
atmosphere

Article

Employing the Method of Characteristics to Obtain
the Solution of Spectral Evolution of Turbulent Kinetic
Energy Density Equation in an Isotropic Flow

Charles Rogério Paveglio Szinvelski 1,*,†,‡ , Lidiane Buligon 1,*,‡ , Gervásio Annes Degrazia 2,‡ ,
Tiziano Tirabassi 2,‡ , Otavio Costa Acevedo 2,‡ and Débora Regina Roberti 2,‡

1 Department of Mathematics, Federal University of Santa Maria, Santa Maria 97105900, Brazil;
charless@ufsm.br (C.R.P.S.) ; buligon.l@ufsm.br (L.B.)

2 Department of Physics, Federal University of Santa Maria, Santa Maria 97105900, Brazil;
gervasiodegrazia@gmail.com (G.A.D.); T.Tirabassi@isac.cnr.it (T.T.); otavio@ufsm.br (O.C.A.);
debora@ufsm.br (D.R.R.)

* Correspondence: charless@ufsm.br (C.R.P.S.); buligon.l@ufsm.br (L.B.);
Tel.: +55-55-9917-87138 (C.R.P.S. & L.B.)

† Current address: Federal University of Santa Maria, Santa Maria 97105900, Brazil.
‡ These authors contributed equally to this work.

Received: 30 July 2019; Accepted: 3 October 2019; Published: 10 October 2019
����������
�������

Abstract: This study aims to review the physical theory and parametrizations associated to Turbulent
Kinetic Energy Density Function (STKE). The bibliographic references bring a broad view of the
physical problem, mathematical techniques and modeling of turbulent kinetic energy dynamics in the
convective boundary layer. A simplified model based on the dynamical equation for the STKE, in an
isotropic and homogeneous turbulent flow regime, is done by formulating and considering the isotropic
inertial energy transfer and viscous dissipation terms. This model is described by the Cauchy Problem
and solved employing the Method of Characteristics. Therefore, a discussion on Linear First Order
Partial Differential Equation, its existence, and uniqueness of solution has been presented. The spectral
function solution obtained from its associated characteristic curves and initial condition (Method of
Characteristics) reproduces the main features of a modeled physical system. In addition, this modeling
allows us to obtain the scaling parameters, which are frequently employed in parameterizations for
turbulent dispersion.

Keywords: atmospheric turbulence; models parameterizations; characteristic curves; method of
characteristics; first order PDE(s); isotropy; three-dimensional spectrum of turbulent kinetic energy;
dynamic equation of spectral function

1. Introduction

The model that describes the dynamics of Turbulent Kinetic Energy (TKE) under the hypothesis
of regime fully developed turbulence covers several arguments associated with the phenomenology
of the physical system [1]. Due to the complexity of the phenomenon, an idealized representation
based on parametrizations is necessary, therefore, the accuracy of the model formulated depends on
the ability of the constituent equations to mathematically describe the physical process.

In this sense, the spectral energy density dynamics model in the Convective Boundary Layer (CBL)
is based on a system of Partial Differential Equations (PDE) known as Navier-Stokes Equations [1],
in which the predicted TKE evolution in the CBL is admitted from the parameterization of the forms
of production, dissipation, and energy transfer.
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To define these basic descriptive terms of the spectral dynamics, it is necessary to establish
the object of study itself, which is the Spectral Density Turbulent Kinetic Energy Function (STKE),
and subsequent quantification as TKE of the CBL as a manifestation of the turbulent flow velocity
fluctuations. For this, we must begin with the conception of the autocorrelation functions and 1D
spectral density function by the Fourier transform [2], until its representation in the three-dimensional
form [3] and later synthesis in a descriptive equation of the dynamic spectral function [1].

At this point, the importance of the parameterization process of the constituent terms of the model
is emphasized, as it will not only indicate the reliability of the model through the realistic description of
the involved processes and reproduction of observed properties in the phenomenon, but also influence
the choice of mathematical methods (analytical and/or numerical) to obtain the solution [4].

In this manuscript, the parameterizations for the terms of production, dissipation and energy
transfer are presented [5]. However, as it is considered a simplified model that only involves the
inertial transfer of TKE and dissipation terms describe these dynamics, this assumption allows us to
obtain a model composed of a Linear First Order Partial Differential Equation (1L-PDE), which can be
solved using the Method of Characteristics [6,7].

The choice of this method will be evidenced by not being a restrictive method, that is, it applies to
any first order PDE (1st-PDE) and allows the use of numerical techniques that are easily incorporated
by the method [4,8]. Moreover, it allows an understanding of the process of developing the solution,
which indicates the steps for a demonstration of the Theorem of Existence and Uniqueness of solutions
for 1L-PDE.

At the end, this paper presents a modeling process of a natural phenomenon, starting from
the specification and characterization of the object of study, its genesis, parameterization of related
processes, construction of an idealized equation of modeling of the phenomenon, and later detailing
and theoretical demonstration of validity and applicability of the method to obtain the solution.
Then, the solution obtained in this simplified model will reproduce the basic properties of the
modeled dynamics.

The study is composed of two essential sections to comprehend the proposed modeling process.
The first section covers the theoretical framework that aims to describe the relevant physical processes
associated to the phenomenon of turbulence that will be employed in the formulation of a Spectral
Density Evolution Equation of TKE in a CBL. It starts from the conception of the pair of functions of
autocorrelation and one-dimensional energy density via Fourier transform and the elaboration of its
three-dimensional spatial variation. Once the STKE is established, an equation taken from [1] will
relate the temporal evolution of the STKE dynamics together with terms of production, dissipation,
and STKE transfer in CBL. To better understand the processes involved in this dynamic model, the
parameterizations of these terms are described. It is worth noting that these parametrizations present
non-stationary elements inherent to the turbulent flow, such as convective boundary-layer height (zi),
friction velocity (u∗), Obukhov length (L), convective velocity scale (w∗), among others [9]. These
scaling parameters are used to make the proposed equations dimensionless and, enable us to describe
the models of the general time, length, and velocity scales parameters [5]. The second section consists
of questions associated with the Method of Characteristics, which is the respective mathematical
method employed to obtain the solution of the presented physical model. A two-stage presentation
of the method in question was chosen. In the first stage, the generalized geometric construction of
the solution surface itself is given, and as a complementary section to this geometric description,
Appendix A outlines a general idea of the method application, processes, and geometric entities
involved in constructing the solution surface by solving a simplified 1st-PDE. In the second stage,
the mathematical proof that validates the solution surface constructed as a solution of the 1L-PDE is
established. Once the procedures and techniques of the theoretical foundation are established, a generic
model for STKE in the CBL can be formulated. Finally, the Isotropic Model for the STKE dynamics
in the PBL is established. This model is designed by simplifying isotropic turbulence hypotheses
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and non-STKE production by thermal and mechanical convection and its solution is obtained by the
Method of Characteristics.

2. Theoretical Framework

The theoretical framework applied in the formulation of the 3D-STKE and relevant processes that
describe the dynamics of the TKE in the CBL are presented here. The mathematical hypothesis to solve
a 1L-PDE by the Method of Characteristics will be made through a geometric approach to develop
this solution by the characteristic curves with the PDE and afterwards extend the process to general
1L-PDE [6,7,10].

2.1. The Turbulent Energy Spectrum Function

Assuming that particle movement can be determined by velocity fluctuations in a turbulent flow
and quantification of this buoyancy is given by Autocorrelation Function〈

u2
〉

R(τ) = 〈u(t)u(t + τ)〉 . (1)

This generic Autocorrelation Function, with the property of R(0) = 1, indicating that the
maximum correlation in the measurement of the wind velocity buoyancy occurs for τ = 0 and
to others values of τ |R(τ)| ≤ 1 [11], being a quantifier of the ability of the particle to preserve the
memory of the effect of a given velocity at a given instant in the composition of the velocity of this
particle later [2].

Reference [12] establishes a statistical theory for treating and modeling these turbulent flows under
the hypotheses of isotropy, homogeneity, and stationarity of turbulence (Taylor’s Turbulent Diffusion
Theory) and proposes an exponential form for the autocorrelation function and obtained fundamental
relations related to the study of the phenomenon of turbulence applied to scalar dispersion [13].

In this aspect, autocorrelation functions in the Taylor Statistical Theory [12] allow us to calculate
the dispersion parameters and functional relations for the turbulence dissipation rate used in Eulerian
and Lagrangian dispersion models [9,11,14–17], which leads to the opening of a vast field of research
in the area of turbulence modeling in its various phenomenological manifestations. These studies
address issues related to developing new autocorrelation functions and functions associated with
turbulent parameter deductions [18–20] and validation [1,11,21,22].

Among these results, the Wiener Khintchin theorem [23] relates the autocorrelation function R(τ)

with the spectral function Φ(ω) via the Fourier transform pair:

R(τ) =
1
〈u2〉

ˆ +∞

−∞
Φ(ω)e−iωτdω and Φ(ω) =

〈
u2〉
2π

ˆ +∞

−∞
R(τ)eiωτdτ, (2)

where ω is the turbulent frequency and 〈u2〉 is the turbulence velocity variance.
Under the assumption of stationary and homogeneous turbulence and R(τ) being a pair function

and τ = 0, the relation obtained is:

1
2
〈u2〉 =

ˆ +∞

0
Φ(ω)dω, (3)

evidenced that the TKE is the result of the integration over the entire frequency range of the STKE.
This is consistent with the hypothesis proposed, since quantifying the buoyancy via the turbulent
velocity variance enables the extraction of auxiliary information to determine typical speed and length
scales to obtain the parameters applied to describe of turbulent flows [24].
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The pair of equations given by Equation (2) states that STKE is obtained by the Fourier transform
of the autocorrelation function. As shown above, this tool amplifies the understanding of the processes
of analyzing turbulent energy dynamics through the frequency and/or wave number decomposition
of functions used to describe these STKE dynamics [2]. This description allows the visualization of the
processes of these dynamics through the exchange of energy between the eddies of different sizes of
wave number or frequency. A description of the typical regions of occurrence of these processes is
described in Figure 1.

The idea of a turbulent flux composed of interagency eddies on the various scales of size and
frequency suggests that the process is random in the three spatial directions and in time, as emphasized
by [2], characterizing turbulence as a three-dimensional phenomenon. In this sense, experiments for
its measurement, in addition to the financial cost, have inherent technical challenges. Experimental
STKE measurements are one-dimensional in their respective spatial directions and in time [25], with
a three-dimensional STKE being determined from one-dimensional measurements [3,26,27]. If these
measurements are obtained in stationarity situations, the autocorrelation function is defined over time
(t [u.t.]) and, consequently, the STKE will be in the frequency domain ω [u.t.]−1. If it is in conditions
of homogeneous turbulence, the autocorrelation function will be given in the spatial variables
(xi, i = 1, 2, 3. [u.c.]) and its Fourier transform in the wave number domain ki, i = 1, 2, 3 [u.c.]−1 [2].

