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Abstract: Genus Epimedium consists of approximately 50 species in China, and more than half of
them possess medicinal properties. The high similarity of species’ morphological characteristics
complicates the identification accuracy, leading to potential risks in herbal efficacy and medical
safety. In this study, we tested the applicability of four single loci, namely, rbcL, psbA-trnH, internal
transcribed spacer (ITS), and ITS2, and their combinations as DNA barcodes to identify 37 Epimedium
species on the basis of the analyses, including the success rates of PCR amplifications and sequencing,
specific genetic divergence, distance-based method, and character-based method. Among them,
character-based method showed the best applicability for identifying Epimedium species. As for the
DNA barcodes, psbA-trnH showed the best performance among the four single loci with nine species
being correctly differentiated. Moreover, psbA-trnH + ITS and psbA-trnH + ITS + rbcL exhibited the
highest identification ability among all the multilocus combinations, and 17 species, of which 12 are
medicinally used, could be efficiently discriminated. The DNA barcode data set developed in our
study contributes valuable information to Chinese resources of Epimedium. It provides a new means
for discrimination of the species within this medicinally important genus, thus guaranteeing correct
and safe usage of Herba Epimedii.
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1. Introduction

Over 200 million people suffer from osteoporosis around the world, and the prevalence of
osteoporosis keeps rising with the increasing elderly population [1]. In 2005, the total fractures were
more than 2 million, costing nearly $17 billion in the United States. The rapid growth in the disease
burden was also projected from 2005 to 2025 [2]. For a long time, Chinese herbal medicine has been
used to treat fractures and joint diseases in China. Herba Epimedii (Yinyanghuo) is one of the most
widely used herbs that are prescribed in formulas to treat osteoporosis [3], and its extract can reduce the
occurrence of osteoporosis both in experimental models and clinical studies [4]. The term Yinyanghuo
was first listed in Shen Nong Ben Cao Jing as a middle-grade herb during 200–300 B.C., and many
species in genus Epimedium L. (Berberidaceae) have been used in traditional Chinese medicine (TCM)
for a long time to nourish the kidney and reinforce the Yang [5,6]. At present, five species are recorded
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in the Chinese pharmacopoeia. The dried leaves of Epimedium brevicomu Maxim, Epimedium sagittatum
(Sieb. et Zucc) Maxim, Epimedium pubescens Maxim, and Epimedium koreanum Nakai are the sources
of Epimedii Folium (Yinyanghuo), and the dried leaves of E. wushanense T.S. Ying are the resources
of Epimedii Wushanensis Folium (Wushan Yinyanghuo) [7]. Simultaneously, Epimedium species are
used medically in other Asian countries. For instance, E. sagittatum and E. grandiflorum have been
used to treat impotence, prospermia, hyperdiuresis, and osteoporosis in Japan [6], and E. koreanum
has been used in Korea as an aphrodisiac and hypotensive [8]. Up to now, more than 270 compounds
were isolated from Epimedium species. The major active components are flavonoids and corresponding
derivatives, with antitumor, antioxidative, antiosteoporosis, and protective effects [9–11].

