applied their method to
the application of thyroid data classification. White proposed a node-based encoding method called
the GANNET hierarchical network [17], whose parameter string is a list of neurons with connections
and location information. However, the structure of the neural network is limited in some aspects.
The number of input connections per node is limited to four, and these are only between adjacent



Genes 2018, 9, 626 4 of 30

layers. Koza et al. proposed a method to apply genetic programming to the neural network through
node-based encoding [18], where nodes are not encoded in parameter strings, but in parameter trees,
as shown in Figure 3, where P represents a node, while W is the weight value. Neurons can have any
number of subtrees with weights. A weight value has two subtrees: one contains the weight value and
the other is the source of the connection, which must be a processing unit or an input node.

Figure 2. Schiffmann crossover operator.
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Figure 2.4: Tree Encoding according to [Koza, 1991b]Figure 3. Koza encoding example.

2.1.3. Layer-Based Direct Encoding Strategy

Harp proposed a layer-based encoding scheme [19] in which the genome consists of a certain
number of regions, each of which encodes a layer of the network. This encoding method can be
successfully applied to the problem of XOR and 4x8 digit number recognition. Mandischer proposed
an encoding method [20], whose basic structure is a list of network parameters and layers (Figure 4)
but the weights are not encoded. Information about the size of each layer of the network and the
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input/output connections is stored. The system designed based on this encoding method can be used
for quite complex tasks, such as the detection of edges/corners in 9 × 9 pixel images, the recognition
of letters in 8 × 11 pixel images, and the Mexican hat function estimation.

Network
Parameter

Layer 1 Layer n

Learning Rate Momentum

Output Connections Input Connections

Radius

Density

Destination

Radius

Density

Layer Size

Destination

Radius

Density

Figure 2.5: Encoding Scheme according to [Mandischer, 1993]

Output

Figure 4. Mandischer encoding example.

2.1.4. Route-Based Direct Encoding Strategy

Jacob proposed a method encoding strategy based on routes in the network [21]. A route is
defined as a list of neurons starting with input neurons and ending with output neurons, with no
restrictions on the order of nodes in the route (Figure 5). Therefore, this encoding strategy does not
necessarily generate feed-forward networks. The network generated by this encoding method can be
applied to control tasks, such as ball balance.

p1 = i1 - 1 - 2 - 2 - 3 - o1
p2 = i1 - 3 - o1 - 1 - o1
p3 = i2 - 2 - 1 - o2

I1

I2 1

2

3 O1

O2

Input Cortex OutputPaths

Figure 2.6: Pathway Encoding according to [Jacob, 1993]
Figure 5. Route-based encoding example.

2.2. Neural Network Indirect Encoding Methods

The direct encoding methods usually encode parameters such as the connections or weights in
the genome, while in the indirect encoding, the encoding is not the parameter itself, but the production
rule, which defines how these parameters are generated. This is a common biological status. Boers
pointed out that the tissues of biological organisms exhibit great modularity, for example, the skin of the
whole body is made up of the same types of skin cells. Therefore, by using certain rules, the encoding
strategy of replicating units with the same function is more efficient in generating large networks.

Kitano proposed the first indirect encoding scheme, called syntactic encoding [22], which has good
scalability, although it is only used for simple encoding and decoding rules. Frederic Gruau proposed
a cellular encoding method [23], as shown in Figure 6, which is represented by a tree structure. Aristid
Lindemayer proposed a biological model called the Lindenmayer system [24], which attempts to
mimic the cellular development of organisms, where cells exchange information only with neighbors.
Strings representing the network are generated from a set of generation rules and the initial string.
This encoding method can solve the problem of XOR and the recognition of simple letters.
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Figure 2.7: Cellular Encoding according to [Gruau, 1994]
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Figure 6. Cellular encoding example.

3. Basic Concepts and Motive

3.1. Basic Concept of the Triplet Codon

In biology, DNA strands are the sequences of nucleotide bases, each of which consists of several
nucleotide bases. There are four different forms of nucleotide base: adenine (A), guanine (G), cytosine
(C) and thymidine (T).

During cell reproduction, single strands of DNA are first translated into RNA sequences. RNA,
like DNA, is a chain molecule formed by the condensation of ribonucleotides through phosphate
bonds. In the process of DNA being translated into RNA, uracil (U) replaces thymidine (T) in DNA
and becomes the characteristic base of RNA. RNA is then translated into amino acid sequences to form
proteins [25], as shown in Figure 7.

Figure 7. The translation process of DNA.

DNA encodes the rules for the construction and growth of organs and tissues in organisms,
which is an indirect encoding method. As can be seen from Figure 7, in a DNA single strand, the
subsequences of three consecutive nucleotide bases are translated into one amino acid. The sequence
of such three consecutive nucleotide bases is called a triplet codon, or a triplet for short.

The mapping relationship of the triplet nucleotide and amino acids is shown in Table 1 [26,27].
There are four different nucleotide bases in the DNA strands, namely, A G, C, and T, so there are
64 different combinations of the three consecutive nucleotide bases, but it can be seen from Table 1 that
the 64 different triplet codons only correspond to 21 different amino acids. Therefore, in the process of
translating DNA into amino acids, different triplet codons can be translated into the same amino acid,
for example, TTC and TTT are both translated into Phe.
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Table 1. The mapping of DNA to amino acids.

1st Base 2nd Base 3rd Base
T C A G

T

TTT Phe TCT

Ser

TAT Tyr TGT Cys T

TTC TCC TAC TGC C

TTA

Leu

TCA TAA[B]
Stop TGA[B] Stop A

TTG TCG TAG[B] TGG Trp G

C

CTT CCT

Pro

CAT His CGT

Arg

T

CTC CCC CAC CGC C

CTA CCA CAA Gln CGA A

CTG CCG CAG CGG G

A

ATT
Ile

ACT

Thr

AAT Asn AGT Ser T

ATC ACC AAC AGC C

ATA ACA AAA Lys AGA Arg A

ATG[A] Met ACG AAG AGG G

G

GTT

Val

GCT

Ala

GAT Asp GGT

Gly

T

GTC GCC GAC GGC C

GTA GCA GAA Glu GGA A

GTG GCG GAG GGG G

It can also be observed from Table 1 that there are two types of special triplet codon. The triplet
codon ATG is the start codon, while the triplet codons TAA, TAG, and TGA are the stop codons, which
are used as the starting and stopping signals in the process of amino acid translation into proteins.
Therefore, there are only 19 amino acids expressed in biological DNA sequences.

