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Abstract: Exposure to airborne particulate matter (PM) has been associated with the transcriptional
up-regulation of pro-inflammatory mediators. However, the effect of PM on post-transcriptional
regulation of pro-inflammatory mediators has not been fully explored. In this study, we examined
the acute effect of organic extracts from urban PM, rural PM and diesel exhaust particles (DEP) on the
post-transcriptional control of interleukin-6 (IL-6) and interleukin-8 (CXCL8) using a human bronchial
epithelial cell line. Both PM and DEP extracts induced the release of IL-6 and CXCL8 after 24 h of
exposure. Time-course experiments were conducted to examine changes in mRNA steady-state levels
and half-lives. The steady-state levels of CXCL8 mRNA increase at 15 min on cells exposed to both
PM and DEP extracts. Meanwhile only the urban extract induced significant increases of IL-6 mRNA
levels at 15 min. Indirect measurements of IL-6 mRNA half-life showed a dramatic increase in cells
exposed to the organic extracts. CXCL8 mRNA half-life increases in cells exposed to PM extracts
and not DEP extract. Nuclear run-ons demonstrated that the urban PM and DEP extracts promoted
an up-regulation in the transcription rate of CXCL8 at 15 min but not for IL-6. Urban and rural PM
influences the post-transcriptional control of CXCL8.
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1. Introduction

Epidemiological, clinical, in vivo and in vitro studies have shown consistent associations between
airborne particulate matter (PM) exposure and adverse respiratory effects [1]. In vitro studies have
demonstrated that PM2.5 exposure can induce the production of pro-inflammatory cytokines and
chemokines, such as interleukin-6 (IL-6) and interleukin-8 (CXCL8) [2–12]. Despite the extensive
evidence relating PM exposure to the induction of pro-inflammatory mediators, the associated
molecular mechanisms induced by such exposures are still not fully characterized [13].

Inflammatory responses are tightly regulated through transcriptional, translational and
post-transcriptional mechanisms that modulate the rate of gene expression [14–16]. Post-transcriptional
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mechanisms can regulate the fate of mRNAs in association with RNA-binding proteins allowing cells
to respond rapidly to extracellular stimulus by inducing different signaling pathways that lengthens or
shortens target mRNA half-lives and thus the abundance of functional proteins [14,15,17,18].

One of the most important post-transcriptional control mechanisms involved in the regulation of
mRNA half-lives of pro-inflammatory mediators is the AU-rich elements-mediated decay pathway.
This pathway depends on cis-acting sequence elements rich in adenosine and uridine nucleotides,
known as AU-rich elements (AREs), found in the 3’ untranslated region (3’UTR) of short-lived
mRNAs [19]. These element sequences serve as binding sites to RNA-binding proteins collectively
known as ARE-binding proteins (AREBPs) [19–21]. The general function of these proteins is to
modulate the decay of target mRNAs by either stabilizing or destabilizing its mRNA target through
the recruitment of different proteins involved in the degradation machinery [22,23]. Several studies
have associated the heterogeneous nuclear ribonucleoproteins D (AUF-1) and the zinc-finger protein
tristetraprolin (TTP) with the destabilization of cytokine mRNAs, such as IL-6 and CXCL8 [24].
The well-known HuR (ELAV-L protein 1) has been associated with the stability of these cytokine
mRNAs [19].

A recent study provides evidence of the post-transcriptional regulation of CXCL8 in human lung
cells exposed to aqueous cigarette smoke extracts by increasing the mRNA stability of its transcript in
a p38-MAPK dependent manner [25]. The study suggests that the AREs-mediated decay pathway is
responsible for the CXCL8 mRNA stabilization. However, to the best of our knowledge the effects
of PM2.5 organic extracts in the post-transcriptional regulation of pro-inflammatory mediators have
never been reported. Therefore, the objective of this study was to determine if exposure to PM2.5 had
an effect on the post-transcriptional regulation of IL-6 and CXCL8 in the human bronchial epithelial
cell line BEAS-2B. Here we report for the first time that exposure to PM organic extracts considerably
increases the half-lives of IL-6 and CXCL8 mRNAs with a possible role for HuR.