Notably, one-dimensional spectra do not include the full information of the three-dimensional
turbulence phenomenon in CBL, and for certain ranges of wave number values, the spectrum measured
in a particular direction may contain vortex contributions, that when aligned to this direction of
measurement, if wave numbers are higher than those of the specified range, msy charactere the aliasing
phenomenon [2].

The previous paragraphs suggest that we use a spatial autocorrelation function defined in
x = (x1, x2, x3) to better representat the three-dimensional turbulent flow and avoid the aliasing
phenomenon, consequently resulting in the STKE to occur in the wave number vector k = (k1, k2, k3)

by the three-dimensional Fourier transform ([28] (p. 161) and [1].)
However, in order to overcome the difficulty of adding directional information, it is necessary to

consider a spherical envelope around a reference point, which is the origin of this envelope. Fixed at
the origin, it is assumed that U = 〈u(x)〉 - preferential average velocity (a preferred and constant mean
velocity is assumed for the three-dimensional field of velocities u = (u1, u2, u3) = (u, v, w), where u
is the longitudinal wind velocity, v is the lateral wind velocity, and w is the vertical wind velocity)
is constant and along this constant direction aligns the directional i1 = î. The vertical direction is
naturally fixed (i3 = k̂) and the lateral direction is then defined by vector product i1 × i3 = i2 = ĵ.
In this new configuration of the space and consequent reconfiguration of the space of the wave number
vector, the magnitude of the wave number vector is given by k =

√
k · k = ||k||, which is the radius

of this spherical envelope. When integrating this spherical envelope, the total energy over k—the
three-dimensional energy spectrum is obtained [2,3].

Although the association of the spatial autocorrelation function and its STKE via Fourier transform
has already been referenced, it is necessary to establish certain conditions in turbulent flow to perform
this association.

In the first stage, the isotropy condition will not be required for the turbulent flow,
although homogeneity will be admitted to the wind field, as well as stationarity—the effects
of turbulent flow on the wind component measurement is invariant on translations. Under
these hypotheses and by employing Reynold decomposition to wind components given by
u(x) = U(x) + u′(x)⇔ ui = Ui + u′i, i = 1, 2, 3, the Correlation Tensor can be associated with the
turbulent moments: Rij (r) = 〈u′i(x)u′j(x + r)〉

Rij (r) =
〈
(ui (x)−U)

(
uj (x + r)−U

)〉
.
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The Correlation Tensor is said to be symmetrical and invariant due to reflections and translations(
Rij (−r) = Rji (r) = Rij (r)

)
and thus impose the STKE Tensor as the Fourier transform of the

Correlation Tensor [2,3]:

Φij (k) =
1

(2π)3

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
Rij (r) exp (−ik · r)d3r (d3r = dr1 dr2 dr3) (4)

and its transformed pair

Rij (r) =
ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
Φij (k) exp (ik · r)d3k (d3k = dk1 dk2 dk3). (5)

The tensor Φij is symmetric, which is a result of the velocity field homogeneity, characterizing it
as a covariant tensor in space-k. Moreover, the property of atmospheric incompressibility is valid ([3]
apud [29]) and equivalent to

∑
j

Φij(k)k j = 0. (6)

Equation (6) characterizes Φij as a semidefinite positive tensor, that is, there are no negative
eigenvalues associated with the eigenvectors k, ensuring Φij to be a genuine covariant tensor [3].

The sum of main diagonal of the STKE tensor
(
∑ Φii

)
is associated to

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
∑ Φii (k) dk = ∑〈u′iu′i〉

(
= ∑ Rii(0)

)
.

Directional information ii is removed in the integration process in the spherical envelope of radius
k with surface element dσ [2,3,30]. Defining

E(k) =
1
2

‹
S
∑ Φii(k)dσ =

1
2

ˆ 2π

0

ˆ π

0
∑ Φiik2 sin φdθdφ, (7)

consequently, the total energy will be obtained under the integration of all wave numbers k [2,30] and
by Equation (7):

ET=

ˆ +∞

0
E(k)dk =

1
2

ˆ +∞

0

(‹
S
∑ Φii(k)dσ

)
dk =

1
2

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
∑ Φii (k) dk =

1
2 ∑〈u′iu′i〉. (8)

Maintaining the one-dimensional premise (Equation (3)) for the three-dimensional case.
Under the hypothesis of fully developed turbulence, typical characterizations of the properties and

processes that compose the three-dimensional turbulent energy spectrum according to the magnitude
of the wave number vector k are shown in Figure 1. The following is a brief description of these
characteristics:

• The first region corresponds to the low number of waves (low-frequency) is divided into two
parts. In general, the range that starts close to zero to k1 does not contain most of the total
turbulent energy. However, this is where the entrance of energy through mechanical sources
occurs (denoted M) by the mean wind shear and thermal sources (denoted H), which produce
thermal instability. In it, eddies are anisotropic and their properties depend on how they were
generated. In addition, the largest eddies interact with the contours and layer of inversion of
Planetary Boundary Layer (PBL) in this region. Nevertheless, the presence of the most energetic
eddies is verified by the interval (k1, k2) and, thus, these eddies contain the largest portion of the
total TKE;

• The second region is called the inertial subinterval and corresponds to the range of the wave
numbers k2 to k3, being the turbulence isotropic or close to the isotropic condition. In this interval
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energy, it is neither generated nor consumed, it is only transferred from large to small eddies at a
rate ε per unit mass. This highlights the performance of a TKE transfer mechanism, noted by W,
in the turbulent flow. The turbulence in this interval is stationary and entirely determined by rate
ε [31], terefore one can apply the (−5/3) law of Kolmogorov to describe the STKE (E (k)) in this
range and given by:

E (k) = αε2/3k−5/3 (α − Kolmogorov constant).

• The third region corresponds to high wave numbers (high-frequency), where the viscous forces of
molecular origin dissipate TKE in the form of heat.

Figure 1. Three-dimensional energy spectrum for fully developed turbulence. Source: Figure adapted
from [32].

2.2. Model Evolution for the STKE in CBL

A reproduction of the deduced dynamic equation of the three-dimensional Energy Spectrum
(3D-STKE) demonstrated in [1] (see also [33]), which is presented in [4,5]. The dynamical equation is

∂

∂t
E (k, t) = H (k, t)

g
Θ0

+ M (k, t) + W (k, t)− 2νk2E (k, t) . (9)

The terms that compose this equation relate the temporal variation of the energy spectrum
function (lhs term) with the term of production or consumption of thermal convection of TKE (first
term in rhs), the production of energy by mechanical effect (second term), and the inertial transfer of
kinetic energy, which occurs in the direction of the largest eddies to the smallest ones characterizing the
cascade effect (third term), and energy dissipation by molecular viscosity (fourth term), respectively.

Assuming that Equation (9) governs the temporal evolution of the STKE, a model will develop
as the description of the constitutive equations of this equation is made. After these parameters are
formed plus the insertion of an initial condition (IC), an Initial Value Problem (IVP) is obtained and,
consequently, it is possible to elaborate a model that aims to describe such evolution.
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The parametrization of these constitutive equations will be related to the characteristics of the
turbulent flow and examples of parametrizations can be found in [4,5,34–37]. More specifically, for
models that describe CBL growth, ref. [8,37,38] show specific parametrizations of these terms. For
STKE decay in CBL, ref. [5,39] can be cited.

Equation (9) is the idealized basis of a model that aims to predict TKE evolution in CBL. However,
the establishment of the model will occur by parameterizing the constituent terms of this equation,
which is where the most sensitive passage of its elaboration lies.

At first, elaborating these parameters agglutinates information and relationships involved in
the events that constitute the phenomenon and, the more realistic this parameterization, the more
reliability will be added to the model. Additionally, techniques and methods used to obtain the
solutions of this model are intrinsically linked to the expressions and mathematical operations used to
describe these parameters.

Due to the importance of understanding the model and its respective resolution, the
parameterizations of the constituent terms of Equation (9) with their respective descriptions and
dimensionless parameters and variables are displayed.

To non-stationarity of CBL, the delimiting parameters such as height, length scales, and typical
velocities that describe it are variable in time and space. A dimensionless process is done by considering
the set of generalized terms to describe the variability of terms such as convective boundary layer,
convective velocity, ... :

t∗ =
w∗t
zi

, Re =
w∗zi

ν
, ψε =

εzi

w3∗
, k′ = kzi and S(z) =

φmu∗
κz

,

where w∗ is the characteristic convective velocity scale [m/s], zi the height of the CBL [m], Re is
the Reynolds number (ν the molecular viscosity coefficient [m2/s]), ψε is the dimensionless thermal
dissipation rate, ε the mean thermal dissipation rate of TKE [m2/s3], u∗ the wind shear velocity [m/s],
φm the dimensionless mechanical dissipation rate, S(z) the variation in z of the mean velocity [s−1],
and κ the von Kármám constant [5].

2.2.1. Thermal Convection

In Equation (9), the term
g

Θ0
H (k, t) is responsible for describing the production loss of kinetic

energy by thermal convection. It will be decomposed into the product between a term that depends
only on the wave number and another term that only depends on time [4,5], that is,

g
Θ0

H (k, t) =
g

Θ0
H0(k)T(t), (10)

where T(t) is a function that describes the temporal growth of surface heat flux and H0(k) that only
depends on the characteristic conditions of the CBL in a fully developed turbulence regime.

The hypothesis of [14] will be considered to determine H0(k), which assumes that the energy
transfer from the mean flow to the turbulent flow occurs continuously. Such analysis does not
consider any time scale characteristic of the parameterization. Assuming that H0(k) depends on

the potential temperature gradient
(∂θ

∂z
, where in the well mixed layer, it will be replaced by the

term of countergradient γc, since to the process of entrainment of the upper part of the CBL, there
is heat flowing from cold to hot regardless of the local gradient of the background environment,
which contains large eddies associated with the rise of warm air parcels that transport heat from hot

to cold [33]
)

, the wave number k, kinetic energy dissipation ratio ε0, and kinetic energy intensity

centered around the number of wave k, that is, kE0(k), where E0(k) is the three-dimensional spectral
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density of the well-developed convective boundary layer, the following result can written through a
dimensional analysis:

g
Θ0

H0(k) =
g

Θ0
γcc1ε−1/3k−2/3E0(k) (11)

where c1 is a constant to be determined from the initial conditions [4]—Appendix A.
Using the definition of convective velocity, one obtains:

g
Θ0

=
w3
∗

zi
(wθ)0 (12)

where (wθ)0 is the surface heat flux, w∗ is the convective velocity, and zi is the height of the CBL [33].
For function T(t), which describes the growth in time of H (k, t), the equation suggested by [40]

is written as:
T(t) = sin(Ωt), (13)

where Ω is the angular frequency.
By substituting Equations (11)–(13) for Equation (10), the following formulation for the production

or loss term of energy due to thermal buoyancy is obtained [4,5,39,41]:

g
Θ0

H (k, t) =
w3
∗

zi
(wθ)0γcc1ε−1/3k−2/3E0(k) sin(Ωt).