This is actually a very beneficial feature. In the process of DNA mutation, there is diversity and
redundancy in coding due to the existence of the many-to-one mapping relationship between triplet
codons and amino acids in DNA. Thus, the transformation of a nucleotide base does not necessarily
lead to a change in the translated amino acid, although it may result in a change in the triad codon.
Thus, the accidental substitution of nucleotide bases can avoid the translation errors of amino acid
sequences, so it will not cause a change in biological characters. To a certain extent, this property
ensures the stability of genetic information transmission between generations.

3.2. Motive

More and more researchers are becoming interested in simulating the DNA genetic mechanism
in computation [28–32], and in the field of neural evolution, a variety of network encoding strategies
have emerged. The direct encoding method has been able to realize the common evolution of network
topology and weights, but the existing research results of indirect encoding are still limited by the
theoretical basis, and the development is not mature. From a biological point of view, DNA coding
is a potential research direction. A network can be represented by a DNA strand, which can realize
the diversity of DNA strand phenotypes by referring to the recombination and mutation of DNA in
organisms, but, at the same time, it can guarantee a certain degree of reliability and stability.

So, in this paper, a triplet codon based DNA encoding method for neural network is proposed
based on the process of DNA being translated into amino acids (omitting the part where DNA will be
translated into RNA first). We propose the concept of the “component”. A neural network is presented
by a single DNA strand, which consists of several components. Each component is represented by
several triplet codons, and nodes, connections, and weight information are encoded in the component
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structure. By designing appropriate encoding and decoding strategies, the DNA strand can be decoded
to form a complete neural network, and then optimized by the genetic evolutionary algorithm, and
applied to many kinds of problem.

4. Triplet Codon Encoding Method

4.1. Overview

In our proposed encoding method, a neural network is represented by a DNA strand, which
consists of several components, as shown in Figure 8. Components are similar in structure, and each
component is composed of several triplet codons. A triplet codon consists of three nucleotide bases,
that is, A, G, C and T. Therefore, a DNA strand is actually composed of numerous nucleotide bases.
The components in our method can be divided into three categories:

1. Input components: used to encode the input layer of the neural network;
2. Middle components: used to encode the hidden layer of the neural network, could be connected

to the input layer or the output layer;
3. Output components: used to encode the output layer of the neural network.

Comp Comp Comp Comp Comp

Input Middle Output

ATA ACG

ConnectionInput

Node

Output

Node

Figure 8. The format of a DNA strand.

4.2. Mechanism to Represent the Node Distribution of the Neural Network

Here are some basic definitions:

1. Nc: the number of components in a DNA strand, which is used to roughly determine the size of
the network;

2. Ni: the number of input components, which is equal to the number of nodes in the input layer of
the neural network;

3. No: the number of output components, which is equal to the number of nodes in the output layer
of the neural network;

4. Nm: the number of middle components;
5. ni: the number of nodes in the input layer of the neural network, or the input nodes of the

neural network;
6. no: the number of nodes in the output layer of the neural network, or the output nodes of the

neural network;
7. nm: the number of nodes in the hidden layer of the neural network.

According to the definitions, the number of middle components Nm can be calculated as

Nm = Nc − Ni − No. (1)

Additionally, ni is equal to Ni, while no is equal to No. nm is decided according to the
following equation:

nm =
⌊∣∣√Nc − 1

∣∣⌋. (2)
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Actually, in our encoding method, the number of middle components is larger than the number
of nodes in the hidden layer, which ensures the connectivity of the network. So, after calculation, we
determine that the neural network has ni input nodes, nm hidden layer nodes, and no output nodes.
All nodes of the neural network are represented by a continuous natural number, as shown in Figure 9.

0, , , , , ,     

   

 Figure 9. The node distribution in a neural network.

4.3. Mechanism to Interpret the Triplet Codon in the Component

As can be seen from Figure 8, the information contained in each component is similar and
consists several triplet codons that are used to represent a component’s input node, output node, and
connection information, respectively. In a component, the first triplet codon describes the input node
of the component, the last triplet codon describes the output node of the component, and those several
triplet codons in the middle can customize its rules. Two different encoding strategies are presented
in this paper. In the first strategy, the connection information is represented as a subnet, while in
the second strategy, the connection information is represented as the connection weight. Those two
encoding strategies will be discussed in detain in the next section.

As mentioned above, there are 64 triplet codons, while 64 different triplet codons can be translated
into 19 different amino acids. Referring to this mapping relation (shown in Table 1), we designed a
rule to map the triplet codons in the component to integers 0 to 18, respectively—in total, 19 digits,
as shown in Table 2. Since the start codon and stop codon cannot be translated into meaningful amino
acids in the translation of DNA in organisms, their triplet codon and their adjacent triplet codon
are translated into the same integer value in our encoding method. Thus, TAA, TAG, and TGA are
translated as the same integer as TGG, that is, 9. Additionally, ATG is translated as the same integer as
ATA, also 9.

Table 2. Mapping triplet codons to integers.

1st Base 2nd Base 3rd Base
T C A G

T

TTT Phe(0) TCT

Ser(2)

TAT Tyr(3) TGT Cys(4) T

TTC TCC TAC TGC C

TTA

Leu(1)

TCA TAA[B]
Stop(9) TGA[B] Stop(9) A

TTG TCG TAG[B] TGG Trp(9) G

C

CTT CCT

Pro(5)

CAT His(6) CGT

Arg(8)

T

CTC CCC CAC CGC C

CTA CCA CAA Gln(7) CGA A

CTG CCG CAG CGG G

A

ATT Ile(10) ACT

Thr(11)

AAT Asn(12) AGT Ser(2) T

ATC ACC AAC AGC C

ATA Met(9) ACA AAA Lys(13) AGA Arg(8) A

ATG[A] ACG AAG AGG G

G

GTT

Val(14)

GCT

Ala(15)

GAT Asp(16) GGT

Gly(18)

T

GTC GCC GAC GGC C

GTA GCA GAA Glu(17) GGA A

GTG GCG GAG GGG G

By using this mapping method, all triplet codons in a DNA strand can be mapped to a unique integer.
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5. Encoding Strategy 1—Connection Information Expressed as a Sub-Net Structure

Biological neural networks are extremely complex. However, DNA chains have a fixed length and
contain a fixed amount of information, so how does DNA guide organisms to produce such complex
neural networks? A reasonable conjecture is that there is a large amount of repetitive structural
information in neural networks and there may be regulatory information in DNA to control the
replication of some structures. If many types of subnets are defined, subnets will produce more
complex networks in different connection combinations, and the information within the DNA strand
will control the structure or location characteristics of those subnets.