2. Experiments

2.1. PM2.5 Extract Preparation

Airborne PM2.5 samples were collected between January and September 2001 at two locations in
Puerto Rico (PR), an urban industrialized area (Guaynabo) in the north, and a rural coastal reference
site at the east, Fajardo (a natural reserve) [26]. A description of sampling sites is provided in the
supplementary material. A total of 49 PTFE and quartz filters from the urban area and 63 filters from
the rural costal site were extracted. The filters were extracted overnight using a Soxhlet apparatus
in a 150 mL solvent mixture of acetone:hexane of 1:1 (v/v) and dried under a gentle nitrogen stream
as previously described [5]. Dried organic extracts were weighed and resuspended in dimethyl
sulfoxide (DMSO), the carrier, (99.9% Certified A.C.S., Fisher Scientific, Pittsburgh, PA, USA) at a final
concentration of 100 mg/mL. The total amount of organic extracts recovered were 37.9 mg for the urban
site and 18.6 mg for the rural site. A similar extraction was performed on 50 mg of diesel exhaust
particles (DEP) (Standard Reference Material 1650a) obtained from the National Institute of Standards
& Technology (Gaithersburg, MD, USA). The dried organic extract of DEP was resuspended in DMSO
at a final concentration of 100 mg/mL.

2.2. Cell Culture and Maintenance

BEAS-2B cell line (ATCC®cat. No. CRL-9609, Manassas, VA, USA) was cultured in Keratinocyte
Basal Medium-2 (KGM-2) without calcium (Ca++) and supplemented with gentamicin sulfate,
amphotericin-B, insulin, human epidermal growth factor, epinephrine, transferrin, bovine pituitary
extract and hydrocortisone (KGM®-2 BulletKit®, Lonza Bioscience, Walkersville, MD, USA). The cells
were maintained in 75-cm2 cell culture-treated vented cap flasks (Corning, Inc. Lowell, MA, USA) in a
humidified 5% CO2 atmosphere at 37 ◦C. Cells between passages 52–65 were used for the experiments.
Gentamicin sulfate was not added to the media during experiments.
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2.3. Dose-Response Experiments

Cells were seeded onto 96-well plates at a density of 1.0 × 105 cells/well and exposed for 24 h at
different concentrations (25, 50, 75 and 100 µg/mL) of the organic extracts in 0.1% DMSO diluted in
media (carrier). Positive controls were exposed with 10 µg/mL of Escherichia coli lipopolysaccharides
0111: B4 (LPS) (Sigma-Aldrich, Saint Louis, MO, USA) diluted in media, and 10 µg/mL of DEP extract
in 0.1% of DMSO. Cells kept in media and 0.1% DMSO were used as negative control. Cell supernatants
were collected at the end of the exposure and analyzed for IL-6 and CXCL8 with a human multiplex-bead
assay (Millipore Corporation, Billerica, MA) using the dual laser flow analyzer Luminex100 (Luminex
Corp., Austin, TX, USA). Cell viability was assessed using the Neutral Red Assay as described
elsewhere [27].

2.4. Time-Course Experiments

Cells were seeded (1.0 × 105 cells/well) onto a 96-well plate and exposed to 25 µg/mL of the organic
extracts and 10 µg/mL of DEP organic extract for the following time points: 0 min, 15 min, 30 min,
60 min and 120 min. Positive controls were exposed to 10 µg/mL of LPS and negative controls to
media, and 0.1% DMSO in media. Total RNA was isolated immediately after each exposure using the
RNAqueous-96 RNA isolation kit (Ambion, Carlsbad, CA, USA). The mRNA half-lives were calculated
by linear regression of the time-course data between the time points of 15 min and 120 min.