The dimensionless form is given by:

g
Θ0

H (k, t) = g
Θ0

H0(k)T(t) =
(

g
Θ0

γc
c1E0(k)
ε1/3k2/3

)
· sin(Ωt) =

(
w3
∗

∂θ
∂z

(w̄θ)0zi

c1E0(k)
ε1/3k2/3 . z2/3

i
z2/3

i

w∗
w∗

)
· sin

(
t∗

ziΩ
w∗

)
=

(
w3
∗

∂θ
∂z

(w̄θ)0

c1E0(k)
(kzi)2/3

w∗
ε1/3

z2/3
i

ziw∗

)
· sin

(
ziΩ
w∗ t∗

)
=

(
w2
∗

∂θ
∂z

(w̄θ)0
c1(k′)−2/3 w∗E0(k′)

(ziε)1/3

)
· sin

(
ziΩ
w∗ t∗

)
=

(
w2
∗

∂θ
∂z

(w̄θ)0

c1E0(k′)
ψ1/3

ε (k′)2/3

)
· sin

(
ziΩ
w∗ t∗

)
=

[
w∗zi
(w̄θ)0

∂θ
∂z c1ψ−1/3

ε (k′)−2/3E0(k′) sin
(

ziΩ
w∗ t∗

)]
w∗
zi

= [H0(k′)T(t∗)] w∗
zi

= H (k′, t∗) w∗
zi

.

(14)

The relationship between E0(k) and Equation E0(k′) is made considering the isotropic limit
condition of the construction process of a simplified spectral model of anisotropic turbulence presented
in [3]. This model assumes that is possible to specify completely Φij(k) from the one-dimensional
spectrum at one point. Under hypothesis of homogeneous turbulence in all directions [3], the initial
spectrum E0 can be obtained from anisotropic turbulence condition, which has isotropic turbulence
condition (Equation (15)) as limit case . The dimensionless initial spectrum is given by

E0(k) =k3 d
dk

(
1
k

dFu

dk

)
=

[
k3 d

dk

(
1
k

dFu

dk

)]
z3

i
z3

i
= (k′)3 d

dk′

(
1
k′

dFu

dk′

)
= E0(k′). (15)

where Fu is the longitudinal one-dimensional spectrum.

2.2.2. Mechanical Energy Production

The term M (k, t) describes the turbulence resulting from the interaction of the turbulent
momentum flux with a situation of average wind shear. Since the largest magnitudes of this shear
occur near the surface, there is significant contribution of turbulence due to shearing in this region [33].

In a process of dimensional analysis (see [2] for the definition of this theoretical tool of
turbulence analysis) [36] (apud [42]) suggest the following parameterization for the mechanical energy
production term:

M (k, t) = cmS(z)ε−
1
3 k−

2
3 E (k, t) ,
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and its dimensionless form:

M (k, t) = cmS(z)ε−
1
3 k−

2
3 E (k, t)× z

2
3
i

z
2
3
i

= cmS(z)

ε
1
3 (kzi)

2
3

E (k, t)× ziz
−1/3
i

w∗
w∗ =

cmS(z)w∗

(εzi)
1/3(kzi)

2
3

E (k, t) zi
w∗

= cmφmu∗
κz

ψ−1/3
ε

k′2/3 E (k′, t∗)
zi
w∗ ×

w2
∗

z2
i

z2
i

w2∗
=

[
cmz2

i u∗
w2∗

φmψ−1/3
ε

κzk′2/3 E (k′, t∗)
]

w∗
zi

= M (k′, t∗) w∗
zi

.

(16)

2.2.3. Kinetic Energy Transfer by Inertial Effect

A turbulent flow is composed of eddies of different sizes or wavelengths. The small eddies are
exposed to the field of tension generated by the big eddies. This stress field increases the vorticity of the
small eddies and, consequently, their kinetic energy. This way, there is a transfer of turbulent kinetic
energy from the biggest eddies to the smallest eddies until the Kolmogorov microscale is reached and
energy dissipated as heat. This process is represented by the term W (k, t) in Equation (9) [5]. The
same author suggests the use of the expression proposed by Pao [34] for an isotropic turbulent flow,
which is given by the following equation:

Wiso (k, t) = − ∂

∂k

[
α−1ε1/3k5/3E (k, t)

]
.

Performing the derivation and using the dimensionless variable:

Wiso (k, t) =− ∂

∂k

[
α−1ε1/3k5/3E (k, t)

]
= −α−1ε1/3 5

3
k2/3E (k, t)− α−1ε1/3k5/3 ∂E (k, t)

∂k

=− α−1ε1/3 5
3

k2/3E (k, t)×
z2/3

i

z2/3
i

− α−1ε1/3k5/3 ∂E (k, t)
∂k

×
z5/3

i

z5/3
i

=− α−1ε1/3 5
3
(kzi)

2/3E (k, t)
z1/3

i
zi
− α−1ε1/3(kzi)

5/3 ∂E (k, t)
∂k

×
z1/3

i
z2

i

=− 5
3

α−1(εzi)
1/3(kzi)

2/3E (k, t)
1
zi
× w∗

w∗
− α−1(εzi)

1/3(kzi)
5/3zi

∂E (k, t)
∂k′

1
z2

i
× w∗

w∗

=− 5
3

α−1 (εzi)
1/3

w∗
(kzi)

2/3E
(
k′, t∗

) w∗
zi
− α−1 (εzi)

1/3

w∗
(kzi)

5/3 ∂E (k′, t∗)
∂k′

w∗
zi

=−
[

5
3

α−1ψ1/3
ε (k′)2/3E

(
k′, t∗

)
+ α−1ψ1/3

ε (k′)5/3 ∂E (k′, t∗)
∂k′

]
w∗
zi

= Wiso
(
k′, t∗

) w∗
zi

.

(17)

The inertial energy transfer term is related to a homogeneous but non-isotropic (anisotropic)
turbulence. This situation occurs when the source term of convective energy is present (H (k, t)) and
represented by the expression Waniso (k, t). According to [5], the following formulation is suggested
for Waniso (k, t):

Waniso (k, t) = − ∂

∂k

[
c2

w∗zi
ε2/3k1/3E (k, t)

]
, (18)

and similar to Wiso, the dimensionless equation for the anisotropic condition is obtained:

Waniso (k, t) = − ∂
∂k

[
c2ε2/3

w∗zi
E (k, t)

]
= − c2ε2/3

w∗zi
∂
∂k

[
E(k,t)
k−1/3

]
= −c2ε2/3

w∗zik−1/3

[
E(k,t)

3k + ∂E(k,t)
∂k

]
= −c2

w∗zi
ε2/3 1

3 (k)
−2/3E (k, t)× z2/3

i
z2/3

i

w2
∗

w2∗
− c2

w∗zi
ε2/3k1/3 ∂E(k,t)

∂k × z1/3
i

z1/3
i

w2
∗

w2∗

zi
zi

= − c2
3
(εzi)

2/3

w2∗
(kzi)

−2/3E (k′, t∗) w∗
zi
− c2

(εzi)
2/3

w2∗
(kzi)

1/3 ∂E(k′ ,t∗)
∂k′ × w∗

zi

=
[
− c2

3 ψ2/3
ε (k′)−2/3E (k′, t∗)− c2ψ2/3

ε (k′)1/3 ∂E(k′ ,t∗)
∂k′

]
w∗
zi

= Wanisob (k′, t∗) w∗
zi

.

(19)
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In [5], the authors assume the coexistence of these terms of energy transfer, that is,
W (k, t) = Wiso (k, t) + Waniso (k, t) and dimensionless form [4,5,39,41]:

W (k, t) = Wiso (k, t) + Waniso (k, t) =
[
Wiso

(
k′, t∗

)
+ Waniso

(
k′, t∗

)] w∗
zi

= W
(
k′, t∗

) w∗
zi

. (20)

The graphs for H and W (Equations (14) and (19)) are plotted in Figure 2 in a situation of CBL
growth modeling. This graph outlines the behavior of the term Waniso (Equation (18)) adopted to
represent the inertial energy transfer in an anisotropic turbulent flow and has the peculiarity of
becoming positive for certain wave numbers. The disparity of Waniso and H magnitudes is also noted
for low wave numbers, which leads to a surplus of energy in the atmosphere, which is a desirable
feature to describe the growth phenomenon of CBL. In addition, the term Wiso (Equation (17)) is
effective in transferring energy to the inertial subinterval [34].
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Figure 2. Graphical representation of the terms H, Waniso, Wiso, and Wiso + Waniso. Source: [4].

2.2.4. Energy Dissipation by Molecular Viscosity and Time Variation of the STKE: Dimensionless Equations

Turbulent flows are dissipative and require continuous energy input to compensate for viscous
dissipation operated by the turbulent dissipation energy term (−2νk2E (k, t)). Then, if there is no such
energy replacement, turbulence decays rapidly and this term becomes responsible for TKE dissipation
in CBL [2,33].

In this case, the dimensionless equation is given by:

−2νk2E (k, t) =− 2νk2E (k, t)×
z2

i
z2

i

w∗
w∗

= −2
ν

w∗z2
i
(kzi)

2E
(
k′, t∗

) w∗
zi

= − 2
Re

k′2E
(
k′, t∗

) w∗
zi

. (21)

Using the temporal variation of energy (∂tE (k, t)), the dimensionless form for Equation (9) is
given by:
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∂E (k, t)
∂t

=
∂E (k, t)

∂t
× zi

zi

w∗
w∗

=
∂E (k′, t∗)

∂
(

w∗
zi

t
) w∗

zi
=

∂E (k′, t∗)
∂t∗

w∗
zi

(22)

2.3. The Evolution Equation for Dimensionless STKE

The results given by Equations (14), (16), (20)–(22) allow us to rewrite Equation (9) in the
dimensionless form:

∂E (k′, t∗)
∂t∗

= M
(
k′, t∗

)
+ W

(
k′, t∗

)
+ H

(
k′, t∗

)
− 2

Re
k′2E

(
k′, t∗

)
, (23)

more specifically, 1L-PDE is obtained by:

∂E(k′ ,t∗)
∂t∗

+
(

c2ψ2/3
ε (k′)1/3

)
∂E(k′ ,t∗)

∂k′ +

(
c2
3

ψ2/3
ε

(k′)−2/3 +
2k′2
Re

)
E (k′, t∗) =

w∗zi
∂θ
∂z

(w̄θ)0

c1E0(k′)
ψ1/3

ε (k′)2/3 sin
(

ziΩt∗
w∗

)
. (24)

When specifying an initial condition of the form: E0
(
k′
)
= E

(
k′, t∗0

)
, the Cauchy Problem

associated is: ∂E(k′ ,t∗)
∂t∗

+
(

c2ψ2/3
ε (k′)1/3

)
∂E(k′ ,t∗)

∂k′ +

(
c2
3

ψ2/3
ε

(k′)−2/3 +
2k′2
Re

)
E (k′, t∗) =

w∗zi
∂θ
∂z

(w̄θ)0

c1E0(k′)
ψ1/3

ε (k′)2/3 sin ziΩt∗
w∗

E0 (k′) = E (k′, t∗0) .
. (25)

The IC E0
(
k′
)
= E

(
k′, t0

)
is a three-dimensional STKE referred in previous section. Under the

hypothesis of homogeneous and anisotropic turbulence, the theoretical tool developed by [3] can
be used to create this I.C. from one-dimensional spectra, which can be obtained from experimental
measurements or theoretical formulations.