In this paper, we propose a triplet codon-based DNA encoding strategy with a subnet structure.
Under this encoding strategy, the connection information of a component is represented as a subnet.
The so-called subnet is a predefined small scale network with input and output nodes, a small number
of hidden nodes, and no connection weights, as shown in Figure 10. In Figure 10, a subnet with two
hidden nodes is shown. The leftmost node is the input node and the rightmost node is the output node.
The direction of the transmission of information follows the direction of the arrow, from left to right.

In

 

 

Out

 
Figure 10. An example of a subnet.

Under this encoding strategy, each component is composed of exactly three triplet codons,
as shown in Figure 11. The first triplet codon of a component describes the input node of that
component. The third triplet codon of a component describes the output node of that component.
Additionally, the second triplet codon of a component describes a kind of subnet structure associated
with this component.

 

Comp Comp Comp Comp Comp

Input Middle Output

ATA CCA ACG

SubnetInput

Node

Output

Node

 

Figure 11. Format of components under the triplet codon-based DNA encoding strategy with the subnet structure.

5.1. Mechanism to Interpret the First Triplet Codon of a Component

The first triplet codon in a component is used to represent the input node of that component.
This triplet codon will first be mapped to an integer, and then mapped into the topology of the
neural network.

5.1.1. Input Component

The first Ni components of a DNA strand are input components. Since input components are
used to represent the ni (equal to Ni) input nodes of the neural network, the input node of an input
component (described by the first triplet codon) can only be a node from the input layer of the neural
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network. Therefore, we need to map the first triplet codon of the Ni input components to the ni input
nodes of the neural network one-to-one. The algorithm to map the first triplet codon of an input
component to a node in the neural network is shown in Algorithm 1.

Algorithm 1 One-to-one mapping algorithm for the first triplet codon.

Input:

List of components C

List of Nodes in the neural network {0, 1, ..., ni − 1}
Number of candidate nodes N

Output:

List of mapped nodes L
1: L = φ, N = ni;
2: while (C 6= φ) do

3: Pick a component c from C;
4: Map the first triplet codon of c to integer I;
5: while (I mod N) ∈ L do

6: I = I + 1;
7: end while
8: Add I in L;
9: Delete c from C;

10: end while

The first triplet codon of the input component can only be mapped to input nodes in the neural
network, so the valid list of nodes in the neural network for the input component is 0, 1, ..., ni − 1,
as shown in grey in Figure 12.

0, , , , , ,     

   

 Figure 12. Valid list of nodes for the first triplet codon of the input component.

5.1.2. Middle Component or Output Component

The input node of a middle component or an output component can be a node from the input
layer or a node from a hidden layer, as shown in grey in Figure 13. The algorithm to map the first
triplet codon of a middle component or an output component to a node in the neural network is shown
in Algorithm 2.

0, , , , , ,     

   

 Figure 13. Valid list of nodes for the first triplet codon of a middle component or output component.
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Algorithm 2 Regular mapping algorithm for the first triplet codon.

Input:

List of components C

List of nodes in the neural network {0, 1, ..., ni + nm − 1}
Number of candidate nodes N

Output:

List of mapped nodes L
1: L = φ, N = ni + nm;
2: while (C 6= φ) do

3: Pick a component c from C;
4: Map the first triplet codon of c to integer I;
5: Add (I mod N) in L;
6: Delete c from C;
7: end while

5.2. Mechanism to Interpret the Last Triplet Codon of a Component

The last triplet codon in a component is used to represent the output node of that component. This
triplet codon will first be mapped to an integer, then be mapped into the topology of the neural network.

5.2.1. Input Component or Middle Component

The output node of an input component or a middle component could be node from hidden layer
or node from output layer, as shown with grey color in Figure 14. We could use Algorithm 3 to map
the last triplet codon of an input component or a middle component to a node in the neural network.

0, , , , , ,     

   

 Figure 14. Valid list of nodes for the last triplet codon of input component or middle component.

Algorithm 3 Regular mapping algorithm for the last triplet codon.

Input:

List of components C

List of nodes in the neural network {ni, ni + 1, ..., ni + nm + no − 1}
Number of candidate nodes N

Output:

List of mapped nodes L
1: L = φ, N = nm + no;
2: while (C 6= φ) do

3: Pick a component c from C, and map the last triplet codon of c to integer I;
4: Add (ni + (I mod N)) in L;
5: Delete c from C;
6: end while

5.2.2. Output Component

The output node of an output component can only be a node from the output layer of the
neural network, as shown in grey in Figure 15. The last No components of a DNA strand are output
components. We need to map the last triplet codon of the No output components to the no (equal to
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No) output nodes of the neural network one-to-one. The algorithm used to map the last triplet codon
of an output component to a node in the neural network is shown in Algorithm 4.

Algorithm 4 One-to-one mapping algorithm for the last triplet codon.

Input:

List of components C

List of nodes in the neural network {ni + nm, ni + nm + 1, ..., ni + nm + no − 1}
Number of candidate nodes N

Output:

List of mapped nodes L
1: L = φ, N = no;
2: while (C 6= φ) do

3: Pick a component c from C, and map the last triplet codon of c to integer I;
4: while (I mod N) ∈ L do

5: I = I + 1;
6: end while
7: Add ni + nm + I in L;
8: Delete c from C;
9: end while

0, , , , , ,     

   

 Figure 15. Valid list of nodes for the last triplet codon of the output component.

5.3. Mechanism to Interpret the Connection Information of a Component

Under this encoding strategy, 19 subnets are set up. The subnet mapping relationship is shown in
Figure 16. From the simplest direct connection subnet of non-hidden nodes to the complex connection
subnet with three hidden nodes, each subnet has its corresponding serial number.
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 Figure 16. Mapping relationship between integers and subnet structures.
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The second triplet codon of a component will first be mapped to an integer, and then mapped to
the corresponding subnet structure. The subnet structure will be used to connect the input node of
that component (the first triplet codon of that component) and the output node of that component
(the third triplet codon of that component).

Under this encoding scheme, if both the input node and output node of a component in the DNA
chain are found to be exactly the same as those of a component decoded before, then the representation
of the newly decoded component is defined as implicit, and is not represented in the decoded neural
network. Subsequent designs follow this rule.