2.5. Quantitative Real Time PCR

First strand cDNA was synthesized using the VersoTM SYBR® Green 2-Step QRT-PCR Fluorescein
Kit (Thermo Scientific Inc. Foster City, CA, USA). For each qPCR reaction, 100 ng of cDNA was
combined with 10 µL of KappaTM SYBR® Fast qPCR master mix (KAPA BIOSYSTEMS, Wilmington,
MA, USA), and 10 µM of both forward (FWD) and reverse (REV) specific primers for IL-6 (FWD
primer: GAACTCCTTCTCCACAAGCG and REV primer: TTTTCTGCCAGTGCCTCTTT) and CXCL8
(FWD primer: CTGCGCCAACACAGAAATTA and REV primer: ATTGCATCTGGCAACCCTAC).
The final reaction volume was set to 20 µl. All qPCR reactions were run in a Realplex qPCR (Eppendorf,
Hauppauge, NY, USA) with the following conditions: initial hot start step at 95 ◦C for 2 min,
40 cycles of denaturation at 95 ◦C for 15 s, annealing at 55 ◦C for 20 s, extension at 72 ◦C for 30 s,
and a melting curve as the final step. Beta-actin was used to normalize the results (FWD primer:
GGACTTCGAGCAAGAGATGG and REV primer: AGCACTGTGTTGGCGTACAG).

2.6. Nuclear Run-On Assays

Nuclear run-on assays were performed to examine changes in the transcription rate of IL-6
and CXCL8 at times when peak induction of mRNA steady-state levels was observed. We used
nuclear run on assays instead of actinomycin D since it has been reported that actinomycin D by
itself may promote the stabilization of mRNAs [28,29]. This method allowed us to determine possible
transcriptional contributions to mRNA steady-state levels. In order to perform these assays, BEAS-2B
were seeded onto 24-well plates at a cell density of 5.0 × 105 cells/well and exposed to 10 µg/mL of
DEP extract, and 25 µg/mL of rural and urban organic extracts for 15 min and 60 min. After exposure,
non-radioactive nuclear run-on assays were performed as previously described by Patrone et al. [30],
with modifications. Briefly, cells were trypsinized, centrifuged for 10 min at 10,000 rpm at 4 ◦C,
and washed once with PBS and once with Hypotonic Buffer N (0.5 M HEPES pH 7.5, 1 M MgCl2, 3 M
KCl supplemented with complete protease inhibitor cocktail (ROCHE Diagnostics, Indianapolis, IN,
USA, 67 µM of PMSF and 100mM DTT). Cells were then lysed by incubation for 1 h at 4 ◦C with 250
µL of Hypotonic Buffer N/0.5% NP-40 followed by the addition of 32 µL of 1.67 M sucrose. Nuclear
pellets were collected after centrifugation for 10 min at 10,000 rpm at 4 ◦C and washed with 250 µL of
ice-cold Freezing Buffer N (10 mM HEPES, 2 mM MgCl2, 25 mMKCl, 250 mM sucrose) supplemented
with protease inhibitors. Purified nuclei were stored in 200 µL of Freezing Buffer N at −80 ◦C until
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further analysis. In vitro transcription reactions were carried out with 500,000 nuclei and 88 µL of 2×
Transcription Buffer (200 mM KCL, 20 mM Tris-HCl pH 8.0, 5 mM MgCl2, 4mM DTT, 4 mM each
ATP, CTP and GTP, 200 mM sucrose and 20% glycerol). In order to initiate the reactions, 4 µL of 10
mM biotin-16-UTP (ROCHE, Indianapolis, IN, USA) was added and incubated at 30 ◦C. After 2 h, the
reaction was stopped by adding 250 mM CaCl2 and 60 U of RNAse-free DNAse I (Ambion, Austin, TX,
USA), and then incubating for 30 min at 37 ◦C. Nuclear RNA was extracted with 200 µL of TRIzol
(Sigma-Aldrich, St. Louis, MO, USA), and biotin-labeled mRNAs isolated using streptavidin-magnetic
beads (Dynabeads, Invitrogen, Carlsbad, CA, USA) and resuspended in 30 µL of DEPC water. The
cDNA synthesis and qPCR reactions were performed as described above.

