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Abstract: Measurements of greenhouse gas fluxes over many ecosystems have been made as part of
the attempt to quantify global carbon and nitrogen cycles. In particular, annual flux observations
are of great value for regional flux assessments, as well as model development and optimization.
The chamber method is a popular approach for soil/ecosystem respiration and CH4 flux observations
of terrestrial ecosystems. However, in situ flux chamber measurements are usually made with
non-continuous sampling. To date, efficient methods for the application of such sporadic data to
upscale temporally and obtain annual cumulative fluxes have not yet been determined. To address
this issue, we tested the adequacy of non-continuous sampling using multi-source data aggregation.
We collected 330 site-years monthly soil/ecosystem respiration and 154 site-years monthly CH4 flux
data in China, all obtained using the chamber method. The data were randomly divided into a
training group and verification group. Fluxes of all possible sampling months of a year, i.e., 4094
different month combinations were used to obtain the annual cumulative flux. The results showed a
good linear relationship between the monthly flux and the annual cumulative flux. The flux obtained
during the warm season from May to October generally played a more important role in annual flux
estimations, as compared to other months. An independent verification analysis showed that the
monthly flux of 1 to 4 months explained up to 67%, 89%, 94%, and 97% of the variability of the annual
cumulative soil/ecosystem respiration and 92%, 99%, 99%, and 99% of the variability of the annual
cumulative CH4 flux. This study supports the use of chamber-observed sporadic flux data, which
remains the most commonly-used method for annual flux estimating. The flux estimation method
used in this study can be used as a guide for designing sampling programs with the intention of
estimating the annual cumulative flux.

Keywords: annual flux estimation; soil/ecosystem respiration; CH4 flux; chamber method; sporadic
data upscaling

1. Introduction

CO2 and CH4 fluxes from and to terrestrial ecosystems are important to quantify as they influence
the atmospheric greenhouse gas concentrations and thus climate warming [1,2]. Terrestrial ecosystems
have a global annual soil respiration of approximately 90 Pg C yr−1 [3,4]. Methane has a global
warming potential 34 times that of CO2 for a period of over 100 years [5], and the terrestrial CH4
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flux can be large when the methanotrophic process is constrained by moisture and temperature [6].
Methane emission is currently estimated at 500–600 Tg CH4 yr−1 globally [7]. Ground observations of
soil/ecosystem respiration and CH4 fluxes have increased considerably over the past few decades [8],
driven by the need to adapt to, and mitigate, climate change. Among them, the chamber method is
one of the most common methods to observe fluxes and to understand their spatial and temporal
variations [9].

The chamber method has been applied since the early twentieth century and has a history of use
of nearly one hundred years [10]; the method is relatively easy, cheap, and widely applicable to varied
environments [9]. There are currently at least 5000 sampling plots worldwide [9]. However, until very
recently, the chamber method was essentially manually controlled, and thus had the disadvantage of
a low observation frequency and inconsistent sampling months. In recent years, this limitation has
been largely overcome by the introduction of computer-controlled automatic sampling systems [11,12].
However, the automatic equipment is usually expensive to install, although increasingly more studies
have started to use this new efficient system [13–17]. Thus, for the archived data now available, the
observation frequency is often less than once a month, determined according to the practicability of
accessing the site, and usually in the daytime. Here, we examine archived flux data of CO2 and CH4

collected in China at 2096 and 1331 sampling locations respectively. Among these, only 249 and 105
sampling plots were observed as frequently as monthly. We ask whether the less-frequent data may be
regarded as representative of the year as a whole.

The annual flux value is expressed as the cumulative flux (AF) or average flux (AF) during one year
and represents a portion of the important basic data for carbon budgets [18]. Simulation of annual flux
using machine learning approaches and process-based models are powerful and promising methods
in filling flux observation gaps spatially or temporally [19–21]. However, all these methods depend on
data availability of the predictors, which commonly are remotely sensed and meteorological gridded
data. Those data contain biases and gaps that lead to an increase of predictive uncertainty [22–24].
Besides, some anthropogenic influences are hard to be quantified in models, for example management
practice or disturbance. Therefore cross-validation and fusion of multiple originated data are necessary
for producing a confident global flux map, including a wide variety of modeled and observed data
sets. As we mentioned previously, a large number of chamber-observed data are collected sporadically.
If those data could confidently be used to estimate the annual flux, the value of the archived data could
be increased considerably. Some previous studies have indeed attempted to estimate the annual value
using flux data derived from different seasons using arithmetic averaging or weighted averaging for a
single plot or a few plots [25,26]. The two algorithms have the advantages of simple calculation and
easy implementation, which is preferable for constructing universal annual estimation equations for
different ecosystems.

In view of the above-mentioned problems and needs, in this study we focus on multi-source data
collection; the objectives are to (1) analyze the relationships between the observed flux in different
months and the observed AF to test the feasibility of using low-frequency flux data to estimate the
overall AF; (2) select the optimal months for AF estimation using different observation frequencies and
determine the optimal equations for AF estimation. The results of the present study provide guidance
for AF estimations using archived low-frequency flux data and for future design of sampling programs.

2. Methods

2.1. Data Collection and Screening

We began this research with the preparation of the monthly flux data from Chinese data archives.
Using the China National Knowledge Infrastructure (CNKI) database, we first collected related research
literature published up to 2016 and extracted soil CO2 and CH4 flux data using the GetData Graph
Digitizer software (version 2.25, GetData Software). The criteria for the data selection were: (1) in situ
monitoring; (2) using the chamber method, including self-made chambers and commercial products;
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(3) a study duration of at least 12 months with at least one campaign per month. All three criteria were
required for the data set to qualify for the study. Following the screening, 65 valid research articles
were obtained, including 245 soil/ecosystem respiration sampling plots and 96 CH4 flux sampling
plots. The duration of some observation programs was more than 1 year. We selected just the period
covering 12 months from the start of the first campaign. The remaining months, shorter than 1 year,
were abandoned. This resulted in 283 groups of 1-year monthly soil/ecosystem respiration data and
107 groups for the CH4 data.

