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Methods S1 
 

Clustering analyses of threespine stickleback QTL: sources of data and filtering 

I used a QTL data set from threespine stickleback (Gasterosteus aculeatus) compiled 

previously by Peichel & Marques (2017) [1] from over twenty mapping studies. I 

used this data set to test for (i) QTL clustering, (ii) the relevance of low-crossover 

genome regions in QTL clustering, and (iii) a potential detection bias of QTL towards 

low-crossover genome regions. Detailed information on the QTL data set can be 

taken from Peichel & Marques (2017) [1]. 

 The raw QTL data were filtered for QTL from threespine stickleback (i.e., 

QTL from ninespine stickleback were excluded) and from QTL mapping studies (i.e., 

QTL obtained trough association mapping were excluded) only. If the same 

phenotypic trait was mapped multiple times, QTL from only one randomly chosen 

mapping study were kept for further analysis. All QTL from the 'body shape' trait 

category were excluded from further analysis. The reason for this was that QTL from 

this trait category (see ref [1]) appeared highly redundant within and among 

mapping studies because several studies used individual landmark variation from 

geometric morphometrics for mapping (but see Table 1 for an analysis including the 

'body shape' category, which supported the same conclusions). After these filtering 

steps, the final data set for analysis consisted of 621 QTL.  

 Notably, the physical QTL positions were in accordance with the improved 

stickleback reference genome assembly provided by Roesti et al. (2013) [2]. This 

allowed inferring the genetic position (cM) of each QTL based on its physical 

position (Mb), and to obtain an estimate for the crossover rate (cM/Mb) in the 

genome region around each QTL using linkage map and crossover rate information 

from Roesti et al. 2013 [2]. Because crossover rate estimates were not available along 

the entire stickleback chromosomes, only 602 out of the 621 QTL could be associated 

with a crossover rate estimate. 

 

Assessing the degree of genomic QTL clustering 

I assessed the degree of genomic QTL clustering by calculating all pairwise QTL 

linkage distances (i.e., absolute difference in cM between pairs of QTL) within 

stickleback chromosomes. These distances were then pooled across all chromosomes. 

The proportion of short linkage distances was used as a measure for the extent of 

QTL clustering (i.e., the frequency of pairwise distances < 2.5 and < 5 cM). A higher 

frequency of short linkage distances thus indicates stronger QTL clustering. 

 Notably, the analysis presented in the main paper was based on unique QTL 

positions only. This means that when multiple traits (which may or may not be 

morphologically related) mapped to the exact same QTL position, this position was 

retained only once for calculating the pairwise linkage distances (number of total 

unique QTL positions = 336). This strategy was taken to account for possible 

pleiotropic effects, that is, when the same locus influences several traits. However, it 

is also possible that QTLs for multiple traits map to the same genome position 

although the causal loci are not the same, but that the loci are simply very close-by 

and thus indistinguishable with QTL mapping. The results presented in the main 

paper (Fig. 2a) can therefore be thought to provide a conservative estimate of the 
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extent of QTL clustering in the stickleback genome, and QTL clustering was stronger 

when the full QTL data set was considered for analysis (i.e., all 621 QTL; see Fig. S1). 

 The extent of QTL clustering in the real data set was compared to the extent 

of clustering of QTL placed randomly within the stickleback genome, while taking 

intra-genomic variation in locus (gene) density into account. To create such a 

'randomised data set', I first retrieved the start and end position of all unique genes 

from the ENSEMBL Genome Browser (BioMart) and projected them onto the Roesti 

et al. (2013) [2] stickleback reference genome using customized R scripts [3]. I then 

calculated the physical midpoint position of each gene, and randomly sampled a 

number identical to the number of real QTL of these genome-wide gene midpoints. 

This generated one randomised QTL data set, which was from there on treated like 

the real QTL data set to assess genomic clustering (see above). In total, 500 

randomised QTL data sets were generated and analysed. 

 

Are QTL more often located in low-crossover genome regions than expected by chance? 

I averaged the crossover rate estimates across the genome regions with real QTL, and 

across the genome regions harboring 'random QTL' within each randomized data 

set. The frequency distribution of the average crossover rates across the 500 

randomized data sets was visualized with a histogram. 