In terms of the great medicinal value of Epimedium species, considerable scientific interest has
been aroused in this genus. The completely accurate identification of the plant material is the basis for a
scientific study. However, the classification and discrimination of Epimedium species have always been
controversial. Genus Epimedium consists of approximately 58 species distributed from Japan in Asia to
Algeria in North Africa [12]. Most of the Epimedium species exist in Eastern Asia and Mediterranean
countries [12], and approximately 50 species have been reported in China [13–15]. The first Epimedium
species, E. alpinum L., was recorded by Linnaeus whereas the most comprehensive classification system
of this genus was established by Stearn [12]. In Stearn’s monograph, genus Epimedium is divided into
subgenera Rhizophyllum and Epimedium on the basis of the flower and leaf morphology, C-banding
of the chromosomes [16], and geographical distribution [12]. Furthermore, subgenus Epimedium is
divided into four sections, namely, Epimedium, Polyphyllon, Macroceras, and Diphyllon. According to
the corolla characteristics, section Diphyllon, which has approximately 47 known species in China,
is further subdivided into four series, namely, Campanulatae Stearn, Davidianae Stearn, Dolichocerae
Stearn, and Brachycerae Stearn. Chinese sect. Diphyllon reaches the highest species diversity with
more than 80% species in Epimedium [17], presenting numerous taxonomic controversies [18–21].
Morphological classification experts identify and publish new species according to their leaf and
corolla characteristics [12]. Most species in this genus have similar leaf morphology (three branches
from the stem and three leaves in every branch). Thus, the species identification on the basis of leaf
morphology becomes difficult when the short flowering time has passed. For instance, E. accuminata
and E. pubescens are difficult to differentiate due to their least variable leaf morphology [12]. Meanwhile,
because of the similar shape among different species and intraspecific variation caused by geographical
distribution, distinguishing closely related species becomes difficult. For instance, E. sagittatum and its
related species, namely, E. sagittatum complex, present the most disputable questions in taxonomy due
to the high morphological variations with extensive geographical distribution [20,22]. These taxonomic
issues mentioned above complicate the species discrimination in this genus. At present, approximately
23 Epimedium species not recorded in the Chinese pharmacopeia, such as E. acuminatum, E. miryanthum,
and E. leptorrhizum, are commonly used as Yinyanghuo in particular localities of Guizhou, Sichuan,
Chongqing, Jiangxi, Hunan, and Hubei provinces in China [23,24]. Considering differences in bioactive
constituents among Epimedium species [6], incorrect identification of species is likely to result in
potential risks in herbal efficacy and medical safety. Furthermore, Herba Epimedii is an herb that is
harvested in the wild and is on the edge of extinction [25]. Improper or wrong harvest may induce
the reduction of species abundance in genus Epimedium. Thus, effective methods for the accurate
discrimination and sustainable utilization of the Epimedium resources are urgently needed.

In order to resolve the identification problem, some researchers have attempted to use molecular
methods to discriminate Epimedium species. For example, 5S ribosomal RNA (rRNA) gene spacer
sequencing [26], expressed sequence tag (EST) dataset [27], and microsatellites [28–30] methods have
been applied to identify medicinal Epimedium species. Some identification problems of Epimedium
species were settled in these studies. However, a comprehensive discrimination study of medicinally
important Epimedium species is absent at present. Recently, DNA barcoding technique has been widely
used for species discrimination. Up to now, matK, rbcL, psbA-trnH, internal transcribed spacer (ITS),
and ITS2 are the most commonly used regions for DNA barcoding in plants [31–34]. In this study,
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we systematically evaluated the feasibility and identification efficiency of four generally acknowledged
single loci, namely, rbcL, psbA-trnH, ITS, and ITS2, and their combinations to discriminate the Epimedium
species distributed in China to identify the most suitable barcodes for genus Epimedium and provide
effective information for the species identification of this genus.

2. Materials and Methods

2.1. Plant Materials

A total of 72 samples representing 37 Epimedium species, of which 20 are medicinally used,
were collected from the Jiangxi, Guizhou, Hubei, and Jilin provinces in China. In addition to the
widely distributed Epimedium species, some narrowly distributed species of the genus in China
were collected as well. For instance, E. dewuense and E. shuichengense are endemic species to
certain areas of Guizhou province. E. zhushanense only grows in Zhushan County in the Hubei
province, and E. tianmenshanensis is merely distributed in Hunan province. Moreover, some rare
species, including E. pauciflorum, E. platypetalum, E. lishihchenii, E. franchetii, E. glandulosopilosum,
E. truncatum, E. dolichostemon, E. pudingense, E. ilicifolium, E. borealiguizhouense, and E. qingchengshanense,
are mostly distributed in certain areas with extremely limited resources and survive with difficulty
when transplanted. All samples were authenticated by Prof. Yanqin Xu of Jiangxi University of
Traditional Chinese Medicine and Prof. Shunzhi He of Guiyang College of Traditional Chinese
Medicine. The details of the samples are listed in Table S1. All corresponding voucher samples were
deposited in the Herbarium of the Institute of Medicinal Plant Development, Chinese Academy of
Medicinal Sciences & Peking Union Medical College, Beijing, China.

