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Abstract: Accurate species identification from ancient DNA samples is a difficult task that would
shed light on the evolutionary history of pathogenic microorganisms. The field of palaeomicrobiology
has undoubtedly benefited from the advent of untargeted metagenomic approaches that use
next-generation sequencing methodologies. Nevertheless, assigning ancient DNA at the species
level is a challenging process. Recently, the gut microbiome analysis of three pre-Columbian
Andean mummies (Santiago-Rodriguez et al., 2016) has called into question the identification of
Leishmania in South America. The accurate assignment would be important because it will provide
some key elements that are linked to the evolutionary scenario for visceral leishmaniasis agents in
South America. Here, we recovered the metagenomic data filed in the metagenomics RAST server
(MG-RAST) to identify the different members of the Trypanosomatidae family that have infected these
ancient remains. For this purpose, we used the ultrafast metagenomic sequence classifier, based on an
exact alignment of k-mers (Kraken) and Bowtie2, an ultrafast and memory-efficient tool for aligning
sequencing reads to long reference sequences. The analyses, which have been conducted on the most
exhaustive genomic database possible on Trypanosomatidae, show that species assignments could be
biased by a lack of some genomic sequences of Trypanosomatidae species (strains). Nevertheless, our
work raises the issue of possible co-infections by multiple members of the Trypanosomatidae family
in these three pre-Columbian mummies. In the three mummies, we show the presence of DNA
that is reminiscent of a probable co-infection with Leptomonas seymouri, a parasite of insect’s gut,
and Lotmaria.

Keywords: Trypanosomatidae; kraken taxonomic assignment tool; bowtie2 fast short reads aligner;
ancient DNA; parasitome; co-infection

1. Introduction

Santiago-Rodriguez et al. reported for the first time some evidence of the occurrence of
Leishmania DNA in the guts of Andean mummies dating to pre-Columbian times, and they proposed
an assignment to L. donovani [1]. In South America, the circulation of such Leishmania species is
currently unknown, and has never before been documented in human remains. Therefore, the proper
identification of the Leishmania species that would have infected mummies before Iberian colonization
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remains a major concern, and would bring new elements to the puzzle of the possible evolutionary
scenarios [2]. L. donovani and L. infantum are by far the most common Leishmania species responsible
for the visceral form (visceral leishmaniasis, VL) of the disease in both the Old World and the New
World. So far, all of the cases of leishmaniasis described on pre-Columbian mummies are reminiscent of
cutaneous (CL) or mucocutaneous (MCL) lesions: CL was observed on a mummy dating to a cultural
group from 700–800 AD and found in a cemetery in Peru [3], and MCL was found on four samples
in the archaeological cemetery of Coyo Oriente (skulls approximately 1000 years old) located in the
desert of San Pedro de Atacama, Northern Chile [4]. These sites come from a time period predating
European contacts. A Leishmania infection was confirmed in these remains using a Polymerase chain
reaction (PCR) approach [4] (amplification of fragments of the inositol monophosphate dehydrogenase
gene, the kinetoplast minicircle, the amino acid permease AAP13LD, and the adenylate kinase gene).
Furthermore, the amplified sequences differed from those of L. donovani.

The rise of NGS (next-generation sequencing) technologies has opened a new field of systematic
investigations in metagenomics. When these new technologies are applied to samples of ancient
human remains, they provide valuable information to scientists working on the evolutionary history
of infectious diseases. To avoid environmental contamination and accurately authenticate ancient
DNA, a number of precautions and rules have been enacted [5,6]. Among them: (i) the requirement
of a dedicated ancient DNA laboratory to minimize and manage contamination, particularly
during sample collection, and the risk of exogenous DNA contaminations from the laboratory;
and (ii) microbial ancient DNA damage should exhibit patterns of DNA damage and fragmentation;
nevertheless, these patterns vary according to source context and species, but also according to the
workflow and enzymes used during library preparation. The characterization of gut microbiomes
of pre-Columbian mummies by Santiago-Rodriguez et al. using unbiased metagenomic approaches
gave the opportunity to detect traces of specific pathogens [1]. Nevertheless, several issues have been
raised regarding the age of sequenced DNA and the possibility of environmental contaminations [7,8].
The answer to these questions has been published [9]. However, if environmental contamination is a
crucial problem when working on bacteria, for human pathogenic Trypanosomatidae, environmental
contamination is unlikely to occur. Indeed, these parasitic eukaryotes require an adequate environment
to survive and proliferate. They are not free-living microorganisms, and have not had the ability to
survive very long outside their hosts. Thus, contamination with such organisms is unlikely to occur
during manipulation and the laboratory processing of samples. DNA contamination of the mummies
by contact with some infected insects that transmit them (sandfly, Psychodidae-Phlebotominae, for
Leishmania or Triatoma, Reduviidae-Triatominae, for Trypanosoma cruzi) cannot be ruled out. Thus, because
of the very low probability of such contamination, the available metagenomic data [1] are of
great interest to detect the presence of parasites belonging to the Trypanosomatidae familly in these
ancient remains.