5.4. An Example

Suppose we have a DNA strand with parameters set as Nc = 4, Ni = 2, and No = 1. Thus, Nm

is 1. Additionally, according to Equation (2), nm is 1. So, for this neural network, there are two nodes
in the input layer, one node in the hidden layer, and one node in the output layer. The node set of this
neural network can be expressed as {{0, 1}, {2}, {3}}.

Suppose the DNA strand is
TAC CCT AGT CGT TTC AGC TCG CTA CCC TAG ACA CCG.
As defined, there are two input components, one middle component, and one output component,

as shown in Figure 17.

Figure 17. Example DNA strand exploiting encoding strategy 1.

5.4.1. Decoding of Component 1

Component 1 is an input component. Its first triplet codon is TAC, which represents component
1’s input node. According to Algorithm 1, TAC is first mapped to integer 3 (see Table 2). Since
component 1 is an input component, its input node can only be mapped to nodes in the input layer,
which are {0,1}. So, the number of candidate nodes N is 2. Because 3 mod 2 yields 1, the input node
of component 1 is mapped to node {1} in the neural network.

Component 1’s output node can be mapped to nodes in the hidden or output layer that are
{{2},{3}}, so the number of candidate nodes N is 2. The last triplet codon of component 1 is AGT,
which is mapped to integer 2. According to Algorithm 3, 2 mod 2 yields 0, so the output node of
component 1 is mapped to node {2} in the neural network.

The second triplet codon of component 1 is CCT, which is mapped to integer 5. So, component 1
represents the structure shown in Figure 18.

Figure 18. Subnet structure of component 1.

5.4.2. Decoding of Component 2

Component 2 is also an input component. Its first triplet codon is CGT. As with component 1,
CGT is first mapped to integer 8, and then according to Algorithm 1, it is mapped to node {0} in the
neural network. The last triplet codon is AGC, which can be mapped to integer 2, and according to
Algorithm 3, mapped to node {2} in the neural network.
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The second triplet codon is TTC, which is mapped to integer 0; thus, component 2 represents the
structure shown in Figure 19.

Figure 19. Subnet structure of component 2.

5.4.3. Decoding of Component 3

Component 3 is a middle component. Its first triplet codon is TCG. As a middle component,
the input node of component 3 can be mapped to nodes in the input layer or hidden layer, that is
{{0,1},{2}}. The number of candidate nodes N is 3. TCG is first mapped to integer 2, and according to
Algorithm 2, mapped to node {2} in the neural network.

The last triplet codon is CCC. The output node of a middle component can be nodes in the
hidden layer or output layer that are {{2},{3}}. CCC is first mapped to integer 5, and then according to
Algorithm 3, mapped to node {3} in the neural network.

The second triplet codon is CTA, which is mapped to integer 1; thus, component 3 represents the
structure shown in Figure 20.

Figure 20. Subnet structure of component 3.

5.4.4. Decoding of Component 4

Component 4 is an output component. Its first triplet codon is TAG. As an output component,
the input node of component 4 can be mapped to nodes in the input layer or hidden layer, that is
{{0,1},{2}}. The number of candidate nodes N is 3. TAG is first mapped to integer 9, and then according
to Algorithm 2, mapped to node {0} in the neural network.

The last triplet codon is CCG. As an output component, the output node of this component can
only be nodes in the output layer, that is, {3}. The number of candidate nodes N is 1. CCG is mapped
to integer 5, and then according to Algorithm 4, mapped to node {3} in the neural network.

The second triplet codon is ACA, which is mapped to integer 11; thus, component 4 represents
the structure shown in Figure 21.

Figure 21. Subnet structure of component 4.

5.4.5. Integration Result of All Four Components

So, after the integration of all four components, the whole structure of the neural network
represented by this DNA strand is shown in Figure 22.
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Figure 22. Whole structure of all four components.

6. Encoding Strategy 2—Connection Information Expressed as Connection Weight

The encoding strategy with a subnet structure can only realize the evolution of the network
topology without considering the importance of the connection weights in the current Artificial
Neural Networks. If we need to adjust the weights, we need to design additional weight adjustment
algorithms. Therefore, there are great limitations in the application of strategy 1.

In view of this, we propose a second encoding strategy. Under this encoding strategy, the
connection information of a component is expressed as the connection weight. Because the weights are
usually decimals in a certain range rather than integers, each weight variable is represented by three
triplet codons to ensure that the decoded weights have a certain level of accuracy. Figure 23 shows the
format of components under encoding strategy 2. Each component is composed of five triplet codons.
The first triplet codon is used to represent the input node of that component, the last triplet codon is
used to represent the output node of that component, and the middle three triplet codons are used to
represent the connect weight.

Comp Comp Comp Comp Comp

Input Middle Output

ATA CCA CCG

Weight
Input Node Output Node

CCA CTA

 

Figure 23. Format of DNA strand under encoding strategy 2.

Under encoding strategy 2, the input and output nodes of each component are interpreted in
the same way as in encoding strategy 1, so we only focus on a discussion of the interpretation of the
connection weight.

6.1. Mechanism to Interpret the Connect Information of a Component

In the encoding strategy 2, the weights are not random and have a definite range. First of all, we
need to set the maximum and minimum values of weights to be wmax and wmin, that is to say, the range
of weights is [wmin, wmax]. Assuming that a nucleotide represents a unit length, the encoding length l
of each weight can be expressed as l = 3× k, where k represents the number of triplet codons in each
weight encoding. Because, in the encoding strategy used in this paper, each weight is made up of three
triplet codons, thus k = 3. Each triplet codon can be mapped to an integer value according to Table 2,
and k triplet codons can be mapped to a sequence of integers.



Genes 2018, 9, 626 17 of 30

Assuming the middle three triplet codons in a component are mapped to an integer sequence as
{bit1, bit2, bit3}, the connection weight of that component w can be calculated as

B =
k

∑
j=1

(bitj)× 19l/3−j (3)

w =
B(wmax − wmin)

19l/3−1 + wmin (4)

where B is an intermediate variable, while Equation (4) is used to map the value of the intermediate
variable B to weight w [32].

Suppose in one component, the connection weight is encoded as TTG GCA ATA. Then, according
to Table 2, those three triplet codons are mapped to the integer sequence {1,15,9}. Suppose the range of
w should be [−10,10]. Then, according to Equations (3) and (4), the connection weight is w = −8.0898.

6.2. An Example

Suppose we have a DNA strand, with parameters set as {Nc = 4, Ni = 2, No = 1}. Then, we can
deduce that the number of nodes in the input layer ni (or the number of input components) is 2, and
the number of nodes in the output layer no (or the number of output components) is 1. According to
Equation (2), the number of nodes in the hidden layer nm is 1. The node set of this neural network can
be expressed as {{0,1},{2},{3}}.