2.2. DNA Isolation, Amplification, and Sequencing

Approximately 30 mg fresh leaf from each sample was ground for 2 min at a frequency of
30 times/s in a FastPrep bead mill (Retsch MM400, Haan, Germany). The total genomic DNA was
extracted using the Universal Plant Genome DNA Kit (Tiangen Biotech, Beijing, China) according to
the manufacturer’s instructions. Short fragments of the specific regions of the plastid (rbcL), noncoding
(psbA-trnH), and nuclear DNA (ITS, including 18S, ITS1, 5.8 S, ITS2, and 28 S) sequences were amplified
from the extracts. The ITS2 sequence was retrieved from the ITS region directly. Universal primers for
candidate barcodes and reaction conditions were used as previously reported [35–37]. The primers and
reaction conditions used to amplify these regions are listed in Table S2. PCR was performed in 25 µL of
the reaction system, containing 2 µL of template DNA (approximately 30 ng), 12.5 µL of 2× Taq PCR
Master Mix (Aidlab Biotechnologies Co., Ltd., Beijing, China), and 1 µL of each primer (2.5 µmol/L),
and filled with double-distilled water. The purified PCR products were sequenced in both directions
by using an ABI 3730XL sequencer (Applied Biosystems, Inc., Foster City, CA, USA) on the basis
of the Sanger sequencing method by the Major Engineering laboratory of the Chinese Academy of
Agricultural Sciences (Beijing, China). Altogether, 70 samples representing 36 species were sequenced
successfully with all the three loci (rbcL, psbA-trnH, and ITS), and 210 new sequences were submitted
to GenBank under the accession number MG837275-MG837475 and MH252065-MH252073 (Table S1).
These sequences were used in the subsequent analysis.

2.3. Statistical Analysis

Consensus sequences and contig generation were performed using the CodonCode Aligner V
7.1.1 (CodonCode Co., Dedham, MA, USA). The ITS sequences were subjected to hidden Markov
model analysis to obtain the complete ITS2 sequences [38]. Sequences from each DNA region
were aligned using MEGA 6.0 [39]. For species with more than three individuals, the average
intraspecific distance, theta, and coalescent depth were calculated to evaluate the intraspecific variation
based on the Kimura two-parameter (K2P) model; the average interspecific distance, minimum
interspecific distance, and theta primer were used to assess the interspecific divergence using the K2P
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model [40–42]. To assess the potential of each single locus and their combinations for accurate species
discrimination, distance-based methods (TaxonDNA and neighbor-joining trees) and character-based
approach (BLOG) were employed for species with more than one individual. The best match (BM)
and best close match (BCM) tests in the Species Identifier 1.8 program of TaxonDNA were run [43].
The neighbor-joining (NJ) trees of each single locus and their combinations were constructed using
MEGA 6.0, and bootstrap tests were performed with 1000 replicates [39]. The character-based DNA
barcode method in BLOG (Barcoding with LOGic) 2.0 was applied to classify species with more than
one individual [44]. Each single locus and their combinations were subjected to 100% slicing within
species level with a maximum of 500 iterations (GRASPITER = 500) and a maximum time of 5 min
for analysis (GRASPSECS = 300). The logic formula with the lowest false positive rate against the
reference dataset was taken as discrimination basis. Moreover, species that could be identified were
shown using Venn diagrams.

3. Results

3.1. Efficiency of PCR Amplification and Sequencing

The three loci, rbcL, ITS, and psbA-trnH, all showed high PCR amplification and sequencing
efficiency (100%). Moreover, the effective sequence ratio of rbcL and psbA-trnH were the same (100%),
followed by ITS (97.2%). Detailed information regarding the PCR amplification and sequencing
efficiency of the candidate barcodes is provided in Table S1.

3.2. Genetic Divergence Determination

The length of the aligned sequence (base pairs) and variable sites for the rbcL, psbA-trnH, ITS,
and ITS2 regions were 703/10, 572/59, 705/45, and 247/23, respectively. Six parameters were
used to characterize inter- and intraspecific divergence. Results indicated that psbA-trnH had the
highest interspecific divergence, followed by ITS2 and ITS. Meanwhile, rbcL exhibited a relatively
lower interspecific divergence compared with the other regions (Table S3). At the intraspecific level,
rbcL showed the lowest divergence, while psbA-trnH displayed the highest variation level (Table S3).

