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DNA extraction and library preparation

All lab work was performed in dedicated clean lab facilities at the University of Potsdam
with appropriate contamination precautions in place [1]. DNA was extracted from 8.4 mg of
tissue from a preserved skin. The digestion was performed using a buffer from Rohland et al.
[2], consisting of 5M of GuSCN, 25 nM NaCl, 50 mM of Tris, 20 mM of EDTA, 1% Tween-
20 and 1% betamercaptoethanol. After digestion, the protocol from Dabney et al.  [3] was
followed for binding and washing steps. From the resulting DNA extract, 10 µl were used to
prepare single-stranded DNA libraries [4]. Approximately ten million 75 bp single-end reads
were generated using the Illumina NextSeq 500 sequencing platform, using a custom Read 1
and Index Read 2 sequencing primers as needed for single-stranded libraries [4,5]. 

Bioinformatic procedures

The  endogenous  content,  average  fragment  length,  damage  patterns  (elevated  C  to  T
substitution  levels  at  read  ends)  and  potential  contamination  sources  were  estimated  by
mapping the linsang sequence data to the closest available nuclear genome; the domestic cat
(Felis catus v6.2; GCA_000181335.2). The bioinformatic procedures in brief: first, adapters
were removed, and reads shorter than 30bp were discarded using cutadapt v1.10 [6]. For read
mapping and parsing, filtering reads with low mapping quality (MAPQ < 30) and removal of
duplicates, BWA v0.7.8 and samtools v0.1.19 were used with default settings [7,8]. Damage
patterns of the mapped reads were recovered using mapDamage v2.0.7  [9]. FastQ Screen
v0.5.0  (available  from:  https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/)
was utilised to estimate the relative proportions of vertebrates contaminant sequences present
in the sample, by comparing the reads to a range of potential sources (Table S2, Figure S1A).
To identify suitable bacterial and fungal contaminant sources, one million reads from the in
vivo data were blasted using blastn against the full nucleotide database (downloaded from
NCBI on December 4th, 2017). From the five most occurring bacterial and fungal genera,
one genome was selected for each (Table S1). 
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Commands used for the linsang test case

This section describes the commands (TAPAS and standard UNIX commands) used to run
the linsang test case. The commands were executed in a bash shell on a Linux system running
Scientific Linux v6.9. More detailed descriptions can be found in the manual, which can be
found at https://mlell.github.io/tapas .

1) Simulate sequence data from desired reference genomes

1.1.  Create  reads  from cat  genome (Table S1)  to  reflect  endogenous sequences  (260,000
reads, with a minimum read length of 30bp, and a decay length of 15bp)

uniform Felis_catus_6.2_all-dna-chromosomes.fasta \
  --seed 1234 \
  --output cat.coord cat.nucl \
  260000 30 15

1.2. Create unique read names
  index-column --prefix cat_ \
  --colname name \

      --inplace cat.coord

1.3.  Create  a  FASTQ  file  by  combining  sequences  from  cat.nucl  and  read  names  from
cat.coord and adding a line with quality scores (quality scores are all ‘F’, a constant high
value in the Phred+33 alphabet used by BWA to denote per-base quality)

synth-fastq cat.nucl \
  <(sed 's/./F/g' cat.nucl) \
  <(awk '(NR!=1){print $1}' cat.coord) \
  >cat.fastq

1.4. Create reads from human genome (Table S1) to reflect common contaminant source (in
this case, 10,000 reads, with a minimum read length of 30bp, and a decay length of 15bp)

uniform homo.fasta \
  --seed 1567 \
  --output human.coord human.nucl \
  10000 30 15

1.5. Create unique read names and a FASTQ file for the human reads according to the cat
example (see 1.2 - 1.3)

1.6. Create reads from dog genome (Table S1) to reflect contaminant with high sequence
similarity to target species (in this case, 30,000 reads, with a minimum read length of 30bp,
and a decay length of 15bp)

uniform CanFam3.1_all-dna-chromosomes.fasta \
  --seed 1394 \
  --output dog.coord dog.nucl \
  30000 30 15