2.4. First Order Linear PDEs

A general PDE of order k can be represented as

F
(

x, (∂αu)|α|≤k

)
= 0, (26)

where F and u are functions of the variables x ∈ Ω and (uα)|α|≤k ∈ CN(k), with Ω being an open set in
Rn citefolland,szinvelskitese.

Given the linearity of the 1st-PDE, one can rewrite as

∑ aj(x)∂ju + b(x)u = c(x). (27)

The PDE contained in System (25) falls in the form given by Equation (27) and consequently, PDE
resolution methods given by Equation (27) are applied to the problems of STKE Evolution modeling.
The Method of Characteristics that will be employed in the resolution of the Cauchy Problem (25) and
in the following sections are presented in different approaches for the compression and manipulation
of the respective method.

2.4.1. Method of Characteristics

The Method of Characteristics can be used as a strategy to break a PDE into a First Order ODE
System. This process allows the description of the characteristic curves by a variable change that will
condense the terms of the partial derivatives of u into a total derivative regarding this new variable,
which in turn will anable the description of the characteristic curves depending on a single parameter
and, thus, the PDE is transformed into ODE system.
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The description above characterizes the method by the inherent simplicity of the construction (or
non-construction) of the solution and simultaneously provides the demonstration path for the theorems
of existence and local uniqueness for 1st-PDE solution. Furthermore, it allows a global understanding
of the role of the initial or contour conditions for the question of the existence, uniqueness, and
properties of the solution. An example of the application of this process in an EDP and description of
their respective concepts involved in the solution construction are shown in Appendix A.

Another highlight of the method is the geometric parallel via interaction of the geometric
properties of surfaces (or hypersurfaces) and vectors of the vector field associated with PDE. This
allows a visualization of the interaction of the involved geometric entities in R2, and their conditions
of applicability and properties that the entities must fulfill to determine the solution.

In order to expose this geometric bias, a 1L-PDEwas done in R2 in the form of the
parameter equation

F (x, y, z, z1, z2) = 0⇔ a1(x, y)z1 + a2(x, y)z2 + b(x, y)z− c(x, y) = 0, (28)

where z = u(x, y) and the parameters z1 = ux and z2 = uy.
In addition, it is assumed that there is an integral surface S in which a point

P0 = (x(t0) = x0, y(t0) = y0, z(t0) = z0), t0 ∈ I ⊂ R is considered. At this point, vector direction VP0

associated with PDE (Appendix A) is well defined. Hence, we will construct the integral curve
C .
= (x(t), y(t), z(t)) ⊂ S passing by P0, which has as vector tangent VP0 .

First, this vector tangent to C (at any point P ∈ C, as will be proved later) will belong to the
tangent plane of the integral surface S(candidate to the surface solution), where the characteristic
curve will be orthogonal to the normal vector

(
zx, zy,−1

)
: (x(t), y(t), z(x(t), y(t)))·

(
zx, zy,−1

)
=0, for

a given t ∈ I ⊂ R.
One can determine a family of plans containing P0, in which the tangent plane of the solution

surface at P0 and described in dependence on parameters z1 and z2 is included. Therefore, the
relationship below is obtained by assuming z2 = z2(z1) (a2 6= 0)

dz2

dz1
= − x− x0

y− y0
.

On the other hand, the derivative in relation to z1 from Equation (28) produces the direction field
given by

x− x0

a1
=

y− y0

a2
=

z− z0

z1a1 + z2a2
. (29)

Equation (29) defines the direction vector of the straight lines contained in the respective planes
belonging to the family of tangent planes, and the union of all these generatrix straight lines and the
point P0 form the Monge Cone (Figure 3a) [6]. In this field of cones (Figure 3b), in all the generated
plans , by specifying z1 and z2, a set of planes that surrounds the Monge cone is formed, only those
containing the line defined by Equation (29) will be the tangent planes of the integral surface. In this
maner, the integral surface will be tangent to a specified vertex cone P0 with the curve, whose direction
vector line is given by (a1, a2, z1a1 + z2a1) (Figure 3).

To create the equivalent of the characteristic curve described above, it will require

(
x′(t), y′(t), z′(t)

)
= (a1, a2, z1a1 + z2a2) , (30)

where the general form is given by
(

x′(t), y′(t), z′(t)
)
= (Fz1 , Fz2 , z1Fz1 + z2Fz2).

The vector tangent for the curve candidate for the characteristic curve at P0 has direction parallel
to the direction vector of Monge cone and in which only one of these directions will represent the
vector tangent to the C belonging to the plane tangent to the integral surface at P0.
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(x(t),y(t),z(t))

(p,q,-1) Characteristic strips

Initial strips

a) b)

c) d)

z=u(x,y)

Monge cone generators

Figure 3. (a) Monge Cone and its forming planes. (b) Field of cones on the integral surface. (c) Geometric
sketch of properties of the characteristic strip. (d) Construction of the characteristic strips from the initial
strip and their respective support curves. Figure modified from the figures in ([6] (1981)—Figure 5ad).

The unknown z1 and z2 in the System given by Equation (30) do not allow the determination of
the characteristic direction yet. For this, it is necessary to determine under what conditions do values
z1(t0) and z2(t0) satisfy the condition that vector (z1(t0), z2(t0),−1) is normal for the integral surface
in addition to it requiring two equations to complete the System (30). Hence, in Equation (28), the
derivative in relation to y produces

∂y (a1z1 + a2z2 + bz− c) = 0⇔ (z2)xa1 + (z2)ya2 = −(z1∂y(a1) + z2∂y(a2) + z∂y(b) + ∂y(c)− z2b),

where (z1)y = (z2)x.
However, if (x0, y0, z0) is in the integral surface, it follows

z2
′(t0) =

d
dt z2(x(t), y(t))

∣∣∣
t=t0

= (z2)x
dx(t)

dt

∣∣∣
t=t0

+ (z2)y
dy(t)

dt

∣∣∣
t=t0

= −(z1∂y(a1) + z2∂y(a2) + z∂y(b) + ∂y(c) + z2b)

in order that z2
′(t0) = −Fy − z2Fz, which is and analogous to

z′1: z1
′(t0) = −(z1∂x(a1) + z2∂x(a2) + z∂x(b) + ∂x(c) + z1b).

Since t0 is a generic value, the characteristic curves will be given by the characteristic system:

x′(t) = a1 = Fz1

y′(t) = a2 = Fz2

z′(t) = z1a1 + z2a2 = z1Fz1 + z2Fz2

z1
′(t) = −(z1∂x(a1) + z2∂x(a2) + z∂x(b) + ∂x(c) + z1b) = −(Fx + z1Fz)

z2
′(t) = −(z1∂y(a1) + z2∂y(a2) + z∂y(b) + ∂y(c) + z2b) = −(Fy + z2Fz)

,

This System contains the necessary conditions to determine the characteristic curve associated
with Equation (28). Note that when determining one of these curves containing P0, it was necessary to
establish information about the plan (containing P0) in which it resides, as this set (curve and plan in
P0) determines a characteristic strip (Figure 3c) and the characteristic curve is said support of this strip.
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The characteristic strip will be created from an initial range that in turn, the construction of this
initial strip will be similar to the construction of a characteristic strip. First, an initial support curve is
created, (α(s), β(s), φ(s)) - the initial parameterized condition. This initial support curve should be
contained by plans (Figure 3d) and, in any of these plans, will have as normal vector (z1(s), z2(s),−1)
for some particular s on the support curve:

a1z1(s) + a2z2(s) + bφ(s)− c = 0 ⇔ F(α(s), β(s), φ(s), z1(s), z2(s)) = 0.

Note that there is an equation for two unknowns. The auxiliary condition arises from the fact
that z must contain this initial curve (z(α(s), β(s)) = φ(s), to s ∈ I ⊂ R) and therefore, the auxiliary
condition will be given by φ ′(s) = zxα ′(s) + zyβ ′(s) = α ′(s)z1(s) + β ′(s)z2(s).

The characteristic strip are First Order ODE System solutions

dx(s, t)
dt

= Fz1(x(s, t), y(s, t))

dy(s, t)
dt

= Fz2(x((s, t), y(s, t))

dz(s, t)
dt

= z1(s, t)Fz1(x(s, t), y(s, t)) + z2(s, t)Fz2(x(s, t), y(s, t))

dz1(s, t)
dt

= −(Fx(s, t) + z1(s, t)Fz(s, t))

dz2(s, t)
dt

= −(Fy(s, t) + z2(s, t)Fz(s, t))

, (31)

with initial conditions 

x(s, t0) = α(s)

y(s, t0) = β(s)

z(s, t0) = f (s)

F(α(s), β(s), φ(s), z1(s, t0), z2(s, t0)) = 0

φ ′(s) = α′(s)z1(s, t0) + β ′(s)z2(s, t0)

. (32)

The assumptions required for the existence and uniqueness of the solution of a first order ODE
system are guaranteed by assuming that a1, a2, z1a1 + z2a2, Fx + z1Fz, Fy + z2Fz, z1 and z2 ∈ C1. This
result guarantees the existence and uniqueness of these characteristic strips [43,44].

The results and comments of this section are based on bibliographies: [6,45–47].

2.4.2. Local Existence and Uniqueness of Solution for a Linear First Order PDE

The previous section establisheds procedures and geometric relationships associated with solving
the parameter equation represented for Equation (28).