Suppose the DNA strand is:
TAG TCT ATT GTA TTC GCT CTT CGG ATC GGC CCG TCC GAC GTT CAA ACC TAA TAC

TGG TGC
Then, there should be two input components, one middle component, and one output component.

Additionally, each component is composed of five triplet codons, as shown in Figure 24.

Figure 24. Example of DNA strand exploiting encoding strategy 2.

6.2.1. Decoding of Component 1

Component 1 is an input component. Its input node, which is expressed by its first triplet
codon, can only be a node in the input layer of the neural network, so the candidate node list is {0,1}.
Additionally, the number of candidate nodes N is 2. The first triplet codon of component 1 is TAG,
which can be mapped to integer 9. According to Algorithm 1, the input node of component 1 is
mapped to {1} of the neural network.

The output node of component 1 can be a node in the hidden layer or the output layer, which
are {{2},{3}}. According to Algorithm 3, the last triplet codon of component 1 TTC is first mapped to
integer 0, and then mapped to node {2} of the neural network.

Additionally, according to Equations (3) and (4), the middle three triplet codons which are used to
represent connection weights are first mapped to an integer sequence, and then mapped to a connection
weight as −3.650, as shown in Table 3.
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Table 3. Mapping result of component 1.

Component 1

TAG TCT ATT GTA TTC

9 2 10 14 0
1 −3.650 2

Input Node Connection Weight Output Node

6.2.2. Decoding of Component 2

Component 2 is also an input component, the same as component 1, and the decoding results are
shown in Table 4.

Table 4. Mapping result of component 2.

Component 2

GCT CTT CGG ATC GGC

15 1 8 10 18
0 −4.237 2

Input Node Connection Weight Output Node

6.2.3. Decoding of Component 3

Component 3 is a middle component. Its input nodes can be nodes in the input layer or hidden
layer of the neural network, which are {{0,1},{2}}. Its output nodes could be nodes in the hidden layer
or output layer of the neural network, which are {{2},{3}}. Its first triplet codon is CCG, according to
Algorithm 2, which should be mapped to node {2} of the neural network. Its last triplet codon is CAA,
according to Algorithm 3, which should be mapped to node {3} of the neural network.

Additionally, according to Equation (3) and Equation (4), the middle three triplet codons, which
are used to represent connection weights, are first mapped to an integer sequence, and then mapped
to connection weight as −3.484, as shown in Table 5.

Table 5. Mapping result of component 3.

Component 3

CCG TCC GAC GTT CAA

5 2 16 14 7
2 −3.484 3

Input Node Connection Weight Output Node

6.2.4. Decoding of Component 4

Component 4 is an output component. Its input nodes should be nodes in the input layer or
hidden layer, that is, {{0,1},{2}}. Its first triplet codon is ACC, which can be mapped to integer 11, and
according to Algorithm 2 mapped to node {2} of the neural network.

Its output node should be nodes in the output layer, that is, {3}. Its last triplet codon is mapped to
this node according to Algorithm 4.

Additionally, according to Equations (3) and (4), the middle three triplet codons which are used to
represent connection weights are first mapped to an integer sequence, and then mapped to a connection
weight as −0.166, as shown in Table 6.
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Table 6. Mapping result of component 4.

Component 4

ACC TAA TAC TGG TGC

11 9 3 9 4
2 −0.166 3

Input Node Connection Weight Output Node

6.2.5. Integration Result of All Four Components

The decoding results of all four components are shown in Figure 25. It should be mentioned that
in this figure, the decoding results of component 4 are represented in grey. As discussed before, since
the input and output nodes of component 4 are identical to those of component 3, component 4 is
defined as implicit, meaning that it does not appear in the final neural network.

Figure 25. Decoding result of all four components.

So, the integration results of all four components of this DNA strand are shown in Figure 26.

0

32 -3.484

-4.237

-3.650

1

 

Figure 26. Integration result of all four components into the neural network.

7. Neural Network Evolving Algorithm Based on the Triplet Codon Encoding Method

Based on the triplet codon encoding method proposed in the previous section, we present a neural
network evolving algorithm called TCENNE. The flow of TCENNE is shown in Figure 27.

The basic idea of the algorithm is to search for the optimal individual in the neural network for the
target problem by the genetic algorithm. In this algorithm, each individual is a DNA chain composed
of multiple triplet codons. The DNA chain needs to be decoded into a neural network, then the fitness
of the neural network will be calculated according to the requirements of the target problem. Specific
genetic operators are designed for our encoding method.
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Figure 27. Flow of the Triplet Codon Encoding Neural Network Evolving Algorithm (TCENNE).

7.1. Design of Genetic Operators

Three kinds of genetic operator were designed: crossover, mutation, and recombination.

7.1.1. Crossover Operator

Single-point, multi-point, and arithmetic crossover operations have been used in existing genetic
algorithms to mimic the process in which offspring inherit genetic information from their parents.
Based on the triple codon encoding strategy proposed in this paper, three new crossover operators are
defined. They are executed on the basis of a specified cross probability Pc. Each operator creates a new
individual from an existing individual. These operators can easily be extended to DNA sequences of
any length.

Move Operator

The input of this operator is an individual P. The function is to select a unit u in P randomly
and relocate it to a new position to get a new individual P′. For example, suppose individual P is
represented as u1u2u3u4u5. Here, each ui represents a unit in P. The move operator can generate a
new individual P′, which can be represented as u1u5u2u3u4 by moving u5 to the location following u1.
This operation can be extended arbitrarily because any unit can be moved to any new location. An
illustration is shown in Figure 28.

- A G T C T C A -

- A G C T C T A - P

P

 

Figure 28. Move operator.

Transform Operator

The input of this operator is an individual P. The function is to generate a new individual P′ by
randomly exchanging two units’ positions of P. For example, suppose P is u1u2u3u4u5. The transform
operator could generate a new individual P′ u1u4u3u2u5 by randomly picking two units u2 and u4 and
exchanging their positions. An illustration is shown in Figure 29.
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- A G T C T C A -

- A G C C T T A - P

P

 

Figure 29. Transform operator.

Permutate Operator

The input of this operator is an individual P. The function is to generate a new individual P′

by random permutation of one unit of P. For example, suppose P is u1u2u3u4u5. The permutate
operator could randomly pick u1 and replace u1 with u′1 to get a new individual P′ of u′1u2u3u4u5.
An illustration is shown in Figure 30.