1.7.  Create  unique read names and a  FASTQ file  for the dog reads  according to  the cat
example (see 1.2 - 1.3)
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1.8 Create reads from five bacterial and fungal genomes (Table S1) to reflect contaminants
(in  this  case,  700,000 reads  in  total,  i.e.  140,000 reads  per  contaminant  genome,  with a
minimum read length  of  30bp,  and  a  decay  length  of  15bp and a  unique  seed  for  each
contaminant species). An example for one of the contaminant genomes is given below.

uniform GCF_001457475.1_NCTC10807_genomic.fna \
  --seed 2201 \
  --output A.xylo.coord A.xylo.nucl \

        140000 30 15

1.9. Create unique read names and a FASTQ file for all bacterial and fungal reads following
the same procedure as described for the cat genome (see 1.2 - 1.3)

2) Introduce damage pattern and simulate evolutionary distance for the ‘endogenous’
sequences

2.1  Extract  damage  patterns  from  nucleotide  misincorporation  output  files  (*_freq.txt)
generated by mapDamage [9], based on the in vivo data.

mapdamage2geomparam \
  --fit-plots fit_ \
  *_freq.txt \
  > mut.tbl

2.2. The resulting output file (mut.tbl) can then be modified to reflect both specific nucleotide
misincorporations  to  reflect  ancient  DNA  damage,  as  well  as  an  estimated  sequence
divergence to reflect evolutionary distance. For specific nucleotide changes the intercept was
set  to  zero.  Furthermore,  a  third  line  of  code  was  added  to  account  for  5%  sequence
divergence to reflect the estimated evolutionary distance between reads and reference,  for
which no specific base changes, a factor and geometric probability of zero and an intercept of
0.05 were specified.

awk 'Begin {OFS="\t"} (NR!=1){$6="0"}{print} END {print 
        "3","*","*","0","0","0.05"}' mut.tbl > mut.tbl.2

The file mut.tbl.2 after the modifications described above.
column -t mut.tbl.2
strand  from  to  factor   geom_prob  intercept
3p      C     T   0.1048   0.721      0
5p      C     T   0.03675  0.953      0
3p      *     *   0        0          0.05

2.3. Apply the damage pattern and evolutionary distance to the endogenous reads
    filter-fastq --nucleotide @ \
        multiple_mutate mut.tbl.2 @ \
        < cat.fastq \
        > cat_mut.fastq

3) Combine all reads to one FASTQ file
cat A.ory.fastq \
A.xylo.fastq \

   G.lozo.fastq \
P.chry.fastq \
R.etli.fastq \
cat_mut.fastq \
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dog.fastq \
human.fastq \

    > all.fastq

4) Prepare parameter values for mapping parameters

4.1. In this case two separate files n.par and l.par holding all values for each parameter listed 
in Table S3 were created using a standard text editor (e.g. nano).

4.2. Create a table containing all possible combination of chosen mapping parameter values 
and add an index column to the table.

cross_tab --head 1 *.par > partab
index-column --colname runidx --inplace partab

5) Execute mapping runs

5.1. Create mapping calls.
table2calls partab map-bwa_aln.sh \
  > calls

Script map-bwa_aln.sh used for the linsang test case.
#!/bin/bash
## This script performs a mapping using BWA.
## It requires the variables l, n, runidx be set
## prior to its execution.