In addition to the literature data, we acquired chamber-observed in situ flux data for 10 sites from
a research project (Carbon Budget in Terrestrial and Marginal Sea Ecosystems of China [27]) covering
these locations: Haibei, Sanjiang, Yucheng, Yanting, Wuxi, Changbai Mountain, Dinghushan, Heshan,
Qianyanzhou, and Xishuangbanna. We obtained 47 groups of 1-year monthly flux data for CO2 and
CH4.

In total, we collected 330 groups of 1-year monthly soil/ecosystem respiration data and 154 groups
for the CH4 data. Ecosystem net CO2 exchange (NEE) data was not used in the present study because
achieved chamber NEE data is limited. More information on the collected data is illustrated in Figure 1
and Table 1.
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Figure 1. Location of the sampling sites of soil/ecosystem respiration and CH4 flux from
different ecosystems.

Table 1. Basic information on the collected data.

Items Soil/Ecosystem Respiration CH4 Flux

Sample size (number of site-years) 330 154

Location 19.4~47.6◦ N, 92.9~133.5◦ E 19.4~47.6◦ N, 92.9~133.5◦ E

Chamber Self-made or commercial transparent and
opaque chamber

Self-made or commercial
transparent and opaque chamber

Monitoring interface/sample size Water/8, soil/255, soil with no roots/25, soil and
plants/42 Water/9, soil/107, soil and plants/38

Ecosystem/sample size Grassland/26, forest/188, farmland/96,
wetland/20

Grassland/8, forest/66,
farmland/56, wetland/24

Treatments or disturbances

Fertilization, straw incorporation, cover crop,
rotation, rotational grazing, grazing, rain

protection, root cutting, fire, herbicide
application, harvesting, reclamation, increase

and decrease of litter

Fertilization, straw incorporation,
covering, crop rotation, rotational
grazing, grazing, rain reduction,

Fluxes range 14.0~7514.0 g CO2 m−2 yr−1 * −21.0~377.6 g CH4 m−2 yr−1

Mean ± standard deviation of fluxes 1014 ± 1441 g CO2 m−2 yr−1 13.8 ± 49.8 g CH4 m−2 yr−1

Median of fluxes 321 g CO2 m−2 yr−1
−0.16 g CH4 m−2 yr−1

Note: * Positive values indicate CO2 loss. There is no CO2 gain because all the observations with plant used opaque
chamber (no photosynthesis).
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2.2. Development and Testing of AF Estimation Equations

The purpose of this study is to determine if it is possible to estimate the AF using infrequent
observation data, while evaluating the performance of different sampling months as predictors of AF.
Raw flux data expressed in seconds or hours was first converted into monthly and annual flux data.
Subsequently, we developed linear regressions using the observed monthly flux of the sample month
or months as the predictor variable and the observed AF as the response variable. The validation
data, which were not used in the equation development, were used to evaluate the performance of the
equations. A detailed explanation of the methods is as follows.

2.2.1. Data Preparation for the Development and Testing of the Equations for Annual Soil/Ecosystem
Respiration and CH4 Cumulative Fluxes (AFCO2 and AFCH4): Observed Monthly Cumulative Flux
Calculations

We assumed that one or more observations in a month can represent the cumulative monthly flux
(MF). The raw flux data were partitioned by month. The simple arithmetic mean F (mg m−2 h−1) of
each month’s flux and the monthly cumulative flux (g m−2 month−1), was then calculated. MF was
used to denote the observed monthly flux, as shown in the subsequent section.

2.2.2. Data Preparation for the Development and Testing of the AFCO2 and AFCH4 Equations:
Observed AF Calculations

The observed annual flux was obtained by accumulating the MF over 12 months:

AFobs =
∑12

1
MF, (1)

where AFobs is the observed annual value (g m−2 yr−1).
The dataset was then randomly divided into two groups by site-year following previous studies [3,

28,29], i.e., 2/3 of the site-years and resulting AFobs were used as training data to develop the estimation
equations and the remaining 1/3 of the site-years were used as validation data to test the estimation
accuracy of the equations.

2.2.3. Development of the Estimation Equations for AFCO2 and AFCH4

Linear regression equations were developed for the subsequent AF simulation using the observed
MF of each month or of a combination of months as the candidate predictor variable and the observed
AF as the response variable. We developed two types of AF estimation equations, i.e., the AF estimation
method I (AFI, Equation (2)), based on the arithmetic average and the AF estimation method II (AFII,
Equation (3)), based on the weighted average method, as follows:

AFI :AFsim =a + αMF, (2)

where AFsim (g m−2 yr−1) is the simulated AF, a is the intercept, α is the regression coefficient, and MF (g
m−2 month−1) is the average of the observed MF over one or more months. In order to comprehensively
evaluate the simulative ability of different sampling months, we used an exhaustive method including
every possible combination of the sampling months. For example, at a sampling frequency of one,
there were 12 potential sampling times. At a frequency of two, any combination of two months was
possible, i.e., there were 66 potential sampling times. Similarly, at frequencies of 3 to 11, there were 220,
495, 792, 924, 792, 495, 220, 66, and 12 potential combinations, respectively. In total, we developed and
compared 4094 equations for the AF estimation using the arithmetic average method.