Basic Local Alignment Search Tool (BLAST) alignments, which rely on finding the best alignment
to a panel of genomic sequences, were often the traditional approach to assign a taxonomic label to an
unknown sequence. However, unambiguous assignment at the species level is very hard, and this
tool is very expensive in central processing unit (CPU) time for NGS data analysis on local computers,
even if new facilities are now available via the use of Cloud public infrastructure or computer
cluster. To shed light on the causative agent of leishmaniasis infection (and more broadly on parasites
belonging to the Trypanosomatidae family) in these ancient remains, we used new software dedicated
to metagenomic data analysis. Kraken, a bioinformatic program [10], presents numerous advantages
over other programs, including its speed of performing analysis on metagenomes. The identification
at the species level by Kraken is based on the use of exact-match database queries of k-mers, rather
than on alignment similarity. This new approach was applied to the metagenomic rapid annotation
using subsystems technology (MG-RAST) pre-processed metagenomic data [1], and the results were
compared to those obtained with Bowtie2 [11].
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2. Materials and Methods

2.1. Data

The metagenomic data that we used of the gut microbiomes from three pre-Columbian Andean
mummies (FI3, FI9, and FI12) were available in the MG-RAST server (http://blog.mg-rast.org/)
(MGRAST IDs 4629033.3, 4630170.3 and 4626489.3, respectively).

We built a reference genome database composed of all of the complete Trypanosomatidae genomes
collected from the NCBI (http://www.ncbi.nlm.nih.gov/genome/) and complemented by genomes
from TriTrypDB release 37 (25 April 2018) (Kinetoplastid Genomics Resource http://tritrypdb.org/
tritrypdb/) [12]. The total number of Trypanosomatidae genomes in the database is 79 (Table S1).

2.2. Methods

We analyzed the data with Kraken (version 1.0), which is a system for ultrafast metagenomic
sequence classification using exact alignment [10] (http://ccb.jhu.edu/software/kraken/). It relies on
the development of a database that contains records consisting of a k-mer and the lowest common
ancestor (LCA) of all of the organisms whose genomes contain that k-mer [10]. We built a reference
database with the default parameters of Kraken (k = 31). We downloaded the pre-processed sequences
(this step filters sequences based on length, the number of ambiguous bases, and quality value) from
the MG-RAST server, and then compared them with the non-redundant, custom-built Trypanosomatidae
database. The results were visualized with a metagenomic visualization tool, Krona [13]. To complete
the analysis, the same set of metagenome data was analyzed with Bowtie2—a program for the
rapid alignment of gapped reads—using the sensitive option [11]. To extract the coverage from
the Binary Alignment Map (BAM) alignment files, we used the samtools program version 1.08,
command idxstats [14]. The reference genome database was used for analyses conducted with the
two methodologies.

3. Results and Discussion

In a first attempt to compare the respective limits of the two tools in the species assignment,
we focused on microorganisms belonging to the Trypanosomatidae family. These were chosen for
two reasons: first, because reported Leishmania infection is already reported in some mummies [1],
and second, because of the endemicity of Chagas disease [15] and leishmaniasis in this South American
region [16].