For a First Order General PDE (F : Ω×R ×Rn → R of class C1 [47]) is:

F (x1, . . . , xn, u, ∂1u, . . . , ∂nu) = 0. (33)

Its equivalent in the form of a parameter equation is

F (x1, . . . , xn, y, z1, . . . , zn) ≡∑ aj(x)zj + b (x) y (x)− c (x) = 0. (34)

where they are associated by y = u(x) and zj = ∂ju, Ω ⊂ Rn, an opening solution domain of
Equation (33).
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And the equivalent of System (31) and (32) for this situation is:

dxj

dt
=

∂F
∂zj

= aj(s, t)

dy
dt

= ∑ zjaj(s, t) = ∑ zjaj(s, t)

dzj

dt
= − ∂F

∂xj
− zj

∂F
∂y

x (s, 0) = γ(s), y (s, 0) = φ (γ(s))
∂y
∂sj

= ∑ zk
∂γk
∂sj
⇔ ∂sk φ(g(s)) = ∂sk γ(s)zj(s, 0)

F
(
γ(s), φ (γ(s)) , zj (γ(s))

)
= 0

, (35)

and from it, xj, y, and zj are obtained as functions of s and t [4,10].
Coordinate change (as described in the molds of Appendix A) will be ensured by observing

some conditions related to the initial condition associated with the problem, more specifically if γ

is a Non-Characteristic Hypersurface. Thus, for z1, . . . , zn ∈ C1 satisfying the last two equations of
System (35) over γ leads ∥∥∥∥∥∥∥∥

∂x1
∂s1

· · · ∂x1
∂sn−1

∂x1
∂t

...
. . .

...
...

∂xn
∂s1

· · · ∂xn
∂sn−1

∂xn
∂t

∥∥∥∥∥∥∥∥ 6= 0. (36)

Therefore, by the implicit function theorem, in a neighborhood of P0, there are the functions
s = s(x) and t = t(x)∈C1, such that locally x = x(s, t) is valid.

Nevertheless, the System formed above has a unique solution for y under the validity of
Equation (33) [43,44]. However, it should be noted that the existence of solution u is not guaranteed, as
the expression y = u(x) has not yet been validated.

The first step in this validation will be to verify the existence of an inverse coordinate
transformation (s, t) 7→ x = x(s, t), such that t = t(x) ∈ C1. Notwithstanding, condition given by
Equation (36) ensures that the mapping can be reversed, in order that s and t ∈ C1 are functions of
x around a neighborhood of P0 ∈ γ ensures the uniqueness of the solution of an ODE system in this
vicinity of P0 [43,44]

Thus far, only y = y(s(x), t(x)) has been obtained. To ensure the existence and uniqueness of the
solution u of Equation (33), y(s(x), t(x)) = u(x) must be shown to satisy Equation (34) and zj = ∂ju(x).

In fact, if y = u(x) = u(s, t), then u

i. satisfies IC: u(γ(s)) = y(s(x), 0) = φ (γ(s)). Indeed, Γ : u|γ = φ⇔ x (s, 0) = γ(s) and y (s, 0) = φ (γ(s)),
where for the purposes of simplifying notation, it is assumed that t0 = 0;

ii. around Γ, given s0, one has

∂tF
(
x(s, t), u(s, t), zj(s, t)

)
=∑Fxj ∂txj + Fuut +∑Fzj ∂tzj=∑Fxj aj +∑zjaj +∑aj

(
−Fxj − zj

)
= 0.

with the initial condition given by:

F
(
x(s, 0), u(s, 0), zj(s, 0)

)
= 0 ∴ F

(
x(s, t), u(s, t), zj(s, t)

)
= 0.

Thus, if the characteristic curve has a point in common with the integral surface, the entire curve
will be contained in it;
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iii. Given ux, according to the Chain Rule, we obtain:
usk =

n

∑
j=1

∂u
∂xj

∂xj

∂sk
, k = 1, . . . , (n− 1)

ut =
n

∑
j=1

∂u
∂xj

∂xj

∂t

, (37)

The matrix associated with this system is the Jacobian Matrix itself:


∂x1
∂s1

· · · ∂x1
∂sn−1

∂x1
∂t

...
. . .

...
...

∂xn
∂s1

· · · ∂xn
∂sn−1

∂xn
∂t

 ,

which has non-zero determinant due to its Non-Characteristic Condition. Thus, the above System
has a unique solution;

iv. From the second equation of System (35), we have: ut = ∑
∂u
∂xj

dxj

dt
= ∑ zjFzj = ∑ zjaj.

The first equation of System (37) is derived from t, as follows:

∂t
[
usk −∑ zj∂sk xj

]
=∂t

[
usk −∑ zj∂sk xj

]
− 0 = ∂t

[
usk −∑ zj∂sk xj

]
− ∂sk

[
ut −∑ zj∂txj

]
=utsk −∑ ∂tzj∂sk xj −∑ zj∂tsk xj − uskt + ∑ ∂sk zj∂txj + ∑ zj∂sktxj

=−∑ ∂tzj∂sk xj + ∑ ∂sk zj∂txj = ∑
(
−∂xj F− zjFu

)
∂sk xj + ∑ ∂sk zj∂zj F

=∑ zjFu∂sk xj+∑ ∂xj F∂sk xj+∑ ∂sk zj∂zj F

=∑ zjFu∂sk xj − Fuusk −∑ Fzj ∂sk zj + ∑ ∂sk zj∂zj F−
(
usk −∑ zj∂sk xj

)
=
(
∑ zj∂skxj − usk

)
.

Naming H(s, t) =
{

usk −∑ zj∂sk xj , there is a System of (n− 1) ODEs synthesized by

∂tH(s, t) = −H(s, t),

whose solution is H(s, t) = H(s, 0) exp (−t).

Note that the associated initial condition is given by: H(s, 0) = φ′(γ(s))−∑ γ′(s)zj(s, 0) = 0,
therefore H(s, t) = 0 and unique. With this,{

usk =∑ zj∂sk xj, k = 1, . . . , (n− 1)

ut =∑ zj∂txj
.

Since zj is a solution of this System (for the same reasons as System (37)), it follows that zj = uxj

is for j = 1, . . . , n.

Thus, u(x) = y(s(x), t(x)) simultaneously satisfies the linear versions of Equations (33) and (34),
as u = φ in γ and items i, ii, iii, and iv above. As a result, the existence and uniqueness of u defined
in an open Ω ⊂ Rn is valid. The preceding discussion is, in fact, a commented demonstration of the
following theorem:

Theorem 1 (Local Existence and Uniqueness of Solution for a Linear PDE). Suppose γ is a hypersurface
of class C1 at Ω, which is non-characteristic:

(
a1(x), . . . , an(x)

)
is non-tangentγ, ∀ x ∈ γ (see Condition (36))

and that aj, b, c are real functions of class C1(Ω) and φ of class C1(γ). Therefore, for any small enough
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neighborhood of Ω′ of γ in Rn, there is a single solution u ∈ C1(Ω) of ∑
j

aj(x)∂ju + b(x)u=c(x), Ω satisfies

u = φ over γ.

3. Isotropic Model

In an isotropic turbulent flow, the dynamic equation for the STKE is obtained by disregarding the
terms of energy production by mechanical effect M (k′, t∗) and energy production or loss by thermal
effect H (k′, t∗). In this case, the CBL represents a typical convective turbulence decay situation,
in which the TKE generating structures have been deactivated, that is, they are no longer acting.
Consequently, a fully developed CBL turbulence regime is assumed in the sense that time and length
scales and other constituent parameters are present in the formulation of the initial three-dimensional
spectrum, which will represent the initial condition of the proposed isotropic model.

This simplified model is formulated considering the TKE transfer and dissipation processes at
the Planetary Limit Layer (PBL). The transfer of the kinetic energy mechanism will act as described in
Section 2.2.3, where TKE will transfer from the biggest eddies to the smallest ones until the Kolmogorov
microscale is reached and energy dissipated as heat. In practice, this model can be employed, through
some adaptations, in the sunset period and windless condition after a fully developed CBL.

Under these assumptions, the initial spectrum is obtained according to the technique suggested

by [3] from the one-dimensional spectrum Fu, Fv, and Fw as a function of n and k with k =
2πn
U

,
as suggested by [16] and other similar studies, including [48]. The isotropic limit condition of this
constructive process is given by

E0(k′) = (k′)3 d
dk′

(
1
k′

dFu

dk′

)
=

5aubuk′ (3 + 11buk′)

9 (1 + buk′)11/3 , (38)

and Fu represents the unidimensional spectrum associated with velocity u (Appendix B).
Equation (23) can be written as follows:

∂E (k′, t∗)
∂t∗

= Wiso
(
k′, t∗

)
− 2

Re
k′2E

(
k′, t∗

)
. (39)

By replacing Wiso (k′, t∗) given by Equation (17), Equation (39) gives the dimensionless equation,

∂E(k′ ,t∗)
∂t∗

+ ψ1/3
ε (k′)5/3

α
∂E(k′ ,t∗)

∂k′ +

(
5ψ1/3

ε
3α (k′)2/3 − cmz2

i u∗
w2∗

φmψ−1/3
ε

κz k′−2/3 + 2
Re

k′2
)

E (k′, t∗) = 0. (40)

The IVP is constructed by considering the initial condition: E0
(
k′
)
= E

(
k′, t∗0 = 0

)
.

Equation (40) is solved by the Method of Characteristics, where the ODE described in System (35)
will be used to obtain the appropriate variable change [7]:

1 · dk′ − A(k′)5/3dt∗ =0⇔ cte = At∗ +
3
2
(k′)−2/3 (A = α−1ψ1/3

ε ).

Changing the variable t∗ to the parameter r and cte = 3
2 s−2/3, obtains:


r = t∗

k′ =
(

s−2/3 − 2
3

Ar
)−3/2

Therefore, the sought variable change is: T :


r = t∗

s =
(

k′−2/3 +
2
3

At∗

)−3/2 ⇔ T−1 :


t∗ = r

k′ =
(

s−2/3 − 2
3

Ar
)−3/2 .

Where,
∂ (s, r)

∂ (k′, t∗)
=

∥∥∥∥∥sk′ st∗
rk′ rt∗

∥∥∥∥∥ = k′−2/3 +
2
3

At∗ 6= 0 .

This variable change allows us to write: E (k′, t∗) = V (s, r), in fact:
dV
dr

=
∂E
∂t∗

+ Ak′5/3 ∂E
∂k′

.
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By applying the transformation to the new variables, we have the ODE and its initial condition:
dV (s, r)

dr
+

[
B
(

s−2/3 − 2
3

Ar
)−1

+ C
(

s−2/3 − 2
3

Ar
)−3

]
V (s, r) = 0,

V (s, r = 0) = E0

(41)

where B =
5
3

α−1ψ1/3
ε e C =

2
Re

.