The weighted average method requires a weighting coefficient for each month:

AFII :AFsim =a + αMF1 + βMF2 + · · ·+ λMFn, (3)
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where AFsim is the simulated AF (g m−2 yr−1), a is the intercept, α, β and λ are regression coefficients
representing the weighting factors, and MF1, MF2 and MFn (g m−2 month−1) indicate the monthly
flux of January, February, and the n month, respectively. As with the AFI, we also used an exhaustive
method for the AFII and analyzed 4094 AF estimation equations based on the weighted average method.

2.2.4. Testing the Estimation Accuracy of the Equations

We used the verification group of the observed flux data and all the equations to calculate the
AFsim. To assess the accuracy of the simulation, the R2 values of the linear relationship between the
AFobs and AFsim and the root mean square error (RMSE) were determined and used as indicators.
Lower values of RMSE indicated a better performance in the predictions.

2.2.5. Comparison of Estimating Accuracies of Different Ecosystem Types and Interface Types

Considering the small sample size, we were not able to perform a sampling period comparison,
nor were we able to determine predictive equations for different ecosystems (e.g., forest, grassland,
farmland and wetland) and different interfaces (i.e., ecosystem, soil and water, which correspond to
different flux component, including ecosystem respiration, soil respiration, heterotrophic respiration,
CH4 flux of soil, and CH4 flux of soil and plant). Thus, we separately accessed the simulative accuracy.
The result of the testing of the four optimal equations (minimum RMSE) are plotted for the sampling
frequencies of 1 to 4. For equations with a higher sampling frequency, a greater estimation accuracy
was generally observed. More information could be found in Tables S1–S4.

2.2.6. Testing the Present Annual Flux Estimation Method with Eddy Covariance Data

Due to the lack of continuous flux data observed with chamber technique, eddy covariance data
was used to implement a further validation of the present method. We obtained continuous half-hour
flux data (ecosystem respiration, RECO) of 26 site-years of 10 sites in China from FLUXNET (Data
Products: FLUXNET2015 Dataset, [30]). The basic information of the sites was shown in Table 2.

Table 2. Basic information on the 10 flux observation sites using eddy covariance technique. Mean
± standard deviation of fluxes of all site-years: 2367 ± 1443 g CO2 m−2 yr−1, median of fluxes of all
site-years: 1932 g CO2 m−2 yr−1. Data of the site Siziwang in 2010 and 2012 is several magnitudes lower
than in 2011 and other sites with no explanation, therefore, data of these two years were excluded.

Site Name Ecosystem Latitude Longitude Duration
Mean ± Standard

Deviation of Fluxes
(g CO2 m−2 yr−1)

Median of Flux (g
CO2 m−2 yr−1)

Changling Grasslands 44.6 123.5 2007–2010 1382 ± 135 1384

Changbaishan Mixed Forests 42.4 128.1 2003–2005 4459 ± 432 4608

Duolun Degraded
Meadow Grasslands 42.1 116.3 2009–2010 1425 ± 9 1425

Duolun Grassland Grasslands 42.0 116.3 2007–2008 881 ± 385 881

Siziwang Grazed Grasslands 41.8 111.9 2011 798 798

Haibei Shrubland Permanent
Wetlands 37.6 101.3 2003–2005 2488 ± 178 2406

Haibei Alpine
Tibet Grasslands 37.4 101.2 2002–2004 1437 ± 858 1879

Dangxiong Grasslands 30.5 91.1 2004–2005 809 ± 25 809

Qianyanzhou
Evergreen
Needleleaf

Forests
26.7 115.1 2003–2005 4402 ± 307 4282

Dinghushan
Evergreen
Broadleaf

Forests
23.2 112.5 2003–2005 3545 ± 97 3588
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Table 3. The best (RMSE minimum) and worst (RMSE maximum) AFCO2 and AFCH4 estimating equations using data from 1 to 4 months. Remaining equations are
shown in Tables S2 and S4. To provide more information on equations performance, the corresponding R2 and RMSE values of training data are also reported. AFsim
(g m−2 yr−1) is the simulated annual cumulative flux; MFn (g m−2 month−1) indicates the observed monthly flux of different months, for example, MF7 represents the
monthly flux of July and MF5 represents the monthly flux of May.

Gas Model Number of Months
Included in the Model

Equation
No.