We conducted analyses for the three mummies on pre-processed data, as indicated in the methods
section. To confirm that the detected traces of Trypanosomatidae DNA are not the result of environmental
contaminations, we used the data passed through the screening step (i.e., following the dereplication
and the duplicate read inferred sequencing error estimation (DRISEE) steps) in MG-RAST. The results
confirmed clearly a co-infection with at least two pathogenic Trypanosomatids and the fact that is not
the result of a contamination

3.1. Trypanosomes and Chagas Disease

The genome representativity of our database is 55% (11 genomes out of approximately
20 Trypanosoma species currently described) (Figure 1A). The reference database includes trypanosomes
responsible for American trypanosomiasis (T. cruzi) and trypanosomes responsible for human African
trypanosomiasis and animal trypanosomiasis.

http://blog.mg-rast.org/
http://www.ncbi.nlm.nih.gov/genome/
http://tritrypdb.org/tritrypdb/
http://tritrypdb.org/tritrypdb/
http://ccb.jhu.edu/software/kraken/
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Trypanosoma is clearly identified in ancient DNA from the guts of the three mummies FI3, FI9, and 
FI12, with 63%, 69%, and 52% of the detected Trypanosomatidae community, respectively (Figure 2B). 
As expected, almost all of the reads belonging to the genus Trypanosoma can be attributed to T. cruzi 
(Figure 3A–C) for the three mummies. These results corroborate the conclusion of Santiago-
Rodriguez et al. [1]. Currently, T. cruzi is split into six genetic lineages or discrete typing units (DTUs) 
named TcI, TcIV, TcII, TcIII, TcV, and TcVI, respectively, and a seventh one called TcBat. For both FI3 
and FI9, the highest number of reads matches the T. cruzi strain Tula cl2 (Table S2), which belongs to 
TcI (DTU I). This DTU is widely represented in the genomic database that we gathered (five of the 11 
genomes currently available). For FI12, reads that match Tula cl2 are scarce (Table S2). Nevertheless, 
because of the relatively low proportion (<10%) of reads that match with a genome filed in our 
database, it is probable that the DTU of the infecting T. cruzi strain is not yet represented. 

Analysis with Bowtie2 clearly confirmed a T. cruzi infection (53%, 49%, and 57% for FI3, FI9, and 
FI12, respectively) in these mummies (Figure 2C). The majority of reads matched T. cruzi strains Y 
and Tula cl2 (Table S3) rather than other genomes filed in the database. Concerning the alignment with T. 
cruzi Y, the reads matched 178 and 203 contigs in FI3 and FI9, respectively, out of 9821 (Table S4). A large 
majority of reads (80% in FI3 and 90% in FI9) matched 52 identical contigs for both mummies. For T. 
cruzi Tula cl2, reads of mummy FI3 and mummy FI9 matched 42 and 39 contigs, respectively, out of 5300, 
and almost 100% of the reads for both mummies matched 28 identical contigs (Table S4). Overall, this 
set of results indicates that the infecting T. cruzi strain is probably not in our reference database. 

Figure 1. Proportion of available genomes (in blue) on the number of currently named species (in red)
for the various genera belonging to the Trypanosomatidae family. (A) genus Trypanosoma; (B) genus
Leishmania; (C) other Trypanosomatidae genera.

The analysis performed with Kraken reveals that a non-negligible proportion of reads (5%,
9%, and 10% for FI3, FI9, and FI12) is attributed to the Trypanosomatidae family (Figure 2A).
The genus Trypanosoma is clearly identified in ancient DNA from the guts of the three mummies
FI3, FI9, and FI12, with 63%, 69%, and 52% of the detected Trypanosomatidae community, respectively
(Figure 2B). As expected, almost all of the reads belonging to the genus Trypanosoma can be attributed
to T. cruzi (Figure 3A–C) for the three mummies. These results corroborate the conclusion of
Santiago-Rodriguez et al. [1]. Currently, T. cruzi is split into six genetic lineages or discrete typing units
(DTUs) named TcI, TcIV, TcII, TcIII, TcV, and TcVI, respectively, and a seventh one called TcBat. For both
FI3 and FI9, the highest number of reads matches the T. cruzi strain Tula cl2 (Table S2), which belongs
to TcI (DTU I). This DTU is widely represented in the genomic database that we gathered (five of the
11 genomes currently available). For FI12, reads that match Tula cl2 are scarce (Table S2). Nevertheless,
because of the relatively low proportion (<10%) of reads that match with a genome filed in our database,
it is probable that the DTU of the infecting T. cruzi strain is not yet represented.