3.3. Evaluation of the Identification Efficiency of the DNA Barcodes

In the present study, the distance-based method, namely, TaxonDNA, was used to assess the
applicability of the different regions for species discrimination. Similar identification efficiency was
obtained based on the BM and BCM methods (Table 1). For the single locus, psbA-trnH exhibited
the highest species identification efficiency (29.62%), followed by the ITS (22.22%) and ITS2 regions
(18.51%). Meanwhile, the rbcL region showed the lowest resolution rate of 3.70%. In the two loci
combinations, psbA-trnH + ITS2 showed a higher resolution rate (38.88%) than psbA-trnH + ITS
(37.03%). Moreover, compared with the two loci combinations, the resolution rate was not increased
when three loci (psbA-trnH + ITS + rbcL and psbA-trnH + ITS2 + rbcL) were combined (37.03%). Results
showed that only six species (E. koreanum, E. dewuense, E. zhushanense, E. shuichengense, E. brevicornu,
and E. pseudowushanense) could be identified efficiently using single locus and their combinations
(Figure 1).

Second only to ITS region, psbA-trnH exhibited comparatively higher identification efficiency
among the four single loci by using the NJ tree method (Figure 1). Three species, namely, E. koreanum,
E. zhushanense, and E. shuichengense, could be identified using the locus psbA-trnH. Moreover, results
suggested that the number of species that can be authenticated was increased when two or three loci
were combined (Figure 1). Six species, namely, E. koreanum, E. dewuense, E. zhushanense, E. shuichengense,
E. davidii, and E. brevicornu, could be discriminated by psbA-trnH + ITS and psbA-trnH + ITS + rbcL.
Additionally, five Epimedium species, namely, E. koreanum, E. dewuense, E. zhushanense, E. shuichengense,
and E. davidii, could be differentiated by psbA-trnH + ITS2 and psbA-trnH + ITS2 + rbcL. Detailed
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information regarding the NJ trees of each single locus and their combinations is provided in Figures S1
and S2.

Compared with the distance-based method, the identification efficiency of each single locus
and their combinations was significantly improved by using the character-based approach (Table 1).
Among the four single loci, psbA-trnH displayed the highest resolution rate (61.11%) with nine species
being identified. By contrast, rbcL showed the lowest (14.81%). Moreover, combination of barcodes
increased the species identification efficiency significantly. Among the four multilocus combinations,
psbA-trnH + ITS and psbA-trnH + ITS + rbcL both showed the highest resolution rate (92.59%). Aside
from E. acuminatum, E. leptorrhizum, and E. epsteinii, a total of 17 species, of which 12 are medicinally
used, could be distinguished (Figure 1). The logic formulas to identify the 17 species by using psbA-trnH
+ ITS region are listed in Table 2.
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Table 1. Identification efficiency of the four loci on the basis of the BM, BCM, and BLOG analytical methods.

Best Match Best Close Match (Threshold 3%) BLOG

Region Correct Ambiguous Incorrect Correct Ambiguous Incorrect No Match Correct Not Classified Wrong

psbA-trnH 29.62% 27.77% 42.59% 29.62% 27.77% 38.88% 3.70% 61.11% 38.89% 0.00%
ITS 22.22% 70.37% 7.40% 22.22% 70.37% 7.40% 0.00% 48.15% 51.85% 0.00%
ITS2 18.51% 74.07% 7.40% 18.51% 74.07% 7.40% 0.00% 24.07% 75.93% 0.00%
rbcL 3.70% 96.29% 0.00% 3.70% 96.29% 0.00% 0.00% 14.81% 85.19% 0.00%

psbA-trnH + ITS 37.03% 24.07% 38.88% 37.03% 24.07% 38.88% 0.00% 92.59% 7.41% 0.00%
psbA-trnH + ITS2 38.88% 25.92% 35.18% 38.88% 25.92% 33.33% 3.70% 77.78% 22.22% 0.00%

psbA-trnH + ITS + rbcL 37.03% 18.51% 44.44% 37.03% 18.51% 44.44% 0.00% 92.59% 7.41% 0.00%
psbA-trnH + ITS2 + rbcL 37.03% 24.07% 38.88% 37.03% 24.07% 38.88% 0.00% 81.48% 18.52% 0.00%

ITS, internal transcribed spacer; BLOG, Barcoding with LOGic.
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Table 2. Diagnostic formulas of psbA-trnH + ITS region generated by BLOG for species identification. “*” represents medicinally used species.