The Best Model
Training Data Test Data Equation

No.
The Worst Model

Training Data Test Data

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

CO2
Model
AFII 1 B1 AFsimCO2 = 71.901 +

5.021 * MF7
0.651 91 0.665 1186 W1 AFsimCO2 = 137.159 +

15.082 * MF1
0.528 106 0.349 1968

2 B2 AFsimCO2 = 22.282 +
5.086 * MF5 + 3.614 * MF9

0.902 48 0.889 584 W2 AFsimCO2 = 132.480 +
9.691 * MF1 + 5.063 * MF2

0.561 102 0.424 1789

3 B3
AFsimCO2 = 19.844 +
4.301 * MF5 + 2.993 *
MF9 + 3.999 * MF12

0.928 41 0.941 431 W3
AFsimCO2 = 122.230 +

9.430 * MF1 + 2.506* MF2
+ 2.885* MF3

0.579 100 0.449 1683

4 B4

AFsimCO2 = 3.443 + 3.250
* MF5 + 1.805 * MF7 +
2.090 * MF9 + 4.270 *

MF12

0.971 26 0.969 292 W4

AFsimCO2 = 93.022 +
7.112 * MF1 + 1.660 *
MF2 − 0.574 * MF3 +

5.188* MF4

0.692 85 0.597 1306

CH4
Model
AFII 1 B5 AFsimCH4 = 3.868 +

19.192 * MF10
0.870 18.5 0.915 14.8 W5 AFsimCH4 = 7.477 −

25.990 * MF11
0.626 31.3 0.906 78.5

2 B6 AFsimCH4 = −1.181 +
2.682 * MF4 + 4.530 * MF7

0.972 8.5 0.988 5.2 W6 AFsimCH4 = 5.033 + 9.092
* MF2 − 24.388 * MF11

0.689 28.6 0.893 69.6

3 B7
AFsimCH4 = −1.321 +

1.545 * MF1 + 2.582 * MF4
+ 4.463 * MF7

0.973 8.4 0.988 5.0 W7
AFsimCH4 = 2.370 − 5.427
* MF2 + 15.394 * MF3 −

18.675 * MF11

0.813 22.1 0.792 62.0

4 B8

AFsimCH4 = −0.043 +
3.266 * MF1 + 2.514 *
MF6 + 0.994 * MF7 +

3.793 * MF9

0.985 6.2 0.993 4.0 W8

AFsimCH4 = 2.093 + 3.361
* MF1 − 5.378 * MF2 +
14.480 * MF3 − 17.307 *

MF11

0.817 21.9 0.636 59.5
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Using every site-year data, the optimal equation with sampling frequencies of 4 (i.e., Equation (B4)
in Table 3) was tested as an example. Four random RECO data were selected in May, July, September
and December (one datum for each month, data only selected from 8 a.m. to 6 p.m. to keep the time
consistent with the practice of the manual chamber technique). The simulated annual RECO was
then derived using the 4 random respirations and the recommended Equation (B4). The random data
selection and annual RECO simulation was repeated 100 times. The observed annual RECO was
derived by accumulating the half-hour respirations of a year.

The simulated annual RECO was compared to the observed annual RECO. The R2 and root mean
square error (RMSE) values between the observed and simulated annual RECO were used to assess
the accuracy of the predictive equation.

2.3. Statistical Analysis

Statistical analysis was performed using the software R, version 3.4.4 [31], with the ‘broom’ [32],
‘dplyr’ [33] and ‘boot’ [34] packages. The simulative performances of the two types equations AFI
and AFII were compared using a paired t-test. The correlation matrix was plotted using the R
package ‘PerformanceAnalytics’ [35], with Spearman method. Figures were plot using the R packages
‘ggplot2’ [36], ‘ggpubr’ [37] and ‘grid’ [31], and SigmaPlot (version 11.0, SYSTAT, USA).

3. Results

3.1. Relationships between Observed Annual and Monthly Flux

The observed CO2 monthly emissions were highly correlated with observed AF. The correlation
coefficients (r value) ranged from 0.71 to 0.92 (p < 0.001, Figure 2). The monthly emissions of the
warm period, e.g., from May to September, exhibited particularly high correlations (r > 0.9) with AF.
Observed CH4 monthly fluxes were also significantly correlated with AF (p < 0.001), yet r values varied
from −0.38 to 0.94 (Figure 3). The correlation coefficients of the months from April to October (r values
between 0.76–0.94) were higher than that of the colder period from November to March (r values
between −0.38–0.69).
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Figure 2. Correlation coefficient matrix of observed annual and monthly soil/ecosystem respiration.
The diagonal panels represent the row and column heads, the numbers were the annual or monthly
respiration (mean ± standard deviation, g CO2 m−2 yr−1 or g CO2 m−2 month−1). The numbers
on x and y axis are respirations whose unit is g CO2 m−2 yr−1 for annual emission and g CO2 m−2

month−1 for monthly emission. The lower panels show the scatter plots (red lines are fitted lines of
local regression) while the upper panels report the correlation coefficients. *** indicates significance at
p < 0.001. The sample size is 330.
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correlation coefficients. *** indicates significance at p < 0.001, ** indicates significance at p < 0.01,
* indicates significance at p < 0.05. The sample size is 154.

3.2. Comparison of Different Types of Equations

Using the developed equations and the flux data validation group, we obtained the simulated AF
and compared it to the observed AF. Taking the R2 and RMSE values of the test data, the performance
of different types of equations, AFI and AFII, were compared.

For both soil/ecosystem respiration and CH4 flux prediction, AFI and AFII produced similar
R2 and RMSE value and trends, particularly in terms of the mean R2, maximum R2, mean RMSE
and minimum RMSE (Figure 4). Although there were the similar values and trends, a significant
difference was observed. The simulation error of the AFII equation was significantly lower (CO2:
p < 0.001, df = 4093; CH4: p < 0.001, df = 4093) than that of AFI equation. The average RMSE values
were 462 ± 3 g CO2 m−2 yr−1 and 14.3 ± 0.18 g CH4 m−2 yr−1 for AFII, 490 ± 3 g CO2 m−2 yr−1 and
16.0 ± 0.18 g CH4 m−2 yr−1 for AFI. When the amount of monthly flux was fixed from 1 to 11, for the
most cases, the minimum RMSE of the AFII equation was smaller than that of AFI equation (Figure 4).
Because of the high similarity of AFI and AFII equations, in the remaining results sections (Sections 3–5),
only results of AFII are presented.
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Figure 4. Maximum, minimum, and mean ± standard error of the R2 and RMSE values between
AFobs and AFsim for simulations with different sampling frequencies. Results are based on 4094
linear regression equations for the arithmetic average (AFI) and weighted average (AFII) methods.
The blue and red lines indicate the result of observed data of verification group (not used in equation
development). The grey and black lines indicate the result of random data (for more information, see
Section 4.3). The sample size is 106 for the soil/ecosystem respiration and 46 for the CH4 of both the
observed data and the random data. All mean R2 and RMSE values are shown with the standard
error, yet some are too small to be visible. Some symbols are overlapping, such that some symbols
are invisible.

3.3. Effects of Sampling Frequency on AF Estimation

To analyze the effects of the sampling frequency (the number of sampling months per year) on
the AF estimation, taking the flux values of 1 to 11 months as predictors, we compared the agreement
between the simulated AF and the observed AF of the test dataset, using the R2 and RMSE values.