Analysis with Bowtie2 clearly confirmed a T. cruzi infection (53%, 49%, and 57% for FI3, FI9,
and FI12, respectively) in these mummies (Figure 2C). The majority of reads matched T. cruzi
strains Y and Tula cl2 (Table S3) rather than other genomes filed in the database. Concerning the
alignment with T. cruzi Y, the reads matched 178 and 203 contigs in FI3 and FI9, respectively, out of
9821 (Table S4). A large majority of reads (80% in FI3 and 90% in FI9) matched 52 identical contigs for
both mummies. For T. cruzi Tula cl2, reads of mummy FI3 and mummy FI9 matched 42 and 39 contigs,
respectively, out of 5300, and almost 100% of the reads for both mummies matched 28 identical contigs
(Table S4). Overall, this set of results indicates that the infecting T. cruzi strain is probably not in our
reference database.
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in the NCBI and/or TriTrypDB databases out of more than 1902 deposited strains to date [17]. Likewise, 
the database we used contains no representative genomes belonging to DTUs III, IV, or VII (TcBat). 
Interestingly, ancient T. cruzi DNA has also been identified in human mummies dating from the same 
period (Chinchorro culture) and in the same geographical region, Southern Peru [18]. In Bolivia and 
Peru, strains belonging to the DTU I and DTU V clades are the main T. cruzi strains isolated, followed 
by strains of DTUs IV, III, and VI [15]. The knowledge of the complex evolutionary history of T. cruzi, 
which involved genetic exchanges [19], and the existence of hybrid DTUs will certainly benefit from 
the identification of the infecting strains at the DTU level from this ancient DNA material. Insight 
into the circulating strains in these mummies should generate important elements for the calibration 
of such a dynamically evolving scenario. Nevertheless, our analysis highlights that the ancient T. 
cruzi DNA present in the three mummies cannot be assigned to T. cruzi CL Brener (DTU VI). 

Figure 2. Composition of gut microbiota for the three Andean mummies studied by Santiago-
Rodriguez et al. [1]: FI3, FI9, and FI12, respectively. (A) Proportion of reads assigned to
the Trypanosomatidae family for each mummy after analysis with Kraken. Reads not matching
Trypanosomatidae sequences appear in grey. Reads matching Trypanosomatidae sequences are flesh
colored; (B) In Trypanosomatidae: numbers and percentages of reads assigned to the genera Trypanosoma
(purple), Leishmania (blue), Leptomonas (red), Lotmaria (green). Reads from mummies FI3, FI9, and FI12
matching to any other Trypanosomatidae are shown in orange; (C) Results obtained by the Bowtie2
alignment sequence for mummies FI3, FI9, and FI12, respectively. For facility in comparison of the
results gathered with both software the same color reference was used.

Most of the genomes of T. cruzi strains are lacking: currently, only 11 complete genomes are
available in the NCBI and/or TriTrypDB databases out of more than 1902 deposited strains to date [17].
Likewise, the database we used contains no representative genomes belonging to DTUs III, IV, or VII
(TcBat). Interestingly, ancient T. cruzi DNA has also been identified in human mummies dating from the
same period (Chinchorro culture) and in the same geographical region, Southern Peru [18]. In Bolivia
and Peru, strains belonging to the DTU I and DTU V clades are the main T. cruzi strains isolated,
followed by strains of DTUs IV, III, and VI [15]. The knowledge of the complex evolutionary history of
T. cruzi, which involved genetic exchanges [19], and the existence of hybrid DTUs will certainly benefit
from the identification of the infecting strains at the DTU level from this ancient DNA material. Insight
into the circulating strains in these mummies should generate important elements for the calibration
of such a dynamically evolving scenario. Nevertheless, our analysis highlights that the ancient T. cruzi
DNA present in the three mummies cannot be assigned to T. cruzi CL Brener (DTU VI).
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3.2. Leishmania and Leishmaniasis

All of the Leishmania genomes that are currently available in NCBI or in TriTrypDB are included
in the reference database. The database represents only 38% of genomes from 21 of the 54 Leishmania
species that have been currently identified [20]. Microorganisms from the subgenera Leishmania and
Viannia are well represented (Figure 1B). Human pathogenic Leishmania spp. are far better represented
in the database (14/20), with the subgenera Leishmania and Viannia well represented (80% and 83%,
respectively). No genome from the subgenus Porcisia (Paraleishmania section) is available (Table 1).
This subgenus includes some human pathogenic Leishmania sp., such as L. colombiensis.