- A G T C T C A -

- A G T C T A A - P

P

 

Figure 30. Permutate operator.

7.1.2. Mutation Operator

In biology, mutation is a permanent change in the nucleotide sequence of an organism. Mutation
operators are used to simulate DNA replicating mutations caused by mutagens such as chemical
reagents and radiation. The mutation operator will change the structure of an individual randomly,
increase the species diversity of a population, and prevent the algorithm from converging to the local
optimum. In this paper, four mutation operators are introduced.

The first two are Reverse Mutations and Frequency Mutations, which are ordinary mutations
and do not affect the length of DNA and are subject to probabilistic control of a parameter called Pm.
The third is Adding Mutations, which can increase the length of DNA and are subjected to probabilistic
control of a parameter called Pa. The fourth is Drop Mutations, which can shorten the length of DNA
and are subjected to probabilistic control of a parameter called Pd. For our triplet codon encoding
method, the length of a DNA strand can control the size of the neural network to a certain extent, that
is, the more components in a DNA strand, the more hidden nodes and connections.

Reverse Mutation Operator

The reverse mutation operates on the individual P. A triple codon unit of P is randomly selected,
and its reversed triplet codon is used to replace the original triplet codon. Then, a new individual P′

is returned. In biology, the anticodon of the codon is obtained by replacing each nucleotide with a
complementary nucleotide according to the Watson–Crick complementarity principle. Therefore, A is
replaced by T, and C is replaced by G, and vice versa. The reverse codon is obtained by reversing the
nucleotide sequence of the anticodon. For example, for individual P shown in Figure 31, suppose we
randomly pick the triplet codon GAC in P. The anticodon for GAC is CTG; thus, the reverse codon is
GTC. So, the reverse mutation operator will replace GAC with GTC to generate a new individual P′.

- A G G A C C A -

- A G C T G A A -

P

- A G G T C A A - P
 

Figure 31. Reverse mutation operator.
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Frequency Mutation Operator

The frequency mutation operator replaces the nucleotide with the highest frequency in the
individual P with the nucleotide with the lowest frequency in the individual P and returns the new
individual P′. For example, as shown in Figure 32, in individual P, G is the nucleotide with the highest
frequency, while C has the lowest frequency. The frequency mutation operator will replace all the G in
P with C to generate a new individual P′.

G A G T G T C G A

C A C T C T C C A P

P

 

Figure 32. Frequency mutation operator.

Adding Mutation Operator

The polymorphism of the DNA fragment length in an organism is caused by the deletion,
repetition, and insertion of a single nucleotide. In the encoding method designed in this paper,
the DNA strand is composed of several components with the same structure. The components contain
node and connection information. So, you can think of a component as a unit of DNA. The adding
operator adds a unit randomly to the DNA of the input individual P to obtain a new and longer
DNA chain P′. Figure 33 shows how the adding mutation operator works by adding new units to the
original DNA strand.

Figure 33. Adding mutation operator.

Drop Mutation Operator

The drop mutation operator works like the adding mutation operator, and it can change the
length of the DNA strand, too. It will randomly drop one unit in the original individual P to generate
the new individual P′. Figure 34 shows how it works.

Figure 34. Drop mutation operator.

7.1.3. Recombination Operator

Genetic recombination is the process of producing offspring with different combinations of traits
from any parent. In eukaryotes, gene recombination during meiosis produces a new set of genetic
information that can be passed from the parent to the offspring. The recombination operation needs to
be performed according to the predefined probability Pr. The recombination operator needs to perform
two tasks:
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1. According to the complementarities of nucleotides, two individuals of the parent generation are
expanded from single-stranded DNA to double-stranded DNA, and the DNA sequence is cut by
restriction enzymes.

2. The cut DNA fragment is recombined according to the complementarities to obtain the
offspring individual.

The restriction enzyme cuts the DNA sequence and pastes the obtained fragments together on the
premise that they have a matching sticky end. The recombination operation is based on the splicing
model described by Amos and Paun [33].

7.2. Flow of the Algorithm

In the initialization phase of the algorithm, a population of a specified size is initialized.
Each individual in the population is a chain of DNA composed of triplet codons. Then, each DNA
strand is decoded into a neural network and the fitness is calculated. If there is a solution (an individual)
to the target problem in the population, the DNA of the individual is decoded to obtain the target
network and the algorithm is terminated.

If there is no solution, the individuals are sorted according to their fitness values, and the best
individuals are first copied to the new population. This is an elite strategy in which all individuals
with the highest fitness remain in the current group.

Then, a process is repeated to generate enough individuals for the new population from the old
population. First, two parents were selected from the old population by roulette algorithm, and two
offspring were obtained by recombination under a certain probability Pr. The offspring cross and
mutate according to the set probability of a parameter called Pc, Pm, Pa, and Pd. The two newly created
individuals are placed into the new population. This operation repeats until the population size
reaches the specified value.

If the number of iterations of the program reaches the maximum number of iterations or the
fitness of the optimal individuals in the current population meets the requirements of the problem,
the algorithm will end. The algorithm can search the solution space iteratively to find the optimal
global solution of a given problem.

8. Experiments

8.1. Experiment Setup

In this paper, we want to verify two hypotheses: (1) This encoding scheme can make the network
evolve into a necessary structure; (2) compared with other neural evolutionary systems, this encoding
can find a solution more effectively.

The XOR network construction experiment was chosen to verify hypothesis 1. This task is
relatively simple, but it needs to add hidden neurons to the neural network. Therefore, this experiment
can be used to test whether the proposed triplet codon encoding can evolve hidden neurons and to
further verify whether the evolutionary algorithm based on this encoding method can properly evolve
new structures to solve the target problem.

Double Pole Balancing with Velocity (DPV) and the more difficult Double Pole Balancing without
Velocity without speed (DPNV) were chosen to verify hypothesis 2. The goal was to balance the two
rods connected to the car by moving it in the right direction. Two-bar balance is a good benchmark
experiment, and other neural evolution systems were tested in the experiment, so it is easy to compare
the results of the algorithm. Among them, the task of balancing a two-pole car without speed is
more difficult. This problem is a non-Markov chain task, so it is difficult to estimate the state of the
next moment; thus, there is a higher requirement to keep the balance of the system. Therefore, this
experiment can provide very powerful evidence for the effectiveness of the algorithm, that is, it can
not only prove that the encoding strategy can improve the ability to find the optimal structure, but
also is effective in very difficult control tasks.
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The experiments conducted in this paper used the same parameters setting as in [34–36]. These
three experiments can be solved by the reinforcement learning algorithm, but because the neural
evolutionary algorithm can also solve this kind of problem very effectively, the neural evolution field
usually regards it as the benchmark experiment.