2.7. HuR Abundance

HuR was measured in the cytoplasm because is well known that changes in the post-transcriptional
control of IL-6 and CXCL8 have been associated with the presence of AREs in the 3’UTR region of
their mRNAs. These changes result from the activation, and thus cytoplasmic translocation of different
AREBPs. HuR is one of the most studied AREBP, and is known that once activated, this protein shuttles
to the cytoplasm and stabilized ARE-mRNAs [14]. In order to explore if the activation of HuR is
associated with the stabilization of IL-6 and CXCL8 induced by the urban and rural extracts dot blots
were performed to determine if there are a cytoplasmic abundance of HuR in exposed cells. BEAS-2B
were seeded onto 24-well plates (5.0 × 105 cells/well) and exposed to 10 µg/mL of DEP extract, and 25
µg/mL of the urban and rural PM organic extracts for 15 min and 60 min. Cytoplasmic proteins were
extracted using the method of Lahiri et al., [31] with the following modifications. Briefly, BEAS-2B cells
were washed with 300 µL of TBS and then incubated for 15 min with 400 µL ice-cold buffer (10 mM
HEPES pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT, 0.5 mM PMSF, and 2 µL Complete
Protease Inhibitor cocktail). Cells were scraped from the plate and transferred to a new tube followed
by the addition of 25 µL of Triton X-100. Cell homogenates were centrifuged for 5 min at 1500× g
at 4 ◦C and supernatants containing the cytoplasmic fraction were collected. Protein concentrations
were determined by the BioRad Quick Start Bradford Protein (BioRad, Hercules, CA, USA) assay
following the manufacturer’s protocol. A total of 45 µg of protein was blotted onto a nitrocellulose
membrane using a dot blot apparatus. Membranes were blocked in TBST (20 mM Tris-HCl, 150 mM
NaCl and 0.1% Tween 20) with 5% non-fat milk for 1 h at RT and incubated overnight at 4 ◦C with
1:200 dilution of the appropriate antibody, HuR or actin (sc-5261and sc-1616; Santa Cruz Biotechnology,
Santa Cruz, CA, USA). After incubation, the membranes were washed four times with TBST and
then incubated overnight at 4 ◦C with a 1:1000 dilution of the appropriate secondary HRP-conjugated
antibody (sc-2020 and sc-2005; Santa Cruz Biotechnology, Santa Cruz, CA, USA). After four washes
with TBST, the blots were developed with ECL reagents (Santa Cruz Biotechnology, Santa Cruz, CA,
USA) following the manufacturer’s protocol. The chemiluminescence signal was captured using the
Eagle Eye image analyzer (Stratagene, San Diego, CA, USA) and quantitated using the ImageJ software
(NIH, Bethesda, MD, USA).

2.8. Statistical Analysis

Data analyses were performed using a one-way analysis of variance (ANOVA) followed by the
appropriate post hoc comparisons tests (Dunnet, Bonferroni–Scheffé, Tukey–Kramer) and Pairwise
T-test when appropriate. The criterion for statistical significance was set at p ≤ 0.05. Statistical analyses
were performed with the software packages InStat 3, and SPSS.

3. Results

3.1. Validation of the Experimental Conditions

In order to validate the experimental conditions, positive control cells were exposed to 10 µg/mL
of LPS and negative control cells were exposed to media alone. In addition, DEP organic extract
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was used as a reference material for PM exposures. After 24 h of exposure, IL-6 and CXCL8 levels
were measured in the cells supernatants. Results showed that IL-6 levels were three times higher in
positive controls when compared to negative controls (Figure 1A), while CXCL8 were 27 times higher
in positive controls (Figure 1B). Similar results were observed in cells exposed to DEP extract when
compared to cells exposed to the carrier alone; with IL-6 levels 2.7 times higher (Figure 1A) and CXCL8
levels seven times higher in DEP extract exposed cells (Figure 1B).
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Figure 1. Validation of the experimental conditions. A total of 5.0 × 104 BEAS-2B cells were seeded on
96-well plates. Positive control cells were exposed to 10 µg/mL of lipopolysaccharides (LPS), negative
controls cells were exposed to Keratinocyte Basal Medium-2 (KGM-2), carrier cells were exposed to 0.1%
dimethyl sulfoxide (DMSO) diluted in KGM-2 and diesel exhaust particles (DEP) cells were exposed to
10 µg/mL of DEP organic extract. Interleukin-6 (IL-6) release (A) and interleukin-8 (CXCL8) release (B)
were measured from cell supernatants after 24 h of exposure. Values are expressed as the mean ± SEM
(n = 3). ** p ≤ 0.01 *** p ≤ 0.001 compared to negative control.