As the sampling frequency increased, the agreement between the AFobs and AFsim (R2 value)
increased, while the estimating error (RMSE value) decreased (Figure 4).

When estimating the AFCO2 and AFCH4 using only the flux from one month, the variability was
explained, on average, by 58% and 63%, respectively (Figure 4). Increasing the sampling frequency
caused a gradual improvement in the consistency. For estimations of AFCO2 and AFCH4 using 2 to
4 months of flux data, the explained variabilities increased from 73% to 88% and from 69% to 83%,
respectively. Moreover, the mean RMSE declined from 1051 ± 30 to 637 ± 8 g CO2 m−2 yr−1 for AFCO2

and from 30.1 ± 1.9 to 21.7 ± 0.6 g CH4 m−2 yr−1 for AFCH4.
When the focus was only placed on the optimal equations, the emission of one to four months

could explain AFCO2 variation at 70%, 89%, 94% and 97% respectively. Moreover, the simulation errors
were 1186, 584, 431 and 292 g CO2 m−2 yr−1, respectively (Table 3). For AFCH4 simulation, only one
month’s flux could explain 97% variation. When using the flux from two months, the explanation
increased to 99%, with an error of 5.2 g CH4 m−2 yr−1.

As the sampling frequency increased to more than 4 times per year, the rate of change in the R2

and RMSE value, particularly in terms of maximum R2 and minimum RMSE value, decreased.

3.4. Effects of Sampling Months on AF Estimation

Using the R2 and RMSE of test dataset, the influence of specific sampling months on the AF
estimation was compared.

Results showed that when the sampling frequency was too low to cover different seasons, the
simulation accuracy was generally better when the flux of May to October was used compared to
months of November to April. When one month was used for the AFCO2 simulations, the first
six minimum RMSE values were obtained using the respirations of July, September, May, October,
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November and August (Table S2). For the AFCH4 simulation, the fluxes of October, September, July,
June, August and May demonstrated a greater prediction performance (Table S4). When two months
were used in AFCO2 and AFCH4 simulation, the predictive errors were always large if the two monthly
fluxes were both from November to April (Figure 5).
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respiration; (b) CH4 flux.

Although increasing sampling frequency could generally improve simulation accuracy as described
in the previous section (Result Section 3), observations in the period from May to October demonstrated
a higher prediction performance than more-frequent observations in the period from November to
April. For example, the R2 and RMSE of one month of July (Equation (B1), Table 3) were 0.67 and
1186 g CO2 m−2 yr−1, respectively. This indicates a better performance than for the four cold months
of January, February, March, and April, whose R2 and RMSE were 0.60 and 1306 g CO2 m−2 yr−1,
respectively (Equation (W4), Table 3). However, it should be noted that when there was more than one
sampling month, the R2 was higher if the flux data was derived from different seasons but not all from
the warm period (Table 3, Tables S1–S4).

3.5. Simulative Accuracies of Different Ecosystem Types and Interface Types

The simulative accuracies of different ecosystem types were generally distinct (Figures 6 and 7).
Estimations of AFCO2 and AFCH4 of forest and grassland exhibited a smaller RMSE compared to
other ecosystems, indicating a higher simulation accuracy. In contrast, the estimation of the wetland
ecosystem demonstrated the lowest accuracy. However, results also showed that the more months
used in the prediction, the smaller the difference in terms of estimating accuracy among different
types of ecosystem (i.e., the smaller the difference in R2 and RMSE values). Similarly, the discrepancy
of estimation accuracies among different interfaces also decreased when more monthly fluxes were
included into estimations. When 4 monthly fluxes were used in AF simulation, there was no big
discrepancy in terms of R2 values among different ecosystem types and interface types.
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Figure 6. Comparison of the observed and estimated annual soil/ecosystem respiration using 1 to 4
monthly respirations of different types of ecosystem (a–d) and interface (e–h). Derived using Equations
(B1)–(B4) in Table 3 and test data (not used in equation development). Respiration and RMSE unit: g
CO2 m−2 yr−1.
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3.6. Testing Simulation Equation Using Eddy Covariance Data 

For the 100 times simulation and verification of RECO, the R2 was 0.80–0.97, while the RMSE 
was 279–978 g CO2 m−2 yr−1 (Figure 8). The R2 values of 94 out of 100 tests were higher than 0.85, 
while the RMSE values of 72 out of 100 tests was lower than 600 g CO2 m−2 yr−1. It is worth noting that 
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Figure 7. Comparison of the observed and estimated annual CH4 fluxes using 1 to 4 monthly fluxes of
different types of ecosystem (a–d) and interface (e–h). Derived using Equations (B5)–(B8) in Table 3
and test data (not used in equation development). The small plots on the left are the enlarged portions
of the small fluxes. Flux and RMSE unit: g CH4 m−2 yr−1. The sample size of water–air interface flux
was only 2, therefore no regression line and RMSE values were presented.

3.6. Testing Simulation Equation Using Eddy Covariance Data

For the 100 times simulation and verification of RECO, the R2 was 0.80–0.97, while the RMSE was
279–978 g CO2 m−2 yr−1 (Figure 8). The R2 values of 94 out of 100 tests were higher than 0.85, while the
RMSE values of 72 out of 100 tests was lower than 600 g CO2 m−2 yr−1. It is worth noting that higher
RMSE values of RECO than that of soil respiration may be because RECO (ecosystem respiration)
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is generally larger than soil respiration (in the present study, the average value (mean ± standard
deviation) was 2367 ± 1443 and 1014 ± 1441 g CO2 m−2 yr−1, respectively).Atmosphere 2019, 10, x FOR PEER REVIEW 14 of 24 
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4. Discussion

4.1. Feasibility of Estimating AF Using Low-Frequency Flux Data Observations

The chamber method is an important means to observe the CO2 and CH4 fluxes of ecosystems.
For global terrestrial ecosystems, flux observations using the chamber method have been carried out
on at least 5000 plots [38], considerably more than for the eddy covariance method [39]. However, one
disadvantage of the flux data obtained by the chamber method when operated manually is the low
frequency of the data [40]. In addition, the sampling season and frequency of different observations are
not standardized, making it difficult to compare the data, especially when large amounts of data are
required for a comprehensive analysis at regional or global scales. Therefore, in the present study, we
analyzed the relationship between the chamber-observed soil/ecosystem respiration and CH4 fluxes of
different ‘candidate’ months and the total annual flux, AF. We developed and verified the AF estimation
equations, and determined the feasibility of using low-frequency flux data for estimating the AF.