Species Formulas Score Coverage

E. davidii * pos1043 = T 0.136 1
E. baojingense * pos314 = G OR pos1085 = C 0.174 1
E. koreanum * pos201 = T 0.136 1
E. dewuense * pos395 = C & pos1220 = G 0.136 1
E. sagittatum * pos201 = G & pos320 = T & pos395 = T & pos411 = G & pos1052 = T 0.24 1

OR pos91 = C
OR pos113 = A

E. jinchengshanense pos224 = C & pos411 = T & pos1220 = G 0.136 1
OR pos411 = G & pos1052 = A

E. chlorandrum pos90 = T & pos150 = G & pos201 = G & pos224 = A & pos395 = T & pos411 = T & pos536 = A & pos1043 = C &
pos1052 = T & pos1220 = A & pos1252 = G 0.174 1

OR pos1026 = C & pos1182 = T
E. pseudowushanense * pos90 = T & pos91 = A & pos224 = C & pos411 = T & pos788 = C & pos1182 = C & pos1220 = A 0.136 1

E. rhizomatosum pos411 = T & pos1052 = A 0.136 1
E. pubescens * pos90 = T & pos150 = G & pos201! = G & pos201! = T & pos395 = T 0.174 1

OR pos90 = G & pos224 = C & pos411 = T & pos1026 = C & pos1182 = C
OR pos320 = A

E. shuichengense * pos201 = A & pos1052 = T 0.136 1
E. myrianthum * pos90 = G & pos411 = G 0.208 1

OR pos113 = G & pos150 = A & pos314 = A & pos730 = A
E. wushanense * pos164 = T & pos224 = A & pos411 = T & pos1085 = T & pos1220 = G 0.174 1

OR pos90 = G & pos201 = G & pos224 = A & pos411 = T & pos1085 = T
E. brevicornu * pos1252 = C 0.136 1
E. coactum * pos505 = C & pos536 = C 0.136 1

OR pos1026 = A
E. mikinorii pos788 = T 0.136 1

OR pos90 = T & pos224 = C & pos411 = G & pos1220 = A
E. zhushanense pos164 = G 0.136 1

ITS, internal transcribed spacer; BLOG, Barcoding with LOGic.
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4. Discussion

4.1. Development of DNA Barcode Resources for Genus Epimedium

In our research, four universal candidate barcodes, namely, rbcL, psbA-trnH, ITS, and ITS2,
were assessed for their applicability in identifying the Epimedium species. All three regions (rbcL,
psbA-trnH, and ITS) showed high rates of sequencing recovery. The psbA-trnH intergenic spacer
was reported as one of the most variable plastid regions in the angiosperms [35]. In our study,
it demonstrated the highest interspecific divergence between species of Epimedium. Meanwhile,
it exhibited better identification capability than the other regions for Epimedium species based on both
distance (TaxonDNA and NJ tree) and character (BLOG) analyses. The BLOG method displayed the
highest identification ability with nine species being differentiated, whereas five and three species
can be respectively discriminated by TaxonDNA and NJ tree. Thus, psbA-trnH region may be used
as a potential barcode to discriminate the Epimedium species. Second only to psbA-trnH, ITS region
showed good identification ability with six species being differentiated. The China Plant BOL Group
suggested that ITS/ITS2 should be incorporated into the core barcode for seed plants [45]. Here, ITS2
showed lower identification efficiency than ITS based on both distance- and character-based methods,
which could be attributed to lower interspecific divergence of ITS2 for Epimedium species.

Considering the limited discriminatory power of the single-locus barcode, a multigene
tiered approach for barcoding plants was recommended by Newmaster et al. [46]. In this study,
the combination of two and three loci showed better identification efficiency than that of the single
locus. The combination of two loci psbA-trnH and ITS, as well as the combination of three loci psbA-trnH,
ITS, and rbcL, showed the highest discrimination power among all the multilocus combinations. As for
the analytical methods, the character-based method exhibited the highest identification efficiency
with 17 species being discriminated. The character-based method (BLOG), suggested to be efficient
and precise, could provide diagnostic formulas listing the species-specific nucleotides to differentiate
species from others [47]. On the contrary, the distance-based method showed lower resolution rate
than the character-based method, and only six species could be discriminated. The intraspecific and
interspecific genetic distances overlapped in our study (Table S3), making authentication of these
species difficult by using BM test, BCM test, and NJ trees. Therefore, the character-based method is a
more appropriate choice to identify Epimedium species.