Table 1. Representativity of sequenced genomes available in relation to the number of known Leishmania
species that are pathogenic for humans, according the updated classification of Akhoundi et al. (2017) [18].

Leishmania Viannia Sauroleishmania Mundinia L. australiensis
(L. macropodum) Porcisia Endotrypanum

Number of species
pathogenic for humans 10 6 0 1 1 2 0

Number of
genomes available 8 5 0 1 0 0 0

Representativity in % 80 83 0 100 0 0 0

The NGS reads analyzed with the metagenomic sequence classifier Kraken highlight a probable
co-infection with a Leishmania parasite for the three mummies FI3, FI9, and FI12 (Figure 2B), with 3%,
3%, and 10% of the reads attributed to Trypanosomatidae that belong to the genus Leishmania, respectively.
From Figure 3, it is clear that Kraken assigns reads to a large number of Leishmania species, each with a
low percentage. Clearly, no predominant Leishmania spp. is detected, and L. donovani does not appear
as a probable infecting Leishmania species in all of these mummies. Therefore, these results prompt us to
question the Leishmania species infecting the mummies. Since DNA originates from internal tissues, we
have to look for the Leishmania spp. That are currently known to affect mainly internal organs and cause
VL, namely, L. donovani, L. infantum, L. tropica, L. martiniquensis, and L. colombiensis. At this point, we can
exclude an infection by the first four L. species cited above. The sequence of the L. colombiensis genome
(Paraleishmania section) is currently not available, and may be the Leishmania agent that we are seeking.
Currently, in Peru, the country from which mummies originate, Leishmania pathogens for humans
include L. peruviana, L. guyanensis, L. amazonensis, L. lainsoni, and L. braziliensis [20]. Some Leishmania
species that usually cause cutaneous forms have, under some circumstances, the capacity to disseminate
into internal organs [21,22]. Such unusual clinical presentation is frequently associated with an
immunocompromised state or dysfunction of the T helper-mediated immune response [2]. Our study
clearly shows that a low proportion of reads are attributed to L. peruviana, L. amazonensis, L. braziliensis,
and L. guyanensis (species causing CL). Such low frequency in read assignment calls into question
the validity of the identification (Figure 2) (Table S2). Nevertheless, the occurrence of an infection by
multiple Leishmania sp. cannot be ruled out as well as infection by hybrid strains of Leishmania [20].
From these results, it is clear that to be accurate in its species assignment, the reference database used
by Kraken needs to be highly representative of the described species and strains. The more exhaustive
the database, the better the assignment accuracy will be.

The alignment program Bowtie2 detects the presence of Leishmania in three mummies (FI3, FI9,
and FI12) (Figure 2C). However, unlike the mummy FI12, in the mummies FI3 and FI9, the reads
match a large panel of Leishmania sp., especially in the mummy FI3 (Table S3). Then, it is not possible
to unequivocally assign DNA to a specific Leishmania species and L. donovani in particular due to the
number of genomes of different Leishmania spp. matched.

Our analysis reveals that the genome of the infecting Leishmania species, whose DNA is detected
in these ancient remains, is probably not present in our reference database. We may consider the
occurrence of an ancient Leishmania species. Nevertheless, since our reference database is not
exhaustive, we cannot rule out the presence of Leishmania sp. causing CL or MCL or the co-infection of
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multiple Leishmania spp. Still, the detection of Leishmania DNA is clearly not the result of an artefact or
a contamination.