The results indicated a good linear fit between the soil/ecosystem respiration and CH4 fluxes of
different months and the annual totals AFCO2 and AFCH4, respectively (Figures 2 and 3). The equations
also demonstrated good simulation ability. When only one month of flux was used to estimate the
AFCO2 and AFCH4, the variability was explained by up to 67% and 92%, respectively. When the sampling
frequency was increased to 4 months per year, this increased to 97% and 99%, respectively, while the
RMSE corresponded to 292 g CO2 m−2 yr−1 and 4.0 g CH4 m−2 yr−1, respectively. This simulation
performance is better than that found in previous studies. For example, 11 soil respiration model
studies at national, regional, and global scales (presenting predictable proportions of 26–68%) were
reviewed by Chen et al. [41], and previous work has been conducted on soil respiration simulation in
China (RMSE = 799 g CO2 m−2 yr−1 [42]) and on global soil respiration [3,43,44]. The simulation error
of soil CH4 fluxes using the present method also demonstrates a better simulation accuracy, yet it has
rarely been discussed on an annual scale (RMSE = 76 g CH4 m−2 yr−1 [45]).

The efficacy of using a few monthly fluxes to determine the annual balance depends on the degree
of seasonality of the flux. However, quite good performance was observed even when there was no
distinct seasonality (Figures 9 and 10). From the perspective of the processes and mechanisms of CO2

and CH4 emission/absorption, the observed flux itself is the result of the interaction of all environmental
factors. Even one monthly flux provides a reliable reference for the emission/absorption magnitude of
the observed environment when the flux is taken from a period with active biogeochemical reactions,
for instance, in the summer or the growing season [46–48]. An increase in the number of monthly
fluxes that were included in AF simulation, resulted in the better definition of the fluctuating extent in a
year, thus increasing the exactness of the estimation. This was suspected to be a reason for the relatively
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good simulation accuracy when there was no distinct seasonality. Moreover, this also provided a
possible explanation for why the simulation performance did not dramatically change across the
different types of ecosystems or interfaces.
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Figure 9. Agreement between simulated and observed annual soil/ecosystem respiration of data with
or without a seasonal pattern. (a,b) are monthly variation of respiration with and without a seasonality,
respectively. The respiration with one peak across a year was categorized as the with-seasonality group,
whereas the respiration presenting several peaks or no obvious peak across a year was categorized
as the without-seasonality group. (c,d) are simulation verification of respiration with or without
seasonality, using one and four monthly respirations, respectively. The simulated respirations in (c,d)
were derived using Equations (B1) and (B4) in Table 3, respectively.

The high consistency between the estimated value and the observed value indicated a high
feasibility of the method and equations for determining the AF. This implies that low-frequency flux
data can be used to estimate the annual soil/ecosystem respiration and CH4 flux. Therefore, the great
amount of archived sporadic chamber data can be brought together to contribute to future research on,
for example, the process understanding of the carbon cycle, the cross-validation of multi-source flux
data, and regional flux mapping, among others.
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Due to technical and budgetary constraints, soil greenhouse gas flux investigations are 
dominated by non-continuous low-frequency sampling. The question of when to sample has been 
plaguing researchers. This issue reflects the trade-off between input of budget and labor and 
spatiotemporal representativeness of the data. Although studies on soil greenhouse gas fluxes have 
been carried out for nearly 100 years, this question remains unanswered. 

In the present study, we analyzed the impact of different months and different sampling 
frequencies on AF estimations. We found that, in general, the smaller the sampling frequency, the 
greater the discrepancy between different months (Figure 4), and the more important the timing. In 
addition, the summer or the warm season data were better suited for estimating the AF compared 
to the winter data. There is a much larger spatial flux difference in the warm season than in the 
winter [49–51]. Capturing the flux of a highly variable period was more effective in reducing the 
estimation error, which is presumed to be the reason why the warm period/growing season flux 
was more important for the AF estimation. 

Figure 10. Agreement between simulated and observed annual CH4 flux of data with or without
a seasonal pattern. (a,b) are monthly variation of flux with and without a seasonality, respectively.
The flux with one peak across a year was categorized as the with-seasonality group, whereas the flux
presenting several peaks or no obvious peak across a year was categorized as the without-seasonality.
(c,d) are simulation verification of flux with or without seasonality, using one and four monthly fluxes,
respectively. The simulated fluxes in (c,d) were derived using Equations (B5) and (B8) in Table 3,
respectively. The small plots on the left of (c,d) are the enlarged portions of the small fluxes.

4.2. Selection of Sampling Months

Due to technical and budgetary constraints, soil greenhouse gas flux investigations are dominated
by non-continuous low-frequency sampling. The question of when to sample has been plaguing
researchers. This issue reflects the trade-off between input of budget and labor and spatiotemporal
representativeness of the data. Although studies on soil greenhouse gas fluxes have been carried out
for nearly 100 years, this question remains unanswered.