Solving the Cauchy Problem in System (41), the final solution is obtained:

E (k′, t∗) = E0

(
1

(k′−2/3+ 2
3 At∗)

3/2

) [
k′

(k′−2/3+ 2
3 At∗)

3/2

]−5/3
exp

{
− 3C

4A

[
k′4/3 −

(
k′−2/3 + 2

3 At∗
)−2

]}
. (42)

According to Figure 4, the evolution of the spectral peacks show the rapid decrease of TKE in
the temporal evolution of the model, a fact theoretically predicted for a PBL without TKE insertion
mechanisms [2].
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Figure 4. Calculated three-dimensional energy spectrum of Equation (42).

This model and resolution process can be found in [49,50], althought without the detail exposed
here.

4. Final Considerations

The present study developed an introductory description of the evolution of STKE in CBL. This
review article gives the reader a general, even simplified, view of the STKE modeling process. The
initial assumption of buoyancy of the velocities of a turbulent flow allows its quantification through
the autocorrelation function and posterior association via Fourier transform with the spectral density
function under the hypothesis of a homogeneous turbulence. From this pair of functions, qualitative
and quantitative information concerning the dynamics of the physical processes involved is extracted,
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and therefore, quantitative parameters typical of a turbulent flow can be obtained (time, length, and
velocity scales [9,11,14–17]) , which are commonly employed in expressions to calculate, for example,
lateral dispersion parameter and eddy diffusivities [16,51].

This study is far from being a complete work on the subject, since the process and techniques to
deduce Equation (9) [1] and develop three-dimensional spectrum was not presented [3]. Nevertheless,
this paper brings forward a guide for the commom concepts, techniques, and procedures employed
in research related to the evolution of STKE in CBL, in addition to providing a basic bibliographic
reference for the present theme.

The STKE defined via the Fourier transform of the autocorrelation function allows one to describe
turbulent energy dynamic processes through frequency and/or wave number decomposition. The
idea of a turbulent flux composed of interagency eddies on the various sizes and frequency scales
suggests that the process is random in the three spatial directions and in time, which characterizes
turbulence as a three-dimensional and temporal phenomenon [2]. In this manner, one-dimensional
spectra do not contemplate the all information on the phenomenon of turbulence in the CBL and, for
certain ranges of wave number values of the spectrum, the phenomenon of aliasing can occur [2],
which will not take place in three-dimensional spectrum.

The spectral dynamics is described by Equation (9), which is an idealized model of the process
involved in the evolution of TKE in the CBL. A brief description of the constituent parameters
is presented with its respective bibliographic references. As an example, a simplified model was
formulated under the hypothesis of isotropic turbulence acting on the entire wave number vector
domain. In this model, the effective terms that govern this dynamic are the kinetic energy transfer
by inertial effect (Wiso) and viscous dissipation. Under these considerations, Equation (9) is a linear
first order PDE, which evidences the relevance of the parametrization of the terms involved in the
model since they will not only indicate the reliability of the model, but also influence the choice of the
mathematical methods (analytical and/or numerical) to obtain the solution. To complement the model,
it is necessary to inform an initial condition. For this, the techniques in [3] were used to develop an
initial three-dimensional energy spectrum [4].

The simplified model solution is obtained by the Method of Characteristics. This method consists
of obtaining characteristic curves in which the partial derivatives of the PDE are described as a total
derivative, that is, the Method of Characteristics transforms an IVP to PDE in an IVP for ODE system.
The description of this transformation process is detailed here and, evidence the geometric procedures
in the construction of the method, which also indicates existence and uniqueness of the solution.

The solution obtained for this simplified model is shown in Figure 4. It represents the evolution of
STKE proposed by the Cauchy Problem (41) and the rapid decrease of TKE in the temporal evolution
of the model is observed. This result agrees with the expected behavior for a model that consider
processes of transfer and dissipation of TKE without continuous TKE insertion sources (thermal
convection and shear) in a PBL [2].

Therefore, the information and results obtained in this study may be suitable for the
comprehension of turbulent kinetic energy dynamics in the convective boundary layer and,
consequently, for applications in Eulerian and Lagrangian dispersion models.
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Abbreviations

The following abbreviations are used in this manuscript:

STKE Spectral Density Turbulent Kinetic Energy Equation
TKE Turbulent Kinetic Energy
CBL Convective Boundary Layer
3D-STKE Three-Dimensional Energy Spectrum
PDE Partial Differential Equation
PBL Planetary Boundary Layer
1L-PDE Linear First Order Partial Differential Equation
1st-PDE First Order Partial Differential Equation
ODE Ordinary Differential Equation
IC Initial Condition
IVP Initial Value Problem

Appendix A

To illustrate the application of the featured method, the 1-D Equation of Advection will
be considered:

ut + cux = 0, c ∈ R. (A1)

Equation (A1) is a 1L-PDE, such as Equation (24) and its solution will be made from
geometric view.

Firstly, suppose there is the solution u of Equation (A1). The graph associated with u is
the set S .

= {x, t, u(x, t)} and at each point (x, t), the value of the normal vector of S is given by
n̂ = (ux, ut,−1).

From Equation (A1), we extract the vector V = (1, c, 0) and observe the orthogonality of the
direction field and the normal vector n̂ of S, the graph of the solution u, that is V · n̂ = 0. Therefore,
(1, c, 0) is perpendicular to (ux, ut,−1) at each point (x, t, u(x, y)) and (1, c, 0) belongs to the tangent
plane to S (Figure A1a).

The tip for building u is to look for S at each point (x, t, z) of S, the vector (1, c, 0) belongs to the
tangent plane of S in (x, t, z) and z ≡ u(x, t) [6,45,52].

 fdf

a) b)

c) d) Solution Surface

Characteristc 
curves

Γ- Initial curve
γ- Projected 
initial curve

Projected 
characteristic 
curves

y
C

Γ C
S (a, b, c)

(x0 ,0,ϕ(x0))

n̂

Figure A1. (a) Geometric sketch of vector field V and the normal vector n̂ of S (V ⊂ Tangent Plane to S).
(b) Geometric representation of the integral curve C . (c) Geometric design of the integral surface
construction. (d) Solution surface generated by the initial curve Γ and its characteristic curves C . Figure
modified from Levandosky’s figures ([52] (2002)—Figure 3a–c); and ([7] (2001)—Figure 3d).
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For Equation (A1), the associated characteristic system is given by:(
dx(s, r)

dr
,

dt(s, r)
dr

,
dz(s, r)

dr

)
= (c, 1, 0). (A2)

The geometric idea of the method is to construct the integral surface S, in order that it contains
the curve Γ := {x, 0, φ(x)} ≡ {γ, φ(x)}, where γ is the plane projection of the initial curve Γ. From it,
the characteristic curves that assemble S are obtained. For this, we consider the point of intersection of
C and Γ, namely (x0, 0, φ(x0)) (Figure A1c), then we can use

(x(s, 0), t(s, 0), z(s, 0)) = (x0, t0, φ(x0)) (A3)

as initial conditions for System (A2). At first, x0 is any, which is valid considering the x-axis as
an auxiliary curve and, algebraically, represents the parameter s, with which the initial curve is
parameterized.

Thus, the Characteristic System formed by System (A2) and (A3),and the solution is given by:

(x(s, r), t(s, r), z(s, r)) = (c r + s, r, φ(s)) (A4)

The set of systems above represents the integral surface S consisting of the union of all the
characteristic curves parameterized by the equations contained in the System (A4).

However, the solution is given in the parameters r and s and, to rewrite this solution in function
of the variables x and t, we considered the first two equations of System (A4) to obtain r(x, t) and
s(x, t). More specifically, {

s(x, t) = x− c t

r(x, t) = t
. (A5)

Consequently, a biunivocal transformation was established between the coordinate systems (x, t)
and (r, s). When this transformation satisfies the Inverse Application Theorem [53], the change of
variables is of class C1. In this scenario, we can locally guarantee the existence and uniqueness of the
solution, which is given by the integral surface constructed:

u(x, t) ≡ z(s(x, t), r(x, t)) = φ(x− c t). (A6)

System (A5) represents the projection of the characteristic curves found in an open Ω ⊆ R2 (where
γ ⊆ Ω), in this case, the projected characteristic curves (Figure A1d).

Equation (A6) is a solution of an ODE and, in a way, it can be synthesized that the Method
of Characteristics transforms an Initial Value Problem for PDE into an Initial Value Problem for
ODEs via diffeomorphism ( let U and V be open from Euclidean space. A bijection f : U → V,
is called diffeomorphism of U on V when f is differentiable and its inverse f−1 : V → U is also
differentiable [53] (p. 277)).

Figure A2 shows the solution graph of the One-Dimensional Diffusion Equation given

by Equation (A1) for c = 2, x0 = −155, and φ(x) = 1 + exp
(
−x2

10,000

)
in the domain

(x, t) ∈ Ω := R× (0, ∞).
The considerations in this section are basically a mixture of approaches and expositions of the

first-order PDE by Method of Characteristics methodology from [7,45,52].
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Figure A2. Graphical representation of the solution of Equation (A1), its initial curve, its characteristic
curve and the respective plane projections.

Non-Characteristic Condition

The idea of the method presented in the previous section consists of satisfying a transversality
condition for the initial condition Γ := (γ, φ) and the characteristic curves [10], where γ is assumed to
be non-characteristic. The initial condition should not be a characteristic hypersurface, that is, that the vectors
of the direction field at a point P of the hypersurface γ are not tangent to γ in P.

The first-order PDE given by Equation (A1) is the simplest possible situation (linear, homogeneous,
and with constant coefficients), even though it exhibits dependence of existence, uniqueness, and
properties in the solution in relation to the initial data, as shown below

i. The initial curve is a characteristic curve.

In this case, γ
.
= x− ct = 0⇒ (cs, s), s ∈ I ⊂ R and considering the solution of the system:{

x(r, s) = c r + c1(s), x(r = 0, s) = cs

t(r, s) = r + c2(s), t(r = 0, s) = s
is given by

{
x(r, s) = c r + c s

t(r, s) = r + s
.

In order to obtain the bijection, we solve r and s as a function of (x, t), although the system does
not allow this inversion. From it we only obtain that x−ct=0, and then z = φ(s)Additionally,
if z = φ(0) is constant, there are inumerous solutions to the problem. If IC: φ(s) = f (s), with
non-constant f the problem does not admit solution [7].

ii. If γ with tangent vectors parallel to the tangent vectors of the projected characteristic curve.
Let, IC .

= x− c
2

t2 = 0⇒ (
c
2

s2, s), s ∈ I ⊂ R. At s = 1 the tangent vectors of the characteristic
curve and the initial curve are parallel. In this situation, a solution is obtained for r and for s, in

the form: s = 1±
√

1 +
2
c
(x− ct) and r = t− 1∓

√
1 +

2
c
(x− ct), since x− ct ≥ − c

2
.