All experiments in this paper adopted the encoding strategy with connection weights, because
this encoding strategy can realize the co-evolution of weights and structures and there are suitable
experimental data for comparison. The first encoding strategy with subnet structure can only evolve
the network structure, and if the encoding method with connection weight proves to be effective,
it must be able to prove that the first encoding can also maximize the evolution of the structure.

8.2. Results for the XOR Network Construction Experiment

The XOR problem is a typical linear inseparability problem, as shown in Figure 35, so it is necessary
to add hidden neurons to solve the problem in neural networks. This requirement makes XOR suitable
for testing the ability of algorithm structure evolution.

0 1

1

0

 
Figure 35. XOR problem.

In the XOR experiment, the efficiency of the algorithm was compared by the average number of
evaluation times. Table 7 compares different methods for a solution with the XOR network. Because
this task was significantly easier to solve, we used a smaller population of 150. The results are averages
over 100 runs.

Table 7. Comparison for the XOR network experiment.

Method Evaluations Iterations Population Size

NEAT [34] 4755 32 150
TCENNE 3571 24 150

The experimental results show that the structure of XOR was obtained by an average of
24 iterations in 100 XOR experiments, and the average number of evaluations was 3571 for our
TCENNE algorithm. It can be seen from the data that the average number of times of evaluation
and the number of iterations of the TCENNE algorithm were less than those of the NEAT algorithm
with the same population size. Therefore, the TCENNE algorithm performs well in the simple neural
network evolution problem.

In the 100 experiments completed, the network had 2.5 hidden nodes, on average. Additionally,
there was no failure. The worst performance was 16,050 evaluation times, the population iteration was
107 times (average 23 generations), and all of the others were less than 10,000 evaluation times.
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The experimental results show that TCENNE can effectively use 1 to 3 hidden nodes to construct
XOR networks. Figure 36 is a representation network of an optimal individual obtained from an
experiment, where 0 and 1 represent input points, 4 represents output points, 2 and 3 represent hidden
nodes obtained in the course of evolution, and each line has a corresponding weight.

0

43

-2.218

1

3.425 3.734

-1.0

2

-4.969

2.652

 

Figure 36. Neural network generated for the XOR problem.

The XOR problem has been used to prove the validity of neural network encoding and the
performance of evolutionary neural network algorithm with topological weights. Although TCENNE
can effectively solve the XOR problem, the design of the problem is too simple. In order to prove that
TCENNE has the ability of continuous co-evolution of topology and weights, and that this triplet codon
encoding method is actually beneficial to the evolution of network topology and weights, it needs to
be verified for more difficult tasks.

8.3. Results for Double Pole Balancing with Velocity

Double Pole Balancing with Velocity (DPV) is a Markov problem. The experimental diagram is as
shown in Figure 37. The standard of success of the task is to keep the system balanced by 100,000 time
steps (30 minutes of simulation time). The vertical direction of the rod is considered to be balanced
between −36◦and 36◦. The more time steps that the two bars keep in balance, the higher the fitness
value is.

Figure 37. Illustration of two-bar balance problem.

In the experiments, the number of individuals evaluated from the initial state to the optimal
solution is represented by the number of evaluations. Iterations represent the algebra of population
evolution in the algorithm. The population size represents the number of individuals in each generation.
The relationship between the number of evaluations and the two can be expressed as

(population size)× (iterations) ≤ (number o f evaluations). (5)

Here, the relationship is smaller or equal, because in the last generation of populations, it is
likely that the solution to the target problem can be found without having to evaluate all the
individuals. In the experiment of DPV, if the evaluation time of the algorithm is smaller, the algorithm
is more efficient.
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In the DPV experiment, TCENNE was compared with five other published results of NE systems,
as shown in Table 8.

Table 8. Comparison for the Double Pole Balancing with Velocity (DPV) experiment.

Method Evaluations Iterations Population Size

Ev. Programming (2002) [37] 307,200 150 2048
Conventional NE (1991) [38] 80,000 800 100

SANE (1996) [39] 12,600 63 200
ESP (1999) [40] 3800 19 200

NEAT (2002) [34] 3600 24 150
TCENNE 3400 34 100

For the statistical methods of the experimental data, the results of the first four systems are the
average values of more than 50 experimental data. The results of the NEAT algorithm are the average
values of more than 120 experimental data, while the results of the TCENNE algorithm are the average
values of 242 experimental data. From the comparison of the experimental results, we can see that the
experimental effect of the first three NE systems was much lower than that of the latter three.

Although there was no significant difference in the number of evaluations between the latter three
neural evolutionary systems, and the number of TCENNE iterations was relatively high, TCENNE’s
population size was set at 100 in the DPV experiment—less than the other two systems. Moreover,
TCENNE was still superior to ESP and NEAT in terms of the evaluating time. Therefore, TCENNE is
still competitive with the other two NE systems. Moreover, TCENNE selects the average value of more
experiments, but the result was still better than the other two, which shows that this DNA encoding
strategy based on triplet codon can ensure the stability and effectiveness of the algorithm.

In this encoding method, multiple codons can be decoded into the same amino acid, so the
mutation of codons can keep the decoding invariance in a small range, and, at the same time, it keeps
the diversity of the whole encoding. Because the mutation operation of DNA includes the adding
mutation and the drop mutation, the network size will be different with the adding and drop mutation
operation in the iterative process. As a result, smaller solutions can be found with the same performance.

Therefore, TCENNE can quickly find a small scale network to prove the effectiveness of the
proposed encoding strategy.

8.4. Results for Double Pole Balancing without Velocity

Double Pole Balancing without Velocity (DPNV) is a non-Markov problem, that is, it is impossible
to predict the state of the next moment through the historical state of the system. The input of the
system is only the position of the car, the angle of the short rod and the angle of the long rod, so the
system needs to keep its internal stability without speed. In the experiment, the TCENNE system
needs to output a force acting on the car each time to control the direction and speed of the car and the
double rods.

