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Abstract: Precipitation is essential for modeling the hydrologic behavior of watersheds. There exist
multiple precipitation products of different sources and precision. We evaluate the influence of
different precipitation product on model parameters and streamflow predictive uncertainty using
a soil water assessment tool (SWAT) model for a forest dominated catchment in India. We used
IMD (gridded rainfall dataset), TRMM (satellite product), bias-corrected TRMM (corrected satellite
product) and NCEP-CFSR (reanalysis dataset) over a period from 1998–2012 for simulating streamflow.
The precipitation analysis using statistical measures revealed that the TRMM and CFSR data slightly
overestimate rainfall compared to the ground-based IMD data. However, the TRMM estimates
improved, applying a bias correction. The Nash–Sutcliffe (and R2) values for TRMM, TRMMbias
and CFSR, are 0.58 (0.62), 0.62 (0.63) and 0.52 (0.54), respectively at model calibrated with IMD
data (Scenario A). The models of each precipitation product (Scenario B) yielded Nash–Sutcliffe
(and R2) values 0.71 (0.76), 0.74 (0.78) and 0.76 (0.77) for TRMM, TRMMbias and CFSR datasets,
respectively. Thus, the hydrological model-based evaluation revealed that the model calibration with
individual rainfall data as input showed increased accuracy in the streamflow simulation. IMD and
TRMM forced models to perform better in capturing the streamflow simulations than the CFSR
reanalysis-driven model. Overall, our results showed that TRMM data after proper correction could
be a good alternative for ground observations for driving hydrological models.

Keywords: parameter and prediction uncertainty; IMD; TRMM; CFSR; Nagavali River Basin
Region (NRB)

1. Introduction

Precipitation data are crucial to many applications related to human life and water management.
Examples include estimating the hydrological water balance [1], improving management practices,
hydropower planning, development projects and flood controls. Conventionally, rain gauges provide
the direct measurement of precipitation. However, rain gauges are often not enough to correctly
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resolve precipitation and precipitation-related processes. Moreover, the spatial coverage of the rain
gauge over a large area is low, and they require huge investments [2].

With the advancements in remote sensing and high computation facilities, several precipitation
products from various sources are available. For instance, the National Center for Environmental
Prediction Climate Forecast System Reanalysis (NCEP-CFSR) [3], Modern-Era Retrospective analysis
for Research and Applications (MERRA) [4] and Global Land Data Assimilation System (GLDAS) [5] are
different reanalysis data. Similarly, the Tropical Rainfall Measuring Mission (TRMM) [6], Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) [7],
Climate Prediction Center MORPHing (CMORPH) [8], Climate Hazards Group Infrared Precipitation
with Station data (CHIRPS) [9], Global Precipitation Measurement (GPM), Integrated Multi-Satellite
Retrievals GPM (IMERG) [10,11] are satellite dataset commonly available. A few gauge-gridded
datasets are the Asian Precipitation Highly Resolved Observational Data Integration towards Evaluation
(APHRODITE) [12,13], Indian Meteorological Department (IMD) gridded datasets [14]. All these
different precipitation products have been shown to be accurate and comparable with the ground
observations in various circumstances. Moreover, remote sensing-based products [15] and reanalysis
data [16] could be a viable alternative for ground-based observation [17] in complex terrain where
observed gauge data are of low quality, sparse or non-existent for flood forecasting, drought
monitoring [15,18–20] and water balance studies [21].

Among different reanalysis products, NCEP-CFSR is one of the commonly used for precipitation
application [3,22], and various studies investigated the evaluation and intercomparison of the reanalysis
data sets. Wang et al. [23] reported that CFSR has better precipitation distribution in comparison with
the NCEP- NCAR data and ERA data sets. Similarly, Rienecker et al. [4] reported that the performance
of CFSR and MERRA was similar in capturing the quantity of precipitation. Dile and Srinivasan [3]
tested the applicability of CFSR data for hydrological modeling of the Nile River Basin and concluded
that the CFSR could be a valuable alternative for data-scarce regions. Roth and Lehmann [24] compared
the conventional weather data and CFSR data for simulating discharge and sediment volume for
three catchments in Ethiopia and found that the CFSR simulation is not satisfactory. On similar lines,
Tolera et al. [25] showed that the CFSR data set could be reliably used for the streamflow simulation
with a caution that CFSR estimates are higher than the observed rainfall.