In the present study, we analyzed the impact of different months and different sampling frequencies
on AF estimations. We found that, in general, the smaller the sampling frequency, the greater the
discrepancy between different months (Figure 4), and the more important the timing. In addition, the
summer or the warm season data were better suited for estimating the AF compared to the winter
data. There is a much larger spatial flux difference in the warm season than in the winter [49–51].
Capturing the flux of a highly variable period was more effective in reducing the estimation error,
which is presumed to be the reason why the warm period/growing season flux was more important for
the AF estimation.

Based on our results, in the development of a monitoring plan for AF estimation, the number
of observation months should be no less than four. The recommended months for soil/ecosystem
respiration observations are May, July, September, and December (Equation (4)). The recommended
months for the CH4 flux observation are January, June, July, and September (Equation (5)). When
observing the soil/ecosystem respiration and CH4 fluxes together, the recommended months are March,
May, August, and October (Equations (6) and (7)).
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AFsimCO2 = 3.443 + 3.250 * MF5 + 1.805 * MF7 + 2.090 * MF9 + 4.270 * MF12, (4)

AFsimCH4 = −0.043 + 3.266 * MF1 + 2.514 * MF6 + 0.994 * MF7 + 3.793 * MF9, (5)

AFsimCO2 = 9.906 + 1.194 * MF3 + 3.710 * MF5 + 2.054 * MF8 + 3.117 * MF10, (6)

AFsimCH4 = 0.858 + 3.694 * MF3 + 1.872 * MF5 + 0.904 * MF8 +9.514 * MF10, (7)

In the present study, the optimal month/months were listed based on the statistical value but
often, it can be difficult to carry out observations during the optimal sampling months. In this case, the
sampling months can be selected using the R2 and RMSE values in the Tables S1–S4. For example,
when using 4 monthly soil/ecosystem respirations and the AFII method to estimate the AFCO2, the
months with similar estimation accuracies as the optimal selection (5, 7, 9, and 12) included 5, 7, 9, and
11 or 3, 5, 8, and 11 or 5, 8, 9 and 12 (Table S2).

4.3. Uncertainties

In the present study, we assumed that the flux data with a frequency of one or more times per
month could represent the actual monthly flux. The annual flux was then derived by accumulating the
monthly fluxes. However, the diurnal and seasonal variation [52–55] manifest obvious bias between
the actual annual flux and the flux calculated based on infrequent observations. The flux difference
between a low and high sampling frequency has been quantified at site scale. For instance, a study
in a temperate rainforest carried out 1-year high-frequency (24 measurements per day) sampling of
soil respiration [56], and randomly selected low-frequency data to calculate annual emission. This
was compared to the full-data annual emission. The results revealed that when the annual sampling
frequency was higher than once a month (the daily sampling frequency was once per day), the RMSE
decreased to less than 10% of the annual emission. A similar bias was also reported by a continuous
long-term study in a Korean monsoon forest [57]. Moreover, we did similar comparison using the eddy
covariance data (Table 2) and found no significant difference (paired t-test: p > 0.05) among monthly
ecosystem respirations (RECO) derived from continuous sampling and non-continuous sampling
(simulated by generating partial-data series from full-data, Figure 11).

As the present AFobs is made up from the sum of the MF, it is obvious that there will (in general)
be a correlation between the AFsim estimated from 1, 2, 3, 4 . . . months and the AFobs, and that
the more MF being used, the higher the correlation will be. To identify if the correlation was just
caused by the statistical method, we generated two sets of random data to represent random monthly
soil/ecosystem respiration and CH4 fluxes. Considering data comparability, the data size and the range
of values of the random datasets were consistent with the observed flux. The correlation analysis and
the testing of the simulative equations were then repeated using the random datasets. Compared to
the observed data, obviously weaker correlation (R values, Figures 2 and 3, Table 4) and simulative
performance (R2 and RMSE values, Figure 4) were observed using the random data. We suspect that
the stronger correlation of the observed data was caused by seasonal patterns of flux. Thus, the statistic
was speculated to be meaningful to understand the correlations between monthly and annual fluxes,
although the correlations and simulative performance was very likely to be overestimated.
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Figure 11. Comparison of monthly ecosystem respirations among continuous (CS) and non-continuous
sampling (NCS) using eddy covariance data. (a) Changling Grasslands; (b) Changbaishan Forest;
see [58,59] for explanation on the high respiration; (c) Duolun Degraded Meadow; (d) Duolun Grassland;
(e) Siziwang Grazed Grassland; (f) Haibei Permanent Wetland; (g) Haibei Grasslands; (h) Dangxiong
Grassland; (i) Qianyanzhou Forest; (j) Dinghushan Forest. See Table 2 for more information. Data
of NCS were generated by selecting observations from CS at different frequencies. CS are the eddy
covariance timeseries and the NCS are the up-scaled calculated monthly sums using different half-hour
emissions. CS: sum of all observations, i.e., 48 half-hour observations per day (48 observations per day
* 30 days = 1440 observations per month). NCS1: calculated using 1 half-hour observation per day
(1 observation per day * 30 days = 30 observations per month); as a common sampling time of manual
chamber method [60,61], observation of 9:00–9:30 a.m. was selected as an example. NCS2: calculated
using 10 half-hour observations per month, i.e., RECO of 9:00–9:30 a.m. on the 1st, 4th, 7th, 10th, 13th,
16th, 19th, 22nd, 25th and 28th. NCS3: calculated using 3 half-hour observations per month, i.e., RECO
of 9:00–9:30 a.m. on the 5th, 15th, and 25th. NCS4: calculated using 1 half-hour observation per month,
i.e., RECO of 9:00–9:30 a.m. on the 15th.
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Table 4. Correlation coefficient R between each group and the sum of the random datasets. Groups
1–12 represent random monthly flux while the sum represents the random annual flux.