3.2. Dose-Response Experiments

To determine the effects of rural and urban PM organic extracts in cell viability and the induction
of the pro-inflammatory mediators IL-6 and CXCL8, a dose-response experiment was performed.
Cell viability assays showed that neither the carrier nor LPS (Figure 2A) induced cell cytotoxicity
at the tested concentrations. In cells exposed to DEP extract concentrations higher than 10 µg/mL,
cell viability was reduced when compared to the carrier cells (Figure 2B). When cells were exposed to
rural PM organic extract concentrations higher than 50 µg/mL, cell viability was significantly reduced
(Figure 2C). In contrast, the urban PM organic extract did not show any cytotoxicity at the tested
concentrations compared to the extract carrier (Figure 2D).
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Figure 2. Cell viability. A total of 1.0 × 105 BEAS-2B cells were exposed for 24 h to various treatments
prior determination of their viability using the Neutral Red Assay. (A). Control cells were exposed
to KGM-2 media alone (Medium), 25 µg/mL of TRITON X-100, and 10 µg/mL LPS. (B). Cells were
exposed to 0.1% of DMSO diluted in media (carrier) and increasing concentrations of DEP organic
extract. (C). Cells were exposed to different concentrations of the rural airborne particulate matter
(PM) organic extract. (D). Cells were exposed to different concentrations of the urban PM organic
extracts. Values are expressed as the mean ± SEM (n = 3), *** p ≤ 0.001 compared to media and to
carrier (controls), when exposed to DEP organic extract, Rural PM organic extract, and Urban PM
organic extract.

Results showed that cells exposed to rural PM had an IL-6 and CXCL8 expression significantly
higher in comparison to cells exposed to carrier alone. As shown in Figure 3A, IL-6 protein levels
of cells exposed to the lowest concentration of the rural organic extract were 1.3 times higher when
compared to carrier and 1.4 times higher in cells exposed to the 25 µg/ml concentration. CXCL8 protein
(Figure 3B) was 1.7 higher at the 25 µg/ml concentration of rural PM organic extract. Results for the
urban PM extracts showed that secretion of IL-6 (Figure 4A) was significantly higher (1.25 fold) in cells
exposed to 25 µg/ml when compared to carrier. No induction of CXCL8 protein levels (Figure 4B) was
observed in the tested concentrations.
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Figure 3. Dose response of rural organic extract. A total of 5.0 × 104 BEAS-2B cells were seeded on
96-well plates and exposed to increasing concentrations of the rural PM organic extract. IL-6 (A) and
CXCL8 (B) protein levels were measured from cell supernatants after 24 h of exposure. Values are
expressed as the mean ± SEM (n = 3). * p ≤ 0.05, ** p ≤ 0.01 compared to carrier.
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3.3. Time Course Experiments

To evaluate the effects of rural and urban PM on the post-transcriptional control of IL-6 and
CXCL8 a time-course was conducted to assess changes in their mRNA levels. Cells exposed to extracts
from rural PM and DEP (Figure 5A,C, respectively) did not induce an increase in IL-6 mRNA levels.
However, a significant peak increase in the mRNA levels of IL-6 was observed in cells exposed to
urban PM extracts at 15 min (Figure 5B). To corroborate if this effect is the result of an up-regulation in
the transcription rate of IL-6 mRNA a nuclear run-on assay was performed. As shown in Figure 5D
there was no difference in the IL-6 transcription rate at 15 min of exposure but after 60 min of exposure
there was a significant up-regulation of the transcription rate (~2 fold).
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Figure 5. Post-transcriptional control and nuclear expression of IL-6 in cells exposed to rural and urban
organic extracts from PR and DEP organic extract. (A) Time course of cells exposed to 25 µg/mL of
rural organic extract. (B) Time course of cells exposed to 25 µg/mL of urban organic extract. (C) Time
course of cells exposed to 10 µg/mL of DEP organic extract. (D) Induction of the transcription rate of
IL-6 transcript in response to urban organic extract exposure. Values are expressed as the mean ± SEM
(n = 3). * p ≤ 0.05, *** p ≤ 0.001 compared to carrier.