# Fail if any needed variable is not set
set -ue

bwa aln -n ${n} -l ${l}      \
/folder/Felis_catus_6.2_all-dna-chromosomes.fasta \

    /folder/all.fastq \
    > /folder/${runidx}.sai   \
    2> /folder/${runidx}.log   &&

bwa samse                      \
      /folder/Felis_catus_6.2_all-dna-chromosomes.fasta \
      /folder/${runidx}.sai     \
      /folder/all.fastq         \
      > /folder/${runidx}.sam   \
      2>> /folder/${runidx}.log

rm /folder/${runidx}.sai

5.2. Start execution of mapping runs.
mcall -c calls -t 10 --status

6) Parse sam files

6.1. Extract prefix on sam files. The content of the for-loop opened here continues until step
6.8.

for sam in /folder/*.sam; do
        bn=$(basename $sam)
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        p=${bn%.sam}

6.2. Convert sam files into tables for better parsing. Extracting information on query name
(qname), reference name (rname), mapping position (pos) and mapping quality (mapq).

sam-extract \
--sam-fields qname,rname,pos,mapq \
${p}.sam > ${p}.tab

6.3. Add additional columns “true_organism” and “mapped_organism” to the table, which
contain  information  on  the  organism  the  reads  originate  from  (true_organism)  and  the
reference genome the reads have been mapped to (mapped_organism).

add_mapped_organisms \
   --endogenous cat Felis_catus_6.2_all-dna-chromosomes.fasta.fai cat.coord \
   --exogenous dog CanFam3.1_all-dna-chromosomes.fasta.fai dog.coord \
   --exogenous bacteriafungi GCF_000184455.2_ASM18445v3_genomic.fna.fai 
A.ory.coord \
   --exogenous bacteriafungi GCF_001457475.1_NCTC10807_genomic.fna.fai 
A.xylo.coord \
   --exogenous bacteriafungi GCF_000409485.1_GLAREA_genomic.fna.fai 
G.lozo.coord \
   --exogenous bacteriafungi GCA_000710275.1_ASM71027v1_genomic.fna.fai 
P.chry.coord \
   --exogenous bacteriafungi Rhizobium_etli_cfn_42.ASM9204v1.dna.toplevel.fa.fai 
R.etli.coord \
   --exogenous human homo.fasta.fai human.coord \
   ${p}.tab > ${p}.mod.tab

6.5.  Check  if  reads  have  been  mapped  correctly  by  comparing  the  original  genome
coordinates  with the reported  mapping coordinates.  In  this  test  case a  read is  considered
correctly mapped if it was mapped to the exact same position it has been extracted from.

pocketR 'within(input, {
  correct =

 mapped_pos == true_start &
 mapped_rname == true_record &
 mapped_organism == true_organism})

  '  ${p}.mod.tab > ${p}.TrueFalse.tab

6.6. Grouping of reads into a single file, which simplifies generating plots in R.
pocketR ' 

         aggregate( cbind(count=qname) 
              ~ true_organism + mapped_organism + correct,
        FUN=length, data=input)
        ' ${p}.TrueFalse.tab > ${p}.agg

6.7. Plot the read fate of a single mapping run. The output are bar plots showing the fractions
of unmapped reads and reads mapped to the reference, for each organism reads have been
created from.

plot-read-fate true_organism mapped_organism \
    correct count ${p}.pdf ${p}.agg

6.8. Extract measures sensitivity and specificity
sensspec --c-morg mapped_organism \

     --c-torg true_organism \
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    ${p}.agg cat \
  > ${p}.parameters

echo "$sam done. -> Generated ${p}.{tab,agg,pdf,performance}"
  
done  # end of for loop (step 6.1)

7) Compare multiple mapping runs

7.1.  Add the  run  index to  each parameter  file.  The result  is  a  single-line  table  for  each
mapping run with measures for sensitivity and specificity connected to the run index of each
mapping run. 

for f in /folder/*.parameters; do
i=$(basename ${f%.parameters})
add_const_column "$f" runidx "$i" > ${i}.performance

done

7.2. Concatenate all performance files. The result is a multi-line table containing measures for
sensitivity  and specificity  connected  to  the  run index of  each mapping run,  one line  per
mapping run.

cat_tables *.performance > performance

7.3. Connect mapping parameters with the results of the mapping runs. Based on the run
index, sensitivity and specificity for each mapping run can be related to the used parameter
combination.

merge -a performance runidx \
-b partab runidx \
--all-a-cols --all-b-cols --all-a \
| write_later performance