This study contributes with DNA barcodes for more than 70% of the species in Epimedium,
covering nearly all the commonly used medicinal plant species and rare species. For each species,
information of the four universal barcodes, namely, rbcL, psbA-trnH, ITS, and ITS2, were provided.
The dataset developed could provide assistance for accurate species identification, sustainable recourse
utilization, and new medicinal resources development of this genus.

4.2. Chloroplast Genome-Based Super Barcode Has the Potential to Solve the Problem of Species Discrimination
and Classification in Genus Epimedium

A number of taxonomic controversies exist in the Chinese sect. Diphyllon [18,19,48], and efficient
methods for species identification and classification are lacking. In our study, the commonly used
DNA barcodes were effective in identifying 17 Epimedium species, but the phylogenetic relationships
of Chinese sect. Diphyllon were poorly resolved. The unresolved phylogeny of genus Epimedium
might be ascribed to the following taxonomic issues. First, some species published earlier were only
based on one or two specimens or even fragmentary specimens, resulting in the inaccurate description
of the morphological characteristics. Epimedium baojingensis and E. zhushanense were believed to be
the only species with unifoliolate leaves when they were published. However, the investigation
of Zhang et al. [48] revealed that leaves of these species are usually trifoliolate and occasionally
unifoliolate. Second, using the small variations as the reference to publish new species tends to
ignore the possible connection between the new species and model specimens, which may lead to
unnecessary publication to some extent and even cause problems for further study. Third, incomplete
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breeding isolation between the species and existence of natural hybrids may also complicate the
relationships of the Chinese Epimedium species, thereby increasing the difficulty of morphological
identification and taxonomy research [12]. Thus, a more effective method is needed to further research
the discrimination and classification of this genus. Recently, the chloroplast (cp) genomes of plants
have been applied as a useful tool for phylogenetic studies and species identification [49–51]. The cp
genome can significantly increase the resolution at low taxonomic levels in plant phylogeny; it was
proposed as a species-level DNA barcode [52] and has been used as a plant barcode to discriminate
closely related species [52–54]. The complete cp genome with more variation information than single
or multiple DNA barcodes was also suggested as a super barcode [55], which may be a solution for
the identification and classification problems in the Epimedium species. Zhang et al. [13] sequenced
the complete cp genomes of five Epimedium species and found that the phylogenetic relationships
among these cp genomes were consistent with the updated system. However, the cp genome study
of 90% of the approximately 50 Epimedium species distributed in China still has not been conducted.
Additionally, only one sample was sequenced for each species, which was not adequate to demonstrate
the evolutionary relationships and divisions within the section Diphyllon because some Epimedium
species have large intraspecific variations. Therefore, more systematic and in-depth classification and
identification investigation on the basis of the complete cp genomes of a large sample size are urgently
needed. Thus, the cp genome-based super barcode will be utilized to study the identification and
evolution relationships of all Chinese Epimedium species in our further research. Further research is
expected to solve the complex problems in taxonomy and species discrimination and to guarantee the
medical safety of species in genus Epimedium.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/12/637/s1,
Figure S1. NJ trees of Epimedium species on the basis of the psbA-trnH (A), rbcL (B), ITS (C), and ITS2 (D) regions.
The bootstrap scores (1000 replicates) are shown (≥50%) for each branch. Figure S2. NJ trees of Epimedium species
on the basis of four multilocus combinations. The bootstrap scores (1000 replicates) are shown (≥50%) for each
branch. A, psbA-trnH + ITS; B, psbA-trnH + ITS2; C, psbA-trnH + ITS2 + rbcL; D, psbA-trnH + ITS + rbcL. Table
S1. Voucher information, PCR amplification and sequencing efficiency of the candidate barcodes, and GenBank
accession numbers for Epimedium plant samples in this study. Table S2. List of universal primers and reaction
conditions for candidate barcodes used in this study. Table S3. Inter- and intraspecific genetic divergences of the
four loci.
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