Meanwhile for CXCL8, mRNA levels were significantly higher after 15 min of exposure to organic
extracts from urban PM (Figure 6A), rural PM (Figure 6B) and DEP (Figure 6C). Also, there was another
peak induction at 60 min in cells exposed to urban extracts (Figure 6A). In contrast to IL-6, the nuclear
run-on data (Figure 6D) showed a significant difference in the transcription rate of CXCL8 at 15 min
both for urban and DEP extracts but not for rural PM extract.

Since it is known that post-transcriptional regulation cause changes in mRNAs steady-state levels
we proceeded to investigate if there are changes in the IL-6 and CXCL8 mRNA half-life. It is well known
that steady-state levels depend on mRNA synthesis and mRNA degradation and changes in any of
these two steps leads to overall changes in the mRNA level. In this study we used total RNA to assess
the steady-state levels of IL-6 and CXCL8 in exposed cells. In order to calculate the mRNA half-lives
of our samples we performed linear regressions on the fold expression time course data (Figures S1
and S2). To calculate the indirect half-lives we selected the time points from 15–120 min because
previous studies in our lab showed that after 4 to 6 h of exposure there was an accumulation of IL-6
and CXCL8 transcripts, reaching a peak in transcription after 8 h for both mRNAs [32]. The calculated
mRNA half-lives for both IL-6 and CXCL8 in exposed cells ranged between 59–76 min and 32–51 min,
respectively (Table 1). The longest half-life time for IL-6 mRNA was observed in cells exposed to the
urban extract.
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Figure 6. Post-transcriptional control and nuclear expression of CXCL8 in cells exposed to organic
extracts from rural PM2.5, urban PM2.5 and DEP. (A) Time course of cells exposed to 25 µg/mL of
urban extract. (B) Time-course of cells exposed to 25 µg/mL of rural extract. (C) Time course of cells
exposed to 10 µg/mL of DEP extract. (D) Induction of the transcription rate of CXCL8 transcript after
15 min of exposure to rural, urban, and DEP organic extracts. Values are expressed as the mean ± SEM
(n = 3). * p ≤ 0.05, *** p ≤ 0.001 compared to carrier.

Table 1. Changes in mRNA Half-lives.

Treatment t1/2 IL-6 (min) t1/2 CXCL8 (min)

Media 18 ± 1 16 ± 1
LPS 28 ± 1 28 ± 2

Carrier 14 ± 4 30 ± 7
DEP 61 ± 4 ** 32 ± 4

Urban 76 ± 5 *** 49 ± 4 **
Rural 59 ± 7 ** 51 ± 3 **

mRNA half-lives were calculated from time-course experiments by linear regression. Values are expressed as the
mean ± SEM (n = 3). ** p ≤ 0.01, *** p ≤ 0.001 compared to carrier.

3.4. HuR Abundance

Since there was not an increase in de novo synthesis of IL-6 and CXCL8, as shown with the nuclear
run-on assays, we explored the role of HuR at the time points with an increase in IL-6 and CXCL8
mRNA levels. HuR is an AREBP that stabilizes ARE-containing mRNA in the cytoplasm, including
IL-6 and CXCL8. Therefore, to determine HuR cytoplasmic abundance at 15 min and 60 min a dot blot
assay was performed. As showed in Figure 7A,B there was a significant increase in HuR abundance
in cells exposed to urban PM extract at 15 min but not those exposed to rural PM and DEP organic
extracts. At 60 min there was a significance decrease in HuR levels (Figure 7C,D).
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Figure 7. Cytoplasmic abundance of ELAV-L protein 1 (HuR) after 15 min and 1 hr of exposure. (A) Dot
blot of HuR and actin (loading control) after 15 min of exposure in cells treated with 25 µg/mL of both,
rural and urban organic extracts and 10 µg/mL of DEP organic extract. (B) Densitometric analysis of
cytoplasmic HuR dot blots from cells treated with DEP extract. (C) Dot blot of HuR and actin after 1 hr
of exposure in cells treated with 25 µg/mL of urban organic extract. (D) Densitometric analysis of HuR
dot blots from cells treated with the urban extract. Figure represents the average of three independent
experiments (n = 3). Values are expressed as the mean ± SEM (n = 3). ** p ≤0.01, *** p ≤ 0.001 compared
to carrier.