8) Apply a quality filter (mapq 30) to the mapping results

for f in /folder/*.sam; do
        i=$(basename ${f%.sam})
        samtools view -Sh -q 30 ${i}.sam > ${i}_filtered.sam

done

9) Parse filtered sam files according to steps 6) and 7)
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European bison sample

Bioinformatic procedures

Data from a historical  European bison sample (Cc1/8853;  Bison bonasus) was utilised to
showcase the use of TAPAS on a previously published dataset. Details on sample processing
and sequencing can be found in the original publication [10]. Raw data was downloaded from
the  SRA (Accession  number  SRR4996860).  Cutadapt  v1.12  was  used  to  trim  reads  and
discard reads shorter than 30 bp  [6].  After  adapter  trimming,  a subsample of ten million
random reads was extracted using seqtk v1.2 (available from: https://github.com/lh3/seqtk).
Reads  were  mapped  to  the  genome  of  the  water  buffalo  (Bubalus  bubalis,
GCF_000471725.1), following the same procedure as described for the linsang data. 

Based  on  the  results  from  the  first  mapping  run  (with  default  parameters),  simulated
endogenous and contaminant reads were generated using the TAPAS pipeline. Reads were
simulated from the selected FASTA files (Table S1) with the uniform script from TAPAS,
using a minimum length of 30 bp and a decay length of 200 bp (discarding reads >75 bp). For
one of the simulated read sets, an example is described below.

### Simulate reads with a length between 30 and 75 bp
### Output: tab-separated table holding information on the read location (record, start, 

end) and the read sequence

uniform Pseudomonas_putida_KT2440_chromosome.fasta --seed 1987 850,000 30 

200 | awk "(length(\$4) < 75)" > P.puti.tab

### Extract the exact number of reads (accounting for one header line in the *.tab file)

head -n 115001 P.puti.tab > P.puti_short.tab

### Generate the files *.nucl and *.coord

awk 'BEGIN{OFS="\t"}{print $1,$2,$3}' < P.puti_short.tab > P.puti.coord

awk '{print $4}' P.puti_short.tab | tail -n+2 > P.puti.nucl

### Continue with the TAPAS pipeline from step 1.2 “Create uniq read names” 

In total, one million reads were simulated for mapping evaluation (Table S1). To approximate
the expected sequence divergence between the bison sample and the water buffalo reference,
random base substitutions (4%) were introduced in the endogenous reads, as well as C to T
substitutions at the 3’ and 5’ end of the reads, to reflect aDNA damage. All other steps were
executed exactly as described for the linsang dataset.
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Figures

Figure S1. FastQ Screen results for the in vivo generated dataset and the simulated dataset of
the  linsang and the  bison sample:  (A)  linsang - in  vivo  generated  dataset,  (B)  linsang -
simulated dataset, (C) bison - in vivo generated dataset, (D) bison - simulated dataset. The
majority of reads could not be matched to any of the genomes included in the database (Table
S2).
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Figure S2. Extracts from mapDamage output for in vivo generated data and simulated data of
the linsang sample using either default or TAPAS-optimised mapping parameters: (A) in vivo
generated data mapped with default settings, (B) in vivo generated data mapped with TAPAS-
optimised  settings,  (C)  simulated  data  mapped  with  default  settings,  (D)  simulated  data
mapped with TAPAS-optimised settings. Figures adapted from the output of mapDamage2
[9]. Graph colours represent C to T substitutions (red), G to A substitutions (blue), all other
substitutions  (grey), soft-clipped  bases  (orange),  and  deletions/insertions  relative  to  the
reference  (green/purple).  Both  simulated  and  in  vivo  generated  datasets  show  damage
patterns characteristic of degraded DNA. 
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Figure S3. Runtime in seconds (CPU time, y-axis) using BWA aln for mapping one million
simulated  linsang  reads  to  the  cat  genome  testing  30  combinations  of  the  parameters
mismatch value (n, x-axis) and seed length (l, coloured bars, see key top right). Particularly at
long seed lengths runtime becomes increasingly unfeasible for large datasets at more relaxed
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mismatch  values.  Bars for the longest runtimes are broken to aid visualisation of shorter
runtimes. This figure was generated using R (v3.4.2 and v3.4.3 [11]).
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Code used to create Table S4 and S6