 I further tested for an enrichment of mapped QTL on chromosomes with a 

generally lower average crossover rate. To do so, I first calculated the average 

crossover rate (i.e., maximal genetic length [cM] divided by maximal physical length 

[Mb]) and the number of mapped QTL divided by the number of total unique genes 

for each chromosome. I then used Pearsons's r to quantify the correlation between 

these two variables across all chromosomes. Statistical significance (the 95% 

bootstrap confidence interval and the P-value) was assessed through resampling the 

data randomly 10,000 times [4]. I used the visreg R package [3] to visualize the linear 

relationship between the two variables across all chromosomes. 

 

Testing for a possible detection-bias in QTL mapping by correlating PVE with crossover rate 

I evaluated whether QTL mapping is likely to be detection-biased towards low-

crossover genome regions by testing for a negative association between PVE 

(proportion of variance explained) and crossover rate across the QTL. Because PVE 

estimation for a QTL can be influenced by the design of a study, such as by the 

number of hybrid individuals used for QTL mapping [5], I standardized PVE across 

studies by dividing each raw PVE estimate by the mean PVE of the respective study. 

However, analyzing non-standardized PVE values yielded similar results leading to 

identical conclusions (Table S1). 

 I tested for an association between crossover rate and PVE across all QTL 

using Pearson's r, and calculated the respective 95% bootstrap confidence interval 

(and resampling P-value) through resampling the data randomly 10,000 times [4]. 

Because an association between crossover rate and PVE could be strongly driven by 

the relatively few QTL with an exceptionally high PVE, I also filtered the QTL data 

set by excluding the 10% of QTL with the highest raw PVE value and re-assessed the 

correlation between crossover rate and PVE across the remaining QTL. This analysis 

supported the same overall conclusions (Table S1. 
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 The linear relationship (regression) between crossover rate and PVE 

including the 95% confidence interval bands were visualized using the visreg R 

package [3]. All data analysis and graphing for this paper was performed in R [3]. 
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Figure S1 

                                          

                                    
 

Fig. S1. Genomic clustering of stickleback QTL based on all QTL (i.e., including 

'redundant' QTL positions; N = 621). The proportion of pairwise QTL distances 

shorter than 2.5 and 5 cM is higher in the real QTL data set than in 500 simulated 

data sets generated by placing an identical number of QTL randomly within the 

stickleback genome (gray dots indicate single simulation replicates). Plotting 

conventions follow the ones in Figure 2a. 
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Figure S2 

 

          
 
Fig. S2. In stickleback, chromosomes with a lower average crossover rate tend to 

have a greater number of mapped QTL. Shown is the average crossover rate 

(cM/Mb) versus the number of mapped QTL divided by the number of unique genes 

per chromosome (gray dots). The black line depicts the linear regression including its 

95% confidence bands in gray shading. Notably, the power of this analysis was 

limited by the number of chromosomes in the stickleback genome (N = 21), which 

may partly explain why statistical significance is absent for the negative association 

between overall crossover rate and mapped QTL across chromosomes (resampling P 

= 0.068).  
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Table S1. Influence of data filtering and PVE-standardization on the correlation 

between crossover rate and PVE for threespine stickleback QTL.  
 

Data filtering Was PVE 

standardized across 

studies? 

Number 

of QTL  

Pearson's r 95% 

confidence 

interval 

Resampling 

P-value 

The 'body shape' 

QTL category 

was removed 

No 602 -0.141 -0.191 to -0.080 0.0010 

The 'body shape' 

QTL category 

was removed 

Yes, by dividing each 

raw PVE estimate by 

the mean PVE of the 

respective study 

602 -0.209 -0.249 to -0.168 0.0001 

The 'body shape' 

QTL category 

was removed; 

QTL with the 

highest 10% raw 

PVE estimates 

were removed 

Yes, by dividing each 

raw PVE estimate by 

the mean PVE of the 

respective study 

542 -0.144 -0.214 to -0.070 0.0011 

The 'body shape' 

QTL category 

was removed; 

unique QTL 

positions were 

considered only 

Yes, by dividing each 

raw PVE estimate by 

the mean PVE of the 

respective study 

329 -0.149 -0.206 to -0.087 0.0091 

Unique QTL 

positions were 

considered only 

(incl. the 'body 

shape' QTL 

category) 

Yes, by dividing each 

raw PVE estimate by 

the mean PVE of the 

respective study 

441 -0.134 -0.187 to -0.075 0.0069 
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