In 1996, Gruau et al. [41] introduced a special fitness function for this problem to prevent the
system from simply moving the vehicle back and forth to keep the balance of the bar. This fitness
evaluation method, which does not need to calculate the missing velocity value, has been used
in many experiments of neural evolutionary systems. The fitness function F is composed of two
subfitness functions, f1 and f2, and we can set F = 0.1 f1 + 0.9 f2. Within 1000 time steps, the two
subfitness functions are defined as

f1 =
t

1000
(6)

f2 =


0, i f t < 100

K
∑t

i=t−100(|xi|+ |ẋi|+ |θi
1|+ |θ̇i

1|)
, otherwise (7)
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where t is the number of time steps in which the two rods are balanced in 1000 total time steps. K is a
constant which is set to 0.75. The denominator in Equation (7) is the sum of the absolute values of the
state variables of the running car and the long rod. Summation involves the sum of the absolute values
of state variables in the last 100 time steps of the run. Therefore, by minimizing damping oscillation,
the system can maximize its fitness value.

According to Gruau’s solution standards, the best individuals of each generation need to perform
generalization tests to ensure the robustness of their systems. Generalization testing takes more
time than fitness testing, so it usually applies only to the best individuals of each generation. In the
generalization test, in addition to requiring the two poles on the car to balance 100,000 time steps,
the best individual network must balance the two poles in 625 different initial states. In each different
initial state, success is achieved if the car has 1000 steps to keep both poles balanced. The total number
of successes is the generalization performance of the solution. The system under test is generally
required to succeed at least 200 times in 625 different states.

Therefore, there are two main criteria for evaluating DPNV: the number of evaluations and
the number of generalizations. The number of evaluations is the number of individuals evaluated
from the beginning to the end of the algorithm, and the number of generalizations is the number
of times the optimal individual passes the generalization test. If the number of generalization is
qualified, the smaller the number of evaluations is, the more efficient the algorithm is. If the number of
generalizations is larger, the stability of the optimal individual is more stable, which indicates that the
stability of the algorithm is stronger.

Since the non-Markov problem is more difficult than the Markov problem, the initial DNA chain
should be set longer, which can make the variation of individual populations a little larger, so the
initial component length Nc of the DNA chain for our encoding method was set to 30.

Our proposed TCENNE algorithm was compared with five standard neuroevolutionary systems
that can successfully solve DPNV problems. The experimental results are shown in Table 9.

Table 9. Comparison for the Double Pole Balancing without Velocity (DPNV) experiment.

Method Evaluations Generalizations Population Size

CE (1996) [41] 840,000 300 16,384
ESP (1999) [40] 169,466 289 1000

NEAT (2002) [34] 33,184 286 1000
AGE (2006) [35] 25,065 317 -

UESN (2008) [36] 23,571 241 -
TCENNE 19,074 610 150

The success of Cellular Encoding (CE) [41] is due first and foremost to the ability of its
evolutionary structure. The fixed topology neural evolutionary system ESP can accomplish the
task five times faster than CE by random startup of hidden layer nodes [40]. NEAT uses direct coding
of the network topology and weight information and uses historical feature markers to make its
structure evolve effectively [34]. AGE (Analog Genetic Encoding) [35] is a new implicit neural network
evolutionary method based on the observation of biological genetic regulatory networks. The effect of
this method on DPNV experiments is better than that of NEAT. The Echo State Network (ESN) is a
kind of cyclic neural network based on a large number of sparse random connections. Unsupervised
learning of ESN (UESN) applies the evolutionary continuous parameter optimization method to the
evolutionary learning of ESN and verifies it effectively on the two-bar equilibrium system [36].

All of the algorithms in Table 9 use the same experimental settings, including the car, the parameters
of the two rods, and the calculation method of the fitness function. The experimental results of TCENNE
were taken as the average of 26 times, and the results of other algorithms were taken as the average of
20 times.

The average number of evaluations of the TCENNE algorithm was only 19074 times, which is
only 1/44 of CE, which indicates that the improvement of structure evolution has great influence
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on the performance. This DNA encoding design based on the triplet codon can greatly improve the
evolution efficiency of the structure. The average evaluation number of TCENNE was nearly 1/8 of
that of ESP, which shows that the method of structure and weight evolution at the same time is better
than that of fixed topology and evolution weight alone. The TCENNE algorithm was shown to be
1.7 times faster than NEAT and 1.2 times faster than UESN. Thus, the effectiveness of this encoding
strategy is proved.

In the NEAT system, the connection and weight are coded directly, and the individual cross
is realized by the unique mark of connection. The network structure of the population can evolve
effectively in the iterative process. Although NEAT is a highly efficient neural evolutionary algorithm,
it needs to encode a large amount of specific information to ensure the transmission of information
between generations. The triplet codon based the encoding method designed in this paper adopts a
more abstract encoding and decoding strategy. It can effectively evolve the individual structure and
weight of the population by simply encoding a small amount of information.

In the TCNNE algorithm, different individuals can evolve into different structures, and each
structure represents a different dimension space. Additionally, the simple genetic operator makes
TCENNE try to solve the problem in many different ways. The change space is very large, and it is
beneficial to the search of the optimal solution, which further reflects its advantages.

There were no significant differences in the performance of the previous four methods in the
generalization test, but the average generalization time of the TCENNE experiment was 610, very
close to the maximum 625, and far higher than the other four. Actually, in the 26 generalization
experiments of TCENNE, only in one test was the number of generalizations 241, and the result for
the others was 625. Thus, the optimal solution selected by the TCENNE algorithm can not only meet
the requirements of the basic equilibrium time of the experiment, but can also maintain a balance
of 1000 steps under most initial state conditions of the car systems. The stability of individuals also
reflects the stability of the whole algorithm to a great extent.

TCENNE was determined to be the most efficient and more stable algorithm in these systems
by comparing the number of evaluation times and the number of generalizations. This shows that
the design of this triplet codon based coding is helpful for the co-evolution of weights and topologies.
Additionally, it can make the remaining individual more stable.

9. Conclusions

In this paper, a novel DNA encoding method based on triplet codons and a neural evolutionary
algorithm, TCENNE, was designed, and a set of genetic operators based on this encoding method
was proposed. The performance of the TCENNE algorithm in experiments on the XOR network
and two-bar balance was much better than that of other neural evolution systems, which verifies the
rationality and validity of the coding design. Compared with the experimental results of other systems,
the improvement of the efficiency of the algorithm is mainly due to the design of coding.

The improvement of the efficiency of the algorithm mainly lies in the coding design: (1) Nodes
and connections are simply encoded in a DNA sequence consisting of four nucleotides, which solves
the problems of crossover, recombination, and other genetic operations that are difficult to achieve;
and (2) the introduction of the triplet codon and amino acid multiple-to-one transformation relationship
in biological DNA can control the mutation of the network within a reasonable range, while ensuring
the diversity of network topology and weights.
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