Disclaimer: 

This file contains the code used for generating tables and figures presented in the TAPAS
manuscript. These are custom scripts (using basic linux command line utilities and R) suited
for a particular folder and file structure, hence paths and file names have been hard coded.
The code is not optimised for a “copy and use” approach in a different environment,  but
rather to present the code underlying the figures in the TAPAS manuscript. The code is free to
be adapted and re-used. 

Input: *.TrueFalse.tab
Output: tab-separated file containing raw data for all categories of reads (Table S4 and S6)
from each mapping run (one row per run).
Notes: The header can be added manually by concatenating a file holding only the header
(numbers_from_tab_HEADER.txt)  and the file “number_from_tab.txt” resulting in the file
“numbers_from_tab_w_HEADER.txt”. 

### Pipeline to parse multiple tab files resulting from different mapping runs with different parameters and 

one read set.

### Pipeline is adapted to my folder structure NEEDS to be modified when applying it to different data.

#!/bin/bash

set -ue

### Script to extract more detailed numbers from ".TrueFalse.tab files

for f in /path/to/input/*.TrueFalse.tab; do

i=$(basename ${f%.TrueFalse.tab})

# echo $i

### number of endogenous reads (assuming cat is endogenous and everything else is exogenous)

### true_organism must be cat

# echo "number of endogenous reads (assuming cat is endogenous and everything else is exogenous). Should 

be 260000"

En=$(awk '($9=="cat"){print $0}' ${i}.TrueFalse.tab | wc -l)

### number of exogenous reads

 ### true organism must not be cat and not true_organism (=header)

# echo "number of exogenous reads. Should be 740000"

Ex=$(awk '($9!="cat" && $9!="true_organism"){print $0}' ${i}.TrueFalse.tab | wc -l)

### endogenous reads 

###################################################################

##

### number of endogenous reads mapped w min mapq 30

# echo "number of endogenous reads mapped w min mapq 30"

# $9=="cat": reads are endogenous

# $4>=30: mapping quality over 30

Ena30=$(awk '($9=="cat" && $4>=30){print $0}' ${i}.TrueFalse.tab | wc -l)
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### number of endogenous reads correctly mapped w min mapq 30

# echo "number of endogenous reads correctly mapped w min mapq 30"

# $9=="cat": reads are endogenous

# $4>=30: mapping quality over 30

# $10=="TRUE": reads are mapped correctly (true_organism=mapped_organism && 

true_record=mapped_rname && true_start=mapped_pos)

Ena30T=$(awk '($9=="cat" && $4>=30 && $10=="TRUE"){print $0}' ${i}.TrueFalse.tab | wc -l)

### number of endogenous reads incorrectly mapped w min mapq 30

# echo "number of endogenous reads incorrectly mapped w min mapq 30"

# $9=="cat": reads are endogenous

# $4>=30: mapping quality over 30

# $10==""FASLE": reads are mapped incorrectly (true_organism!=mapped_organism and/or true_record!

=mapped_rname and/or true_start!=maooed_pos)

# $5!="*": only mapped reads

Ena30F=$(awk '($9=="cat" && $4>=30 && $10=="FALSE" && $5!="*"){print $0}' ${i}.TrueFalse.tab | wc -l)

### number of endogenous reads mapped w mapq < 30

### This number also includes unmapped endogenous reads

# echo "number of endogenous reads mapped w mapq < 30"

# $9=="cat": reads are endogenous

# $4<30: mapping quality below 30

Enb30=$(awk '($9=="cat" && $4<30){print $0}' ${i}.TrueFalse.tab | wc -l)

