Supplementary Materials: New Record of Dust Input and Provenance During Glacial Periods in Western Australia Shelf (IODP Expedition 356. Site U1461) from the Middle to Late Pleistocene

Margot Courtillat ^{1.2.*}. Maximilian Hallenberger ³. Maria-Angela Bassetti ^{1.2}. Dominique Aubert ^{1.2}. Catherine Jeandel ⁴. Lars Reuning ⁵. Chelsea Korpanty ⁶. Pierre Moissette ^{7.8}. Stéphanie Mounic ⁹ and Mariem Saavedra-Pellitero ^{10.11}

- ¹ Centre de Formation et de Recherche sur les Environnements Méditerranéens. Université de Perpignan Via Domitia. UMR 5110. 52 Avenue Paul Alduy. CEDEX. F-66860 Perpignan. France; maria-angela.bassetti@univ-perp.fr (M.-A.B.); dominique.aubert@univ-perp.fr (D.A.)
- ² CNRS. Centre de Formation et de Recherche sur les Environnements Méditerranéens. UMR 5110. 52 Avenue Paul Alduy. CEDEX. F-66860 Perpignan. France
- ³ Energy & Mineral Resources Group. RWTH Aachen University. Geological Institute Wüllnerstr. 2. 52052 Aachen. Germany; maximilian.hallenberger@rwth-aachen.de
- ⁴ Observatoire Midi-Pyrénées. LEGOS (Université de Toulouse. CNRS/CNES/IRD/UPS). 14 avenue Edouard Belin. 31400 Toulouse. France; catherine.jeandel@legos.obs-mip.fr
- ⁵ Institute of Geosciences. CAU Kiel. Ludewig-Meyn-Straße 10. 24118 Kiel. Germany; lars.reuning@ifg.uni-kiel.de
- ⁶ MARUM Center for Marine Environmental Sciences. University of Bremen. Leobener Str. 8. 28359 Bremen. Germany; ckorpanty@marum.de
- ⁷ Department of Historical Geology & Palaeontology. Faculty of Geology and Geoenvironment. National and Kapodistrian University of Athens. 15784 Athens. Greece; pmoissette@geol.uoa.gr
- ⁸ Muséum National d'Histoire Naturelle. Département Origines et Evolution. UMR7207 CR2P. 8 rue Buffon. 75005 Paris. France
- ⁹ Géosciences-Environnement Toulouse. Université de Toulouse. UPS (SVT-OMP). CNRS. IRD. 31400 Toulouse. France; stephanie.mounic@get.omp.e
- ¹⁰ Department of Geosciences. University of Bremen. Klagenfurter Strasse Bremen. 28359 Bremen. Germany; msaavedr@uni-bremen.de
- ¹¹ School of Geography. Earth and Environmental Sciences. University of Birmingham. Birmingham B15 2TT. UK
- * Correspondence: margot.courtillat@univ-perp.fr; Tel.: +33-664-879-862

Received: 29 September 2020; Accepted: 17 November 2020; Published: 20 November 2020

Figure S1. Comparison between Log(Ti/Ca) and Log(Zr/Fe) from the Site U1461 and the ones from the core MD00-2361.

Table S1.	Tie points i	for the ag	ge model.	The	transitions	between	the MIS	have	been	dated	followi	ng
Liesecki a	nd Raymo ((2005) age	e.									

Domontod in .	Depth (m)	Radiocarbon age (year	Calendar age (cal year	Age
Reported In:	CSF-A	BP)	BP)	(ka)
Ishiwa et al. (2019)	0.1	1460 ± 40	1084	
Ishiwa et al. (2019)	1.1	2580 ± 50	2336	
Ishiwa et al. (2019)	4.02	4850 ± 30	5257	
Ishiwa et al. (2019)	5.00	5290 ± 30	5703	
Ishiwa et al. (2019)	7.81	6020 ± 40	6334	
Ishiwa et al. (2019)	7.1	6830 ± 40	7409	
Ishiwa et al. (2019)	8.1	6950 ± 40	7516	
Ishiwa et al. (2019)	8.5	7570 ± 40	8119	
Ishiwa et al. (2019)	9.5	8020 ± 40	8548	
Hallenberg et al (2019)	10.8	8760 ± 40	9513	
Hallenberg et al (2019)	11.8	9707 ± 84	11,248	
Hallenberg et al (2019)	12.3	9932 ± 86	11,746	
Ishiwa et al. (2019)	13.01	$11,990 \pm 50$	13,526	
Ishiwa et al. (2019)	13.27	$14,620 \pm 50$	17,458	
Ishiwa et al. (2019)	13.29	$20,\!470 \pm 60$	24,257	
Ishiwa et al. (2019)	13.31	$16,920 \pm 60$	20,056	
Hallenberg et al (2019)	13.3	$16,010 \pm 50$	18,967	
Ishiwa et al. (2019)	13.4	$20,160 \pm 60$	23,923	
FO E. huxleyi	17.85			<290
MIS 5D	17.9			109
Transition	18			370

MIS10-MIS 9		
Transition	40	295
MIS10-MIS11	40	565
Transition	55	427
MIS11-MIS12	55	427
LO P. lacunosa	55.5	440
Transition	61	472
MIS12-MIS13	04	4/2

Figure S2. Hierarchical analysis of the species with more than 2% of abundance following the Ward's method. The black line is the chosen distance to form the clusters. The numbers correspond to the name of the cluster.