3.3. Other Leishmaniinae (Crithidiatae)

Trypanosoma and Leishmania are dixenous parasites, meaning that their life cycle includes an
invertebrate as a first host and a vertebrate as a second host. Several genomes of monoxenous
(one-host) Trypanosomatidae are available and belong to the genera Angomonas, Crithidia, Leptomonas,
Lotmaria, and Strigomonas (Table S1). The database genome representativity for Leptomonas is 5%,
with only two genomes available out of the 39 Leptomonas species currently described (Figure 1C).
The analysis performed on the three mummies revealed that a relatively high proportion of reads
attributed to the family Trypanosomatidae is reminiscent of the genus Leptomonas (13%, 18%, and 13% for
F13, FI9, and FI12, respectively) (Figure 2B). A large majority of these reads are assigned to L. seymouri
and not L. pyrrochoris after an analysis with Kraken (Figure 3A–C) (Table S2). Nevertheless, because of
the lack of available genomes for 37 out of 39 Leptomonas sp., the assignment to L. seymouri has to be
taken with caution, and an assignment at the strain level cannot be made.

Bowtie2 also confirms the recurrent occurrence of L. seymouri in all of the mummies (Figure 2C),
and a high number of reads match the L. seymouri strain BHU-1095 (Table S3) in mummies FI3 and FI9
(56,245 and 125,577, respectively). In both mummies, the reads match with eight and nine scaffolds (out
of 1216), respectively, and a large majority of reads match on only five scaffolds (Table S4). Leptomonas
species are usually found in the gut of insects, but they have the potential to infect mammals as
an opportunistic parasite. Nevertheless, their infective capacity in mammals seems to be limited
to immunocompromised hosts [23]. Interestingly, L. seymouri has been repeatedly isolated from VL
patients infected by L. donovani in India [24].

To our surprise, the analysis performed with Kraken reveals that an equivalent proportion of reads
(2%) is assigned to L. passim in the three mummies (Figures 2B and 3). Via Bowtie2 analysis, a very low
number of reads matches this genus in the mummies (Figure 2C and Table S3). L. passim is the founding
member of this genus (Figure 1). This member of Crithidiatae is described as a common parasite of the
honey bee Apis mellifera [25], which calls into question its presence in a human gut microbiome.

4. Conclusions

The strength of our approach is to work with the most exhaustive reference database of
Trypanosomatidae genomic sequences that are possible, combined with two programs that are
complementary in their metagenomic analysis approaches (k-mer searching versus local alignment).
These allowed us to gain insight into the identity of the infecting Trypanosomatidae agent. Analysis
using the sequence classifier (Kraken) unambiguously confirmed T. cruzi infection and undoubtedly
Leishmania infection in the three Andean mummies. In addition, our analysis provides new information
on co-infection by at least two human pathogenic trypanosomatids, Leishmania spp. and T. cruzi, in all
of the mummies with available metagenomes. This type of co-infection is known to occur in humans as
well as in some wild mammals [26,27]. Unfortunately, it is not possible to go further in the assignment
to the species level for Leishmania and DTU level for T. cruzi. This may be due to the lack of a number
of Leishmania genomes, particularly those of the Paraleishmania section, and of members of T. cruzi
belonging to some DTUs. It also highlights a pattern of polyinfection coupled with an opportunistic
trypanosomatid, i.e., L. seymouri [28]. Therefore, future studies with an exhaustive reference database
are necessary to better understand the interrelationships that shape the microbial community and play
a role in the evolution of the parasitome.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/8/418/s1,
Table S1: List of Trypanosomatidae genome sequences available and included in the reference database.
Table S2. (A) Results of Kraken analysis on preprocessed metagenomic data for the mummy FI3 (mgm_46.29033.3);
(B) results of Kraken analysis on preprocessed metagenomic data for the mummy FI9 (mgm_46.30170.3); (C) results
of Kraken analysis on preprocessed metagenomic data for the mummy FI12 (mgm_46.26489.3); Table S3. Results
of Bowtie2 analysis concerning the three mummies FI3, FI9 and FI12. Table S4. Distribution of reads matching

http://www.mdpi.com/2073-4425/9/8/418/s1
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(a) Leptomonas seymouri, (b) Trypanosoma cruzi Y and (c) Trypanosoma cruzi Tula cl2 on the contigs for the
three mummies.
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