### number of endogenous reads incorrectly mapped w mapq < 30

### This number DOES NOT included unmapped endogenous reads

# echo "number of endogenous reads incorrectly mapped w mapq < 30"

# $9=="cat": reads are endogenous

# $4<30: mapping quality below 30

# $10==""FASLE": reads are mapped incorrectly (true_organism!=mapped_organism and/or true_record!

=mapped_rname and/or true_start!=mapped_pos)

# $5!="*": only mapped reads

Enb30F=$(awk '($9=="cat" && $4<30 && $10=="FALSE" && $5!="*"){print $0}' ${i}.TrueFalse.tab | wc -l)

### number of endogenous reads not mapped

### mapped_rname and mapped_organism = *

# echo "number of endogenous reads not mapped"

# $9=="cat": reads are endogenous

# $5=="*": read is unmapped ($5=mapped_organism)

# $"=="*": read is unmapped ($2=mapped_rname)

EnUn=$(awk '($9=="cat" && $2=="*" && $5=="*"){print $0}' ${i}.TrueFalse.tab | wc -l)

### exogenous reads 

###################################################################

####

### number of exogenous reads mapped w min mapq 30

# echo "number of exogenous reads mapped w min mapq 30"

# $9!="cat" && $9!="true_organism": reads are exogenous

# $4>=30: mapping quality over 30

Exa30=$(awk '($9!="cat" && $9!="true_organism" && $4>=30){print $0}' ${i}.TrueFalse.tab | wc -l)

### number of exogenous reads correctly mapped w min mapq 30

### There are no correctly mapped exogenous reads; number should be zero
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# echo "number of exogenous reads correctly mapped w min mapq 30"

# $9!="cat" && $9!="true_organism": reads are exogenous

# $4>=30: mapping quality over 30

# $10=="TRUE": reads are mapped correctly (true_organism=mapped_organism && 

true_record=mapped_rname && true_start=mapped_pos)

Exa30T=$(awk '($9!="cat" && $9!="true_organism" && $4>=30 && $10=="TRUE"){print $0}' $

{i}.TrueFalse.tab | wc -l)

### number of exogenous reads incorrectly mapped w min mapq 30

### These are all exogenous reads that have been mapped since exogenous reads cannot be correctly 

mapped. (and unmapped reads do not have a mapq above 30)

# echo "number of exogenous reads incorrectly mapped w min mapq 30"

# $9!="cat" && $9!="true_organism": reads are exogenous

# $4>=30: mapping quality over 30

# $10==""FASLE": reads are mapped incorrectly (true_organism!=mapped_organism and/or true_record!

=mapped_rname and/or true_start!=mapped_pos)

# $5!="*": only mapped reads

Exa30F=$(awk '($9!="cat" && $9!="true_organism" && $4>=30 && $10=="FALSE" $$ $5!="*"){print $0}' $

{i}.TrueFalse.tab | wc -l)

### number of exogenous reads mapped w mapq < 30

### exogenous reads w mapq < 30 and unmapped exogenous reads

# echo "number of exogenous reads mapped w mapq < 30"

# $9!="cat" && $9!="true_organism": reads are exogenous

# $4<30: mapping quality below 30

Exb30=$(awk '($9!="cat" && $9!="true_organism" &&  $4<30){print $0}' ${i}.TrueFalse.tab | wc -l)

### number of exogenous reads correctly mapped w mapq < 30

### There are no correctly mapped exogenous reads; number should be zero

# echo "number of exogenous reads correctly mapped w mapq < 30"

# $9!="cat" && $9!="true_organism": reads are exogenous

# $4<30: mapping quality below 30

# $10=="TRUE": reads are mapped correctly (true_organism=mapped_organism && 

true_record=mapped_rname && true_start=mapped_pos)

Exb30T=$(awk '($9!="cat" && $9!="true_organism" && $4<30 && $10=="TRUE"){print $0}' $

{i}.TrueFalse.tab | wc -l)