These anomalous situations are because projected characteristic curves and γ has parallel tangent
vectors in their domains. To avoid this, the initial condition must satisfy the Non-Characteristic Condition.
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From System (A2), we have the product: (1, c) · (−0, 1) =

∥∥∥∥∥1 1
0 c

∥∥∥∥∥ = c 6= 0, ∀r ∈ I ⊂ R, that is,

the tangent vectors of γ are not parallel to the projected direction field vectors (which form the
characteristic curves) defined on a point P in Γ, in order that they do not belong to the tangent
plane of γ in Pγ. However, if they do not belong to the tangent plane of γ in Pγ, then the vectors
of the direction field are not orthogonal to the normal field of γ in Pγ. For the general case,

F
(

x, u, ∂1u, . . . , ∂nu, ∂2
1u, . . . , ∂k

nu
)
= 0, generalization is immediate

∇zF
(
Γ(s), zj(g(s))

)
· N
(
γ(s)

)
6= 0⇔

∥∥∥∥∥∥∥∥
∂γ1
∂s1

· · · ∂γ1
∂sn−1

∂F
∂z1

(
γ(s), φ (γ(s)) , zj (γ(s))

)
...

. . .
...

...
∂γn
∂s1

· · · ∂γn
∂sn−1

∂F
∂zn

(
γ(s), φ (γ(s)) , zj (γ(s))

)
∥∥∥∥∥∥∥∥ 6= 0, (A7)

where N(γ(s)) represents the normal field of the initial hypersurface γ of dimension n.

Appendix B. Parameterization Employed in the Construction of Three-Dimensional Spectrum

The one-dimensional Eulerian spectra employed in the construction of E0 are given by [16,48]

n SE
i (n)

w2∗
=

1.06 ci f ψ2/3
ε

(
z
zi

)2/3

( f ∗m)
5/3
i

[
1 + 1.5

(
f

( f ∗m)i

)]5/3 ,

where:
• z is the height above the ground and zi is the top of the CBL and n is the frequency;
• ci = αiαu (2πκ)−2/3; αi is derived experimentally from the spectrum for each wind direction

components, and is 1, 4
3 and 4

3 to u-longitudinal component, v-transverse component and
w-vertical component, respectively; and αu = 0.5± 0.05 [54,55] and κ = 0.4 is von Kármán’s
constant;

• f = nz/U(z) is the reduced frequency and U(z) = U is the average horizontal wind speed;

• ψε = εbzi/w3
∗ is the dimensionless dissipation rate, εb = Ξ

(
w3
∗/zi

)
is the average

thermal dissipation rate of EKT [56–58]; to Ξ =

[(
1− z

zi

)2 ( z
−L

)−2/3
+ 0.75

]3/2

[57] or

Ξ = 0.081 + 0.335 exp

−
(

z
zi
− 0.2

)
0.588

 [59] and L is the length of Monin-Obukhov;

• w∗ = (u∗)0 (zi/(κ|L|))1/3 is the convective velocity scale and (u∗)0 is the surface friction velocity;
• ( f ∗m)i = z/ (λm)i is the reduced frequency of the convective spectral peak, where (λm)i is

the wavelength associated with the maximum of the vertical spectrum [25,60,61], with:

(λm)u = (λm)v = 1.5zi and (λm)w = 1.8 zi

[
1− exp

(
−4z

zi

)
− 0.0003 exp

(
8z
zi

)]
;

For k = 2πn/U, the one-dimensional spectra are related by Fi (k) =
U
2π

SE
i (n), therefore

Fi (k) =
ai

(1 + bik)
5
3

,

for ai =
1.06
2π

ci ψ2/3
ε

(
z
zi

)5/3
ziw∗2 [( f ∗m)i]

−5/3, bi =
1.5
2π

(
z
zi

)
zi [( f ∗m)i]

−1 and i = u, v, w.
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For a homogeneous turbulence situation in all directions, the three-dimensional spectrum for
isotropic turbulence will depend only on the longitudinal spectrum Fu [3] and [4] (p. 30), given by:

k3 d
dk

(
1
k

dFu

dk

)
=

5aubuk (3 + 11buk)

9 (1 + buk)11/3 .

The meteorological parameters calculated for the CBL are reported in Table A1.

Table A1. Meteorological parameters for CBL. Data obtained from experiment B of [51,62,63].

zi
(
wθ0

) zi
L Ω u∗ ug vg ν γc

∂θ
∂z fc

1100 0.06 −18 7.27× 10−5 0.56 10 10 1.5× 10−5 10−3 10−3 10−4

References

1. Hinze, J.O. Turbulence; Mc Graw Hill: New York, NY, USA, 1975; p. 790.
2. Tennekes, H.; Lumley, J.K. A First Course in Turbulence; The MIT Press: Cambridge, MA, USA, 1972; p. 301.
3. Kristensen, L.; Lenschow, D.; Kirkegaard, P.; Courtney, M. The spectral velocity tensor for homogeneous

boundary-layer turbulence. Bound.-Layer Meteorol. 1989, 47, 149–193. [CrossRef]
4. Szinvelski, C.R.P. Uma Solução Para a Equação da Energia Cinética Turbulenta Empregando o Método das

Características. Ph.D. Thesis, Universidade Federal de Santa Maria, Santa Maria, Brazil, 2009.
5. Goulart, A.G.O. Desenvolvimento de um Modelo Espectral para o Estudo do Decaimento da Turbulência na

Camada Limite Convectiva. Ph.D. Thesis, Universidade Federal De Santa Maria-UFSM, Santa Maria, Brazil, 2001.
6. John, F. Partial Differential Equations, 2nd ed.; Sprienger-Verlag New York Inc.: New York, NY, USA, 1982;

p. 259.
7. Iório, V.M. EDP. Um Curso de Graduação, 2nd ed.; IMPA: Rio de Janeiro, Brazil, 2001; p. 300.
8. Szinvelski, C.R.P.; Degrazia, G.A.; Goulart, A.G. Um modelo híbrido para evolução espectral da densidade

de energia no período da manhã. Ciência Natura, 2009, Edição Especial: VI Workshop Brasileiro de
Micrometeorologia, 41–44. Available online: https://periodicos.ufsm.br/cienciaenatura/article/view/9512
(accessed on 20 September 2019)

9. Degrazia, G.A.; Rizza, U.; Mangia, C.; Tirabassi, T. Validation of a new turbulent parameterization for
dispersion models in convective conditions. Bound.-Layer Meteorol. 1997, 85, 243–254. [CrossRef]

10. Folland, G.B. Introduction to Partial Differential Equations, 2nd ed.; Princeton Academic Press: Princeton, NJ,
USA, 1995.

11. Degrazia, G.A.; Buligon, L.; Szinvelski, C.R.P.; Moor, L.; Costa Acevedo, O. Uma revisão teórica sobre funções
de Autocorrelação aplicadas a altas e baixas Velocidades do vento. Ciência Natura 2014, 36. [CrossRef]

12. Taylor, G.I. Diffusition by continuous movements. Proc. Lond. Math. Soc. 1921, 20, 196–212.
13. Tennekes, A.H. The exponential Lagrangian correlation function and turbulent diffusion in the inertial

subrange. Atmos. Environ. 1979, 13, 1565–1568. [CrossRef]
14. Batchelor, G.K. The Theory of Homogeneous Turbulence. The Theory of Homogeneous Turbulence; Cambridge

University Press: Cambridge, UK, 1953.
15. Degrazia, G.A.; Anfonssi, D.; Campos Velho, H.F.; Ferrero, E. A Lagrangian decorrelation time scale fin the

Convective Boundary Layer.Bound.-Layer Meteorol. 1998, 86, 525–534. [CrossRef]
16. Degrazia, G.A.; Anfonssi, D.; Carvalho, J.C.; Mangia, C.; Tirabassi, T.; Campos Velho, H.F. Turbulence

parameterisation for PBL dispersion models in all stability conditions. Atmos. Environ. 2000, 34, 3575–3583.
[CrossRef]

17. Degrazia, G.A.; Moreira, D.M.; Vilhena, M.T. Derivation of an eddy diffusity depending on source distance for
vertically inhomogeneous turbulence in a convective boundary layer. J. Appl. Meteorol. 2001, 40, 1233–1240.
[CrossRef]

18. Anfossi, D.; Oettl, D.; Degrazia, G.; Goulart, A. An analysis of sonic anemometer observations in low wind
speed conditions. Bound.-Layer Meteorol. 2005, 114, 179–203. [CrossRef]

19. Phillips, P.; Panofsky, H. A re-examination of lateral dispersion from continuous sources. Atmos. Environ.
1982, 16, 1851–1859. [CrossRef]

http://dx.doi.org/10.1007/BF00122327
https://periodicos.ufsm.br/cienciaenatura/article/view/9512
http://dx.doi.org/10.1023/A:1000474204748
http://dx.doi.org/10.5902/2179460X13222
http://dx.doi.org/10.1016/0004-6981(79)90066-0
http://dx.doi.org/10.1023/A:1000734626931
http://dx.doi.org/10.1016/S1352-2310(00)00116-3
http://dx.doi.org/10.1175/1520-0450(2001)040<1233:DOAEDD>2.0.CO;2
http://dx.doi.org/10.1007/s10546-004-1984-4
http://dx.doi.org/10.1016/0004-6981(82)90373-0


Atmosphere 2019, 10, 612 25 of 26

20. Moor, L.; Degrazia, G.A.; Stefanello, M.B.; Mortarini, L.; Acevedo, O.C.; Maldaner, S.; Szinvelski, C.R.;
Roberti, D.R.; Buligon, L.; Anfossi, D. Proposal of a new autocorrelation function in low wind speed
conditions. Phys. A Stat. Mech. Appl. 2015, 438, 286–292. [CrossRef]

21. Manomaiphiboon, K.; Russell, A.G. Evaluation of some proposed forms of Lagrangian velocity correlation
coefficient. Int. J. Heat Fluid Flow 2003, 24, 709–712. [CrossRef]

22. Szinvelski, C.R.; Buligon, L.; Stefanello, M.B.; Maldaner, S.; Roberti, D.R.; Degrazia, G.A. Testing Physical
and Mathematical Criteria in a New Meandering Autocorrelation Function. In Turbulence Modelling
Approaches-Current State, Development Prospects, Applications; IntechOpen: London, UK, 2017. [CrossRef]

23. Gardiner, C.W. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences; Springer: Berlin,
Germany, 1985; p. 442.

24. Degrazia, G.A.; Goulart, A.G.O. Aplicações da Dinâmica de Fluidos em escoamentos na Camada Limite
Planetária. Ciência e Natura 2005, Edição Especial, 10–57. Available online: https://repositorio.ufsm.br/
bitstream/handle/1/2652/Guerra_Thiago.pdf?sequence=1&isAllowed=y (accessed on 20 September 201).