3 of 4

Table S2. Pourcentage of cluster abundances. Cluster 7a is composed of Triloculina sp.. Spiroloculina sp.. Hyalinea balthica. Sahulia patteliformis and Sigmohauerina sp.. Cluster 7b is composed of Planispirinella exigua and Peneroplis pertusus.

Top depth CSF-	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster 6	Cluster 7a	Cluster 7b
A (m)	%	%	%	%	%	%	%	%
0.4	15.98	10.65	35.02	9.10	4.72	0.44	18.76	0.17
2	24.21	10.29	22.28	10.29	3.27	0.85	21.91	0.12
3.5	28.78	8.74	18.91	9.18	4.37	0.25	25.78	0.00
5	25.47	7.95	27.92	8.63	3.62	0.11	23.02	0.00
6.7	26.77	14.12	19.83	11.19	2.16	0.23	21.91	0.00
8.2	29.88	10.62	20.31	11.27	2.36	0.52	21.89	0.13
9.7	28.53	15.69	17.22	15.37	2.92	0.13	16.52	0.06
11.4	29.64	15.00	18.57	13.21	10.00	0.00	12.14	0.00
12.75	37.95	18.57	10.26	7.98	7.33	0.65	8.47	0.98
14.25	41.04	7.17	20.72	2.79	6.37	11.95	5.98	0.40
15.75	27.99	17.54	29.85	1.49	5.97	3.73	8.58	0.75
17.25	26.15	17.31	28.27	6.44	3.37	0.48	14.33	2.31
18.75	30.64	13.58	11.71	11.13	6.36	0.29	17.34	3.32
19.85	28.03	19.14	18.19	4.72	5.26	0.13	13.48	5.80
20.9	28.06	14.21	17.63	6.65	7.73	0.36	15.11	5.40
23.9	28.40	17.12	21.79	6.42	6.61	1.36	9.34	3.89
25.4	22.50	14.93	28.36	3.21	7.56	1.13	11.34	4.73
26.9	26.18	19.53	22.75	6.01	3.65	2.36	9.87	5.15
28.4	29.49	14.18	15.31	8.51	6.81	0.95	13.80	6.62
29.7	23.24	18.26	13.28	12.03	5.81	0.21	17.43	3.94
30.4	20.45	16.61	12.46	11.50	12.14	1.60	14.38	4.47
31.9	21.67	17.78	8.33	14.17	8.61	0.28	17.50	5.28
33.4	24.93	14.21	14.21	13.40	7.77	1.07	11.26	5.63
34.9	26.10	13.86	18.64	9.94	5.83	0.86	13.10	5.16
36.4	26.19	14.54	19.80	8.15	8.27	1.13	12.16	3.01
37.9	23.49	14.33	23.02	11.12	8.07	0.63	11.43	2.19
39.1	19.41	16.99	24.78	9.30	8.50	2.15	10.29	2.06
39.9	11.61	17.76	50.91	4.06	3.50	1.82	4.34	2.10
41.4	10.80	20.60	47.49	5.53	3.64	0.75	4.40	3.27
42.9	9.28	18.04	55.32	4.52	2.77	2.55	3.00	1.13
44.4	7.03	26.66	47.82	6.11	2.44	4.20	1.91	0.53
45.9	8.96	22.31	34.46	21.71	3.59	1.00	2.39	0.20
47.4	3.78	32.44	31.11	18.89	2.89	1.78	1.78	0.00
49.4	8.91	24.90	40.69	11.94	3.44	2.83	1.62	0.00
50.9	6.42	18.92	29.39	28.72	8.45	0.00	0.34	0.00
52.4	4.68	18.72	33.83	25.11	5.53	1.28	0.43	0.00
53.9	17.06	15.89	28.74	9.11	6.07	7.94	2.80	0.00
54.55	6.42	1.35	53.04	1.69	5.74	14.86	0.00	0.00
57.6	16.00	16.00	14.00	2.00	0.00	14.00	2.00	0.00
59.1	27.27	4.55	27.27	4.55	4.55	18.18	0.00	0.00
60.6	31.11	0.00	22.22	2.22	8.89	31.11	0.00	0.00
62.3	31.49	5.54	34.01	3.27	3.53	12.09	2.77	0.25
63.8	0.79	14.92	62.46	5.08	4.14	6.70	0.10	0.05