### number of exogenous reads incorrectly mapped w mapq < 30

### These are incorrectly mapped exogenous reads DOES NOT include unmapped reads

#echo "number of exogenous reads incorrectly mapped w mapq < 30"

# $9!="cat" && $9!="true_organism": reads are exogenous

# $4<30: mapping quality below 30

# $10==""FASLE": reads are mapped incorrectly (true_organism!=mapped_organism and/or true_record!

=mapped_rname and/or true_start!=mapped_pos)

# $5!="*": only mapped reads

Exb30F=$(awk '($9!="cat" && $9!="true_organism" && $4<30 && $10=="FALSE" && $5!="*"){print $0}' $

{i}.TrueFalse.tab | wc -l)

### number of exogenous reads not mapped

### mapped_rname and mapped_organism = *

# echo "number of exogenous reads not mapped"

# $9!="cat" && $9!="true_organism": reads are exogenous

# $5=="*": read is unmapped ($5=mapped_organism)

# $"=="*": read is unmapped ($2=mapped_rname)
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ExUn=$(awk '($9!="cat" && $9!="true_organism" && $2=="*" && $5=="*"){print $0}' ${i}.TrueFalse.tab | wc 

-l)

echo "${i}  ${En}   ${Ena30}    ${Ena30T}   ${Ena30F}   ${Enb30}    ${Enb30T}   

${Enb30F}   ${EnUn} ${Ex}   ${Exa30}    ${Exa30T}   ${Exa30F}   ${Exb30}    

${Exb30T}   ${Exb30F}   ${ExUn}"

done

head numbers_from_tab_w_HEADER.txt 

runidx En Ena30 Ena30T Ena30F Enb30 Enb30T Enb30F EnUn Ex Exa30 Exa30T

Exa30F Exb30 Exb30T Exb30F ExUn

0 260000 210327 209910 417 49673 11425 11601 26647 740000 7245 0 7245

732755 0 5564 727191

10 260000 184504 184055 449 75496 8074 10523 56899 740000 5694 0 5694

734306 0 4257 730049

11 260000 181904 181523 381 78096 9783 10513 57800 740000 4415 0 4415

735585 0 3119 732466

12 260000 178301 177939 362 81699 12222 10384 59093 740000 3114 0 3114

736886 0 2600 734286

13 260000 167440 167164 276 92560 18437 10135 63988 740000 2183 0 2183

737817 0 2046 735771

14 260000 154231 154023 208 105769 26261 9882 69626 740000 1784 0 1784

738216 0 1906 736310

15 260000 114250 114141 109 145750 46826 9233 89691 740000 1111 0 1111

738889 0 1579 737310

16 260000 92249 92174 75 167751 56152 8684 102915 740000 885 0 885

739115 0 1498 737617

17 260000 81153 81084 69 178847 58162 8455 112230 740000 832 0 832

739168 0 1442 737726

Code used to generate figures 

Input: table  “numbers_from_tab_w_HEADER.txt”,  with  added  columns  identifying  the
parameters mismatch values “n”, seed length “l” and runtime “CPU_time_total”. 

### load libraries and packages
library(ggplot2)

library(devtools)

library(scales)

### disable scientific notation to avoid exponential scale labels

options(scipen = 999)

### Set working directory

setwd("path/to/input/")

### Read in table

*_numbers_tab<-read.table("*_numbers_from_tab_Header_n_l_time.csv", header=TRUE, sep=",", dec=".")