25. Kaimal, J.C.; Wyngaard, D.A.; Haugen, D.A.; Coté, O.R.; Izumi, Y.; Caughey, S.J.; Readings, C.J. Turbulence
structure in the Convective Boundary Layer. J. Atmos. Sci. 1976, 33, 2152–2226. [CrossRef]

26. Yeh, T.; Atta, C. Spectral transfer of scalar and velocity fields in heated-grid turbulence. J. Fluid Mech. 1973,
58, 233–261. [CrossRef]

27. Comte-Bellot, G.; Corrsin, S. The use of a contraction to improve the isotropy of grid-generated turbulence.
J. Fluid Mech. 1966, 25, 657–682. [CrossRef]

28. Buligon, L.; Szinvelski, C.R.P. Solução do Modelo de Pluma Gaussiana via Transformada de Fourier, 1st ed.; Gráfica
Editora Pallotti: Santa Maria, Brazil, 2010; p. 240.

29. Lumley, J.; Panofsky, H. The Structure of Atmospheric Turbulence; Interscience-Wiley: New York, NY, USA, 1964.
30. McComb, W. The Physics of Fluid Turbulence; Clarendon Press: Oxford, UK, 1992.
31. Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for large Reynolds

number. Dokl. Akad. Nauk SSSR 1941, 30, 9–13. [CrossRef]
32. Medeiros, L.E. Decaimento da Turbulência na Camada Superficial. Ph.D. Thesis, Universidade Federal De

Santa Maria—UFSM, Santa Maria, Brazil, 2005.
33. Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht,

The Netherlands, 1988; p. 666.
34. Pao, Y. Structure of Turbulent Velocity and Scalar Fields at Large Wavenumbers. Phys. Fluids 1965,

8, 1063–1075. [CrossRef]
35. Batchelor, G.K. Diffusion in a field of homogeneous turbulence, Eulerian analysis. Aust. J. Sci. Res. 1949,

2, 437–450. [CrossRef]
36. Abentroth, R.A. Parametrização do Decaimento da turbulência na Camada Limite Convectiva. Ph.D. Thesis,

Universidade Federal Do Rio Grande do Sul—UFRGS, Porto Alegre, Brazil, 2007.
37. Nunes, A.B.; Campos Velho, H.F.; Satyamurty, P.; Degrazia, G.; Goulart, A.; Rizza, U. Morning

Boundary-Layer Turbulent Kinetic Energy by Theoretical Models. Bound.-Layer Meteorol. 2009, 134, 23.
[CrossRef]

38. Goulart, A.G.; Moreira, D.M.; Vilhena, M.T.; Degrazia, G.A.; Zilitinkevich, S.S. A New Model for the CBL
Growth Based on the Turbulent Kinetic Energy Equation. Environ. Fluid Mech. 2007, 007, 409–419. [CrossRef]

39. Goulart, A.; Degrazia, G.A.; Rizza, U.; Anfossi, D. A Theorical Model for the Study of Convective Turbulence
Decay and Comparison with Large-Eddy Simulation Data. Bound. Layer-Meteorol. 2003, 107, 143–155.
[CrossRef]

40. Sorbjan, Z. Decay of convective turbulence revisited. Bound.-Layer Meteorol. 1997, 82, 501–515. [CrossRef]
41. Goulart, A.G.; de Vilhena, M.T.M.B.; Moreira, D.M.; Bodman, B.E.J. An Analytical Solution for the Nonlinear

Spectrum Equation by the Decomposition Method. J. Phys. A 2008, 41, 8. [CrossRef]
42. Degrazia, G.; Goulart, A.; Anfossi, D.; Campos Velho, H.; Lukaszcyk, P.; Palandi, J. A model based on

Heisenberg’s theory for the eddy diffusivity in decaying turbulence applied to the residual layer. Nuovo
Cimento-Soc. Ital. Fisica Sez. C 2003, 26, 39–52.

43. Teschl, G. Ordinary Differential Equations and Dynamical Systems; American Mathematical Soc.: Providence,
RI, USA, 2010; Volume 140.

44. Doering, C.I.; Lopes, A.O. Equações Diferencias Ordinárias, 1st ed.; IMPA: Rio de Janeiro, Brazil, 2005; p. 421.

http://dx.doi.org/10.1016/j.physa.2015.06.048
http://dx.doi.org/10.1016/S0142-727X(03)00065-1
http://dx.doi.org/10.5772/67920
https://repositorio.ufsm.br/bitstream/handle/1/2652/Guerra_Thiago.pdf?sequence=1&isAllowed=y
https://repositorio.ufsm.br/bitstream/handle/1/2652/Guerra_Thiago.pdf?sequence=1&isAllowed=y
http://dx.doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2
http://dx.doi.org/10.1017/S0022112073002570
http://dx.doi.org/10.1017/S0022112066000338
http://dx.doi.org/10.1098/rspa.1991.0075
http://dx.doi.org/10.1063/1.1761356
http://dx.doi.org/10.1071/CH9490437
http://dx.doi.org/10.1007/s10546-009-9432-0
http://dx.doi.org/10.1007/s10652-007-9035-6
http://dx.doi.org/10.1023/A:1021530413660
http://dx.doi.org/10.1023/A:1000231524314
http://dx.doi.org/10.1088/1751-8113/41/42/425205


Atmosphere 2019, 10, 612 26 of 26

45. Biezuner, R.J. Notas de Aula: Equações Diferenciais Parciais I/II. 2010. Disponível em. Available online:
http://arquivoescolar.org/bitstream/arquivo-e/151/1/edp.pdf (accessed on 8 October 2019).

46. Alonso, I.P. Primer Curso de Ecuaciones en Derivadas Parciales. Almeria, ES, 2005; p. 334. Available online:
http://matematicas.uam.es/~ireneo.peral/libro.pdf (accessed on 8 October 2019).

47. Evans, L.C. Partial Diferential Equations—Graduate Studies in Mathematics—Volume 19, 2nd ed.; Americam
Mathematical Society: Providence, RI, USA, 2010; p. 662.

48. Buligon, L.; Degrazia, G.; Szinvelski, C.; Goulart, A. Algebraic Formulation for the Dispersion Parameters in
an Unstable Planetary Boundary Layer: Application in the Air Pollution Gaussian Model. Open Atmos. Sci. J.
2008, 2, 153–159. [CrossRef]

49. Goulart, A.G.; Vilhena, M.T.; Degrazia, G.A.; Flores, D.T. Vertical, lateral and longitudinal eddy diffusivities
for a decaying turbulence in the convective boundary layer. Ecol. Model. 2007, 204, 516–522. [CrossRef]

50. Goulart, A.G.; Degrazia, G.A.; Campos, C.; Silveira, C.P. Coeficientes de difusão turbulentos para a camada
residual. Rev. Bras. De Meteorol. 2004, 19, 123–128.

51. Moeng, C.; Sullivan, P. Evaluation of Turbulent Transport and Dissipation Closures in Second-Order
Modeling. J. Atmos. Sci. 1989, 46, 2311–2330. [CrossRef]

52. Levandosky, J. Math 220A. Partial Differential Equations of Applied Mathematics. Stanford, CA, USA, 2002.
Disponível em. Available online: http://www.stanford.edu/class/math220a/handouts/firstorder.pdf
(accessed on 8 October 2019).

53. Lima, E.L. Curso de Análise Volume 2, 6th ed.; Instituto de Matemática Pura e Aplicada: Rio de Janeiro, Brazil,
2000; p. 557.

54. Champagne, F.H.; Friehe, C.A.; Larve, J.C.; Wyngaard, J.C. Flux measurements, flux estimation techniques,
and fine scale turbulence measurements in the instable surface layer over land. J. Atmos. Soc. 1977,
34, 515–520. [CrossRef]

55. Sorbjan, Z. Structure of the Atmospheric Boundary Layer; Prentice Hall: Englewood Cliffs, NJ, USA, 1989; p. 317.
56. Caughey, S.J.; Palmer, S.G. Some aspects of turbulence structure through the depth of the convective

boundary layer. Q. J. R. Meteorol. Soc. 1979, 105, 811–827. [CrossRef]
57. Hφjstrup, J. Velocty spectra in the unstable surface planetary boundary layer. J. Atmos. Sci. 1982,

39, 2239–2248.
58. Wilson, K. A three-dimensional correlation/spectral model for turbulent velocities in a convective boundary

layer. Bound.-Layer Meteorol. 1997, 85, 35–52. [CrossRef]
59. Moeng, C. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos.

Sci. 1984, 41, 2052–2062. [CrossRef]
60. Caughey, S.J. Observed Characteristics of the Atmospheric Boundary Layer. In Atmospheric Turbulence and

Air Pollution Modelling; Nieuwstdat, F.T.M., van Dop, H., Eds.; Springer: Dordrecht, The Netherlands, 1982;
pp. 107–158. [CrossRef]

61. Degrazia, G.A.; Anfonssi, D. Estimation of the Kolmogorov constant C0 from classical statistical diffusion
theory. Atmos. Environ. 1998, 32, 3611–3614. [CrossRef]

62. Moeng, C.; Sullivan, P. A comparison of shear-and buoyancy-driven planetary boundary layer flows.
J. Atmos. Sci. 1994, 51, 999–1022. [CrossRef]

63. Nieuwstadt, F.; Brost, R. The Decay of Convective Turbulence. J. Atmos. Sci. 1986, 43, 532–546. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://arquivoescolar.org/bitstream/arquivo-e/151/1/edp.pdf
http://matematicas.uam.es/~ireneo.peral/libro.pdf
http://dx.doi.org/10.2174/1874282300802010153
http://dx.doi.org/10.1016/j.ecolmodel.2007.02.004
http://dx.doi.org/10.1175/1520-0469(1989)046<2311:EOTTAD>2.0.CO;2
http://www.stanford.edu/class/math220a/handouts/firstorder.pdf
http://dx.doi.org/10.1175/1520-0469(1977)034<0515:FMFETA>2.0.CO;2
http://dx.doi.org/10.1002/qj.49710544606
http://dx.doi.org/10.1023/A:1000418709945
http://dx.doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2
http://dx.doi.org/10.1007/978-94-010-9112-1_4
http://dx.doi.org/10.1016/S1352-2310(98)00038-7
http://dx.doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1986)043<0532:TDOCT>2.0.CO;2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theoretical Framework
	The Turbulent Energy Spectrum Function
	Model Evolution for the STKE in CBL
	Thermal Convection
	Mechanical Energy Production
	Kinetic Energy Transfer by Inertial Effect
	Energy Dissipation by Molecular Viscosity and Time Variation of the STKE: Dimensionless Equations

	The Evolution Equation for Dimensionless STKE
	 First Order Linear PDEs
	Method of Characteristics
	Local Existence and Uniqueness of Solution for a Linear First Order PDE


	Isotropic Model
	Final Considerations
	
	Parameterization Employed in the Construction of Three-Dimensional Spectrum
	References