4. Discussion

Exposure to ambient PM has been shown to induce pro-inflammatory responses in the respiratory
tract both in in vivo and in vitro models [11,33–35]. IL-6 and CXCL8 are commonly up-regulated
in lung epithelial cells exposed to PM2.5 [7,9–11,35,36]. This is consistent with our previous studies
exposing BEAS-2B cell line with different PM extracts from Puerto Rico [2,5,8,32,37]. In the current
study, we observed significant increases in the secretion of IL-6 in cells exposed to both urban and rural
PM2.5 organic extracts but only the rural extract induced the secretion CXCL8. In contrast, when our
group previously tested the aqueous extracts only the PM from the urban site significantly induced
CXCL8 [8] but polar and non-polar organic extracts from both sites did not [5]. However, we only
measured the protein levels of CXCL8 in the cell supernatant and it has been recently reported that in
cells exposed to PM2.5, CXCL8 can be sequestered in intracellular vesicles [38], which can explain our
observations. In addition, differences in responses among sites and extracts could be explained by the
chemical composition of the particles [5,8,26,39] as we have previously shown that both endotoxin
and the metal composition play a crucial role in the pro-inflammatory responses induced by PM from
Puerto Rico [32,37,40]. The PM samples used in the current study has been characterized for metal
(i.e., As, Cd, Cu, Fe, Ni, Pb, V, Zn) [8,26], the elemental (EC) and organic carbon (OC) content [26],
and polycyclic aromatic hydrocarbons (PAHs) [39]. Except for Fe, the levels of metals, EC, OC and
PAHs were higher in PM from the urban site. In addition, endotoxin levels were higher in the urban
extract (7.34 vs. <5.00 endotoxin units/mL). In contrast, the metal content in the organic extracts was
similar for both sites [5].

It has been reported that PM can induce the production of pro-inflammatory mediators through
different mechanisms [41,42] including the activation of: the inflammasome; different receptors
including the TLRs and the Ah receptor among others; signaling cascades such as MAPKs; nuclear
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translocation of transcription factors such as NF-kB and AP-1; and microRNAs (miRNA) [43]. Most of
the aforementioned mechanisms are involved in the transcriptional regulation of pro-inflammatory
mediators, however both MAPKs and miRNA are also implicated in the post-transcriptional regulation
of cytokines and chemokines. Since in this study we observed significant increases in the mRNA levels
of IL-6 and CXCL8 mRNAs as early as 15 min, we evaluated whether the PM extracts had an effect
in the post-transcriptional regulation of these pro-inflammatory mediators. In order to address this,
we first examined the kinetics of IL-6 and CXCL8 mRNAs steady-state expression. All extracts had
a significant effect in the steady-state levels of CXCL8 but only the urban extract had a significant
effect in IL-6 steady-state levels. However, results from time-course experiments showed that the rural
and urban PM extracts had an effect in the stabilization of both IL-6 and CXCL8 mRNAs as inferred
from the substantial increase in their half-lives. In cells exposed to the urban PM extract, IL-6 half-life
increased significantly from 14 min at basal levels to 76 min in exposed cells and the CXCL8 mRNA
half-life from 30 to 49 min. The rural PM extract also induced similar changes in the mRNA half-lives
of both IL-6 (t1/2 = 59.39) and CXCL8 (t1/2 = 50.73). The changes in the steady-state levels can be
linked partially to the endotoxin levels present in both extracts because it is well known that LPS can
promote both transcriptional and post-transcriptional control particularly altering the mRNA stability
of ARE-containing transcripts. Meanwhile exposure to DEP extract promoted the stabilization of
IL-6 mRNA and significantly increased the steady-state level of CXCL8. The results from exposures
to DEP extract strongly suggest that the increase in the steady-state levels of CXCL8 was due to an
increase in the transcription rate and not a decrease in mRNA turnover. Therefore, because the results
from this study showed an up-regulation of IL-6 and CXCL8 mRNAs a transcriptional contribution
cannot be rejected. Thus, in order to differentiate between the transcriptional and post-transcriptional
contribution in the accumulation of IL-6 and CXCL8 mRNAs, nuclear run-ons were performed to
measure changes in the transcription rates of both transcripts. The rural organic extract did not show
any change in the transcription rates, suggesting that the increase in CXCL8 mRNA steady-state levels
after 15 min is due to post-transcriptional control mechanisms. In contrast, the urban organic extract
showed an increase in the transcription rate for CXCL8 after 15 min but not after 60 min of exposure.
Meanwhile in cells exposed to the DEP organic extract, there is a dramatic increase (>35 fold) in the
transcription rate of CXCL8 after 15 min of exposure, strongly suggesting a transcriptional activation
mediated by DEP extract. Moreover, the slight increase in steady-state CXCL8 mRNA at 60 min can
be correlated to the cytoplasmic export of the de novo transcripts produced after 15 min of exposure.
Overall, these results provide evidence that PM2.5 has a role in the post-transcriptional regulation of
IL-6 and CXCL8.