### Sensitivity ###

### Overlay unfiltered and filtered values (filtered for mapping quality with samtools view -q)

### Attention: Parsing after filtering does not reveal the correct total number of endogenous reads. The sensitivity after 

filtering has to be related to the correct total number of endogenous reads!
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### Attention: Numbers STILL CONTAIN DUPLICATES

### Numbers have been extracted from the *.TrueFalse.tab files ###

### Ena30T: endogenous reads mapped with mapq >= 30 (DOES NOT include unmapped exogenous reads since unmapped 

reads cannot be correctly mapped)

### Enb30T: endogenous reads mapped with mapq < 30 (DOES NOT include unmapped exogenous reads since unmapped 

reads cannot be correctly mapped)

plot(*_numbers_tab)+

  geom_bar(aes(x=factor(n), y=(Ena30T+Enb30T)/En, fill=factor(l), alpha=1/10), stat="identity", position = position_dodge())+

  geom_bar(aes(x=factor(n), y=Ena30T/En, fill=factor(l)), stat="identity", position = position_dodge(), colour="white")+

  labs(fill="seed length (l)")+

  ggtitle("Sensitivity depending on mismatch value (n) and seed length (l)")+

  xlab("mismatch value (n)")+

  ylab("sensitivity")+scale_y_continuous(limits=c(0,1), breaks=seq(0,1,1/10))+

  theme(axis.text.x=element_text(angle=90, vjust=0.5, size=12), axis.title=element_text(size=14), 

axis.text.y=element_text(size=12), legend.justification =c(1,1), legend.position=c(1,1), legend.text=element_text(size=12), 

legend.title = element_text(size=12))+guides(alpha=FALSE)

### False positives = mapped exogenous reads before and after filtering for mapping quality ###

### Overlay the ratio of (incorrectly) mapped exogenous reads before and after filtering (filtering for mapping quality with 

samtools view -q)

### Attention: Numbers STILL CONTAIN DUPLICATES

### Numbers have been extracted from the *.TrueFalse.tab files ###

### False positives related to the total number of mapped reads

### En: total number of endogenous reads (input)

### Ex: total number of exogenous reads (input)

### EnUn: number of unmapped endogenous reads

### ExUn: number of unmapped exogenous reads

### Total number of mapped reads= En+Ex-EnUn-ExUn [UNFILTERED]

### Ena30: number of mapped endogenous reads with mapq >= 30 (both, correctly and incorrectly mapped reads)

### Exa30: number of mapped exogenous reads with mapq >= 30 

### Total number of mapped reads= Ena30+Exa30 [FILTERED]

plot(*_numbers_tab)+

  geom_bar(aes(x=factor(n), y=(Exa30F+Exb30F)/(En+Ex-EnUn-ExUn), fill=factor(l), alpha=1/10), stat="identity", position = 

position_dodge())+

  geom_bar(aes(x=factor(n), y=Exa30F/(Ena30+Exa30), fill=factor(l)), stat="identity", position = position_dodge(), 

colour="white")+

  labs(fill="seed length (l)")+

  ggtitle("Ratio of mapped exogenous reads to the total number of mapped reads")+

  xlab("mismatch value (n)")+ylab("ratio mapped exogenous reads")+

  scale_y_continuous(limits=c(0,0.15), breaks=seq(0,1,1/50))+

  theme(axis.text.x=element_text(angle=90, size=12, vjust=0.5), axis.title=element_text(size=14), 

axis.text.y=element_text(size=12), legend.justification =c(1,1), legend.position=c(1,1), legend.text=element_text(size=12), 

legend.title=element_text(size=12))+guides(alpha=FALSE)

# Runtime ###

### bar chart n vs. runtime [s] bwa aln grouped by l

### Attention: This plot refers to the CPU time (not the realtime)

### Times are identical for unfiltered and filtered data

ggplot(*_numbers_tab)+

  geom_bar(aes(x=factor(n), y=CPU_time_total, fill=factor(l)), stat="identity", position=position_dodge())+

  xlab("mismatch value (n)")+

  ylab("CPU time [s]")+

  labs(fill="seed length (l)")+

  ggtitle("CPU runtime [s] depending on mismatch value (n) and seed length (l)")+

  theme(axis.text.x=element_text(angle=90, size=14), axis.title=element_text(size=16), axis.text.y=element_text(size=14), 

legend.justification =c(1,1), legend.position=c(1,1), legend.text=element_text(size=14), legend.title=element_text(size =14))
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