Groups Random Dataset 1 Random Dataset 2

R p Value Sample Size R p Value Sample Size

Group 1 0.21 <0.001 330 0.27 <0.01 154
Group 2 0.34 <0.001 330 0.28 <0.001 154
Group 3 0.28 <0.001 330 0.32 <0.001 154
Group 4 0.31 <0.001 330 0.33 <0.001 154
Group 5 0.35 <0.001 330 0.15 >0.05 154
Group 6 0.34 <0.001 330 0.38 <0.001 154
Group 7 0.25 <0.001 330 0.19 <0.05 154
Group 8 0.30 <0.001 330 0.37 <0.001 154
Group 9 0.24 <0.001 330 0.20 <0.05 154

Group 10 0.29 <0.001 330 0.41 <0.001 154
Group 11 0.34 <0.001 330 0.16 <0.05 154
Group 12 0.31 <0.001 330 0.29 <0.001 154

Considering that both the hypothesis and the statistical method introduced uncertainties into the
simulation accuracy of the present equations, one critical question arises: Compared to the annual flux
derived by high frequency measurement, how large is the error of the simulated annual flux that was
calculated using the present method? Perez-Quezada et al. [56] published their full dataset of three
automatic chambers. We therefore used their data to explore the question. One datum per required
month of Equation (B4) (i.e., May, July, September and December) was randomly selected from the
daytime observations (between 8 am and 6 pm, to keep the time consistent with the practice of the
manual chamber technique). The simulated annual soil respiration was subsequently calculated using
the equation and the selected data, and the data selection and simulation were repeated 300 times (100
times per chamber). Compared to the annual soil respiration determined from high frequency data
(8592 observations per year, whose sum was denoted as obsAF in Figure 12), the simulated annual
soil respiration (4 observations per year) showed a difference ranging from −30% to 54% of the obsAF
(Figure 12), among which 276 simulated annual emissions exhibited a difference of −20% to 20% of the
obsAF, while 193 simulated annual emissions exhibited a difference of −10% to 10%. Compared to
Perez-Quezada’s [56] simulation of annual respiration (mean: 4288 g CO2 m−2 yr−1; RMSE: 538 g CO2

m−2 yr−1, 13% of the obsAF of 4150 g CO2 m−2 yr−1) using 4 day-time observations per year and their
linear and non-linear models, the simulative accuracy of our simulation was slightly better (mean:
4212 g CO2 m−2 yr−1; RMSE: 507 g CO2 m−2 yr−1, 12% of the obsAF), which might benefit from month
selection of the present study. Perez-Quezada’s study pointed out that no less than 2 observations per
day (repeat 4 times per year) or no less than 1 observation per month is necessary to decrease RMSE to
be lower than 10% of the obsAF. Inclusion of night-time observation can decrease RMSE to be lower
than 5% of the obsAF with a sampling frequency of once per month. Using the Korean forest data [57],
the estimated annual soil respiration using Equation (B4) was 7% lower than that calculated using the
continuous data. Besides, the present method had also been tested using eddy covariance data. A good
agreement (R2: 0.80–0.97; RMSE: 279–978 g CO2 m−2 yr−1) between simulated and observed ecosystem
respiration (RECO) was observed (Figure 8). Although the simulative accuracy was good compared to
previous studies, for example, studies on soil respiration simulation at global and ecosystem scales
which showed RMSE values of 696–2010 g CO2 m−2 yr−1 [3,28,62,63]. It is worth note that the present
RMSE values were still quite high (12–43% of the observed respiration), which calls for more efforts on
ecosystem/soil respiration modeling.
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Figure 12. Difference between continuous observed annual soil respiration and simulated annual
soil respiration using the present method with four observations. (a) Chamber 1; (b) Chamber 2;
(c) Chamber 3. The solid red horizontal line denotes the annual soil respiration using 8592 observations
per year (obsAF); the black dots denote the simulated annual soil respiration using the 4 random
observations per year required by Equation (B4), and simulation was carried out 100 times using
each chamber data; the vertical black lines denote the difference between the simulated annual soil
respiration and obsAF; the red dashed lines denote 4 references, and from top to bottom are 1.2, 1.1, 0.9,
0.8 times the obsAF, respectively. Raw data was obtained from Perez-Quezada et al. [56].

The uncertainty analysis implies that although the equations above were developed using
less-than-complete data, it did not nullify the present method, which we are proposing as a way to
obtain annual flux. However, a deeper understanding of the estimation errors requires more continuous
datasets and testing. In the future, when there is a sufficient continuous soil flux dataset, the simulation
methods illustrated in the present study can be modified and improved.

5. Conclusions

In summary, the monthly fluxes largely varied with respect to the simulative performance of the
annual flux. The summer or growing-season flux showed a higher simulative accuracy than winter.
However, when the sampling could cover different seasons, a better simulation was observed than
that of the clustered samples in the warm period. The presence of uncertainties in the present data
and statistical method did not nullify the present method that we proposed to obtain the annual flux.
The feasibility of the present method suggests that the large amount of archived sporadic chamber
data can be combined to contribute to future research regarding the process of understanding the
carbon cycle, cross-validation of multisource flux data, and regional flux mapping, among others.
The comparison of the representativeness of different months can also be used to guide the selection
of sampling months and to provide a reference for reducing workload and expenses for large-scale
census or research projects with financial constraints.
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Table S1: Equations for annual soil/ecosystem respiration simulation and the predictive performance using method
AFI, Table S2: Equations for annual soil/ecosystem respiration simulation and the predictive performance using
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method AFII, Table S3: Equations for annual CH4 flux simulation and the predictive performance using method
AFI, Table S4: Equations for annual CH4 flux simulation and the predictive performance using method AFII.
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