Extensive evidence has shown that both IL-6 and CXCL8 mRNAs are post-transcriptionally
regulated by the ARE-mediated decay (AMD). This regulatory mechanism buffers gene expression after
production of mRNA as a response to cellular alterations or extracellular signals [44]. AMD regulation of
IL-6 and CXCL8 may be mediated by different AREBPs that translocate from the nucleus to the cytoplasm
once are activated. Since MAPKs can regulate the expression and function of AREBPs it might be
possible that AMD is involved in post-transcriptional effects exerted by the PM extracts. Several studies
indicate that phosphorylation is crucial to the cytoplasmic translocation of AREBPs and also to their
mRNA binding activity [14,45–48]. Among the MAPKs, the role of p38 in post-transcriptional control
is the most studied, particularly its role in the ARE-mediated pathway. Indirect evidence suggests a
possible role for the involvement of these kinases in post-transcriptional regulation mechanisms in cells
exposed to PM [49–51]. For example, Hashimoto et al., [50], reported an increase in phosphorylated
p38 as early as 30 min which was sustained until 60 min. As HuR is one of the most studied AREBP
that stabilize mRNAs [14] and our results showed that the organic extracts stabilized both IL-6 and
CXCL8 mRNAs we investigated whether there was a cytoplasmic enrichment of HuR in cells exposed
to the organic extracts. HuR levels were assessed by performing dot blots of cytoplasmic protein
fractions of exposed BEAS-2B cells after 15 min and 60 min. Exposure to the urban organic extract
resulted in a cytoplasmic enrichment of HuR only at 15 min of exposure, which coincided with the
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increase of IL-6 and CXCL8 mRNA levels during the time-course experiments. However, cells exposed
to DEP and rural extracts did not show a significant increase in HuR cytoplasmic levels even though
changes in the mRNA steady-state levels and half-lives were observed. To this extent, because there
is no change in the transcription rates in cells exposed to the rural extracts, we can infer that other
AREBPs and/or other post-transcriptional control mechanism are also involved.

5. Conclusions

In this study, we demonstrate urban and rural PM2.5 organic extracts from Puerto Rico have
an effect on the post-transcriptional control of IL-6 and CXCL8. Additionally, this study presents
for the first time the cytoplasmic enrichment of the AREBP HuR as a result of urban organic extract
exposure, suggesting a possible involvement of the ARE-mediated decay during acute responses to PM.
Moreover, we showed that urban PM and DEP extracts can modulate the transcriptional regulation of
both IL-6 and CXCL8 inducing their de novo synthesis at short period of time.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/5/270/s1,
Figure S1: IL-6 Linear Regression Data, Figure S2: CXCL-8 Linear Regression Data.
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