Moreover, high-resolution satellite remote-sensing products are vital in driving hydrological
models, especially in flood-prone complex terrain [26–28]. Satellite data were heavily used for driving
different hydrological models, including the SWAT model [15,21,29–32] and variable infiltration
capacity (VIC) [33–35]. Furthermore, satellite data are useful in understanding the anthropogenic
impacts on hydrology, evaluating the utility of watershed management practices, and predicting the
future status of water quality and quantity. A multitude number of studies showed that the ability
and reliability of the satellite-based precipitation products in driving the hydrological model fluctuate
mainly due to variability in the catchment area, seasonality, topography, climatic characteristics,
geographical location, satellite product type [15,36–42]. Studies mentioned above reported satisfactory
model performance by using different TRMM precipitation products. Specifically, Zhu et al. [32]
reported that performances were achieved on daily and monthly scales, respectively, for TRMM (3B42)
data. Similarly, Li et al. [15] investigated the adequacy of TRMM satellite rainfall data in driving a
hydrological model for Tiaoxi catchment, Taihu lake basin, China. Yuan et al. [43] used two TRMM
products for statistical and hydrological assessment of these products at a sub-daily time scale in
Myanmar using the SWAT model; they found all satellite data products showed acceptable results
during the simulation of streamflow at the sub-daily scale. Apart from these studies, various other
researchers also reported that the direct input of satellite-based precipitation products in hydrological
models underperform in comparison with the observed ground-based measurements [29,44]. However,
it is to be noted that, by applying a suitable correction, the performance of these datasets is drastically
improved. Zhang et al. [41] found that the corrected TRMM multi-satellite precipitation analysis
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(TMPA 3B42V7) showed a better understanding than the original 3b42v7 data. Similar inferences were
reported by Bitew et al. [29] and Tuo et al. [2] in their respective analysis.

All the studies mentioned above strengthened the need for thorough validation of these
precipitation products and bias correction before using them as an input for the hydrological
model. In addition, errors and uncertainties associated with inputs (precipitation products) have
a high probability of inducing it in hydrologic simulations [45]. A multitude of studies showed
that the model recalibration using the precipitation product considerably increases the model
performance [2,17,41,46–52]. However, the model parameter ranges obtained through the recalibration
with the precipitation data may be improbable, thereby questioning the model’s applicability for
real-world applications. Further, in such recalibration of the models, it is essential to estimate the
parameter uncertainty due to the precipitation input. Thus, validations and evaluations of these
precipitation products are critical for any hydrologic modeling study [53,54]. Further, the calibration
and output of the hydrological model is a function of the input precipitation characteristics. Therefore,
it is imperative to evaluate the effect of the different precipitation products on the parameter estimation
(calibration) and the streamflow simulations. It can also be stated that there is enough scope for
advancement in understanding the effect of the different precipitation products on the hydrologic
model- based streamflow simulations, parameter estimation (Calibration), predictive uncertainty and
its applicability in Indian subcontinents.

Even though there has been a plethora of work done in terms of comparison of the reanalysis
and satellite dataset individually, there has been a limited number of studies on intercomparison of
different classes of precipitation data sets. Therefore, in this study, we compared three different types of
precipitation products that are commonly used, (i) gauge-based rainfall product (IMD), (ii) reanalysis
data (NCEP-CFSR) and (iii) satellite precipitation (TRMM and TRMM corrected). This study aimed to
(1) compare the statistical characteristics of four different precipitation data sets, (2) investigate the
adequacy of these precipitation products in driving the semi-distributed SWAT hydrological model
and (3) evaluate the parameter uncertainty involved. These precipitation inputs are used to develop a
semi-distributed SWAT model for a semi-arid, forest dominated coastal basin, “Nagavali River Basin
in India”.

2. Material and Methods

2.1. Study Area

We selected the Nagavali River Basin (NRB) since the literature on semi-arid and semi-humid
climatic regions is limited. NRB lies between the Godavari and Mahanadi river basins in the eastern
part of India, with a catchment area of about 9510 km2 (Figure 1). The river begins from the Eastern
Ghats at an elevation of 1600 m. It traverses about 160 km through Odisha and enters Andhra Pradesh
near Kuneru village of Vizianagaram district at an elevation of about 152 m [55]. The extent of the
basin is 18◦17′ to 19◦44′ north latitudes and 82◦53′ to 83◦54′ east longitudes. The stream length ranges
around 255 km, out of which the main 62% lies in Odisha and the rest in Andhra Pradesh.

In this study, we considered the catchment area of 9056 km2 up to the gauging and discharge
measurement station at Srikakulam. NRB gets typical yearly precipitation of around 1140 mm, and the
annual average temperature of the river basin is 28.2 ◦C in post-monsoon and 34.2 ◦C in pre-monsoon.
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Figure 1. Index map showing the geographical location of Nagavali River Basin (NRB) along with the
stream network, gauge location in red and precipitation grid points in blue. Total 19 grid points of the
Indian Meteorological Department (IMD) were located within the NRB river basin.

2.2. Datasets

Four precipitation products from different sources and of different resolutions that are the most
frequently used in the hydrological application are used. This include gridded IMD (0.25◦ × 0.25◦),
TRMM 3B42 (0.25◦ × 0.25◦), bias-corrected TRMM (0.25◦ × 0.25◦) and reanalysis NCEP-CFSR (0.31◦ ×
0.31◦). All the datasets are selected for the common observation period from 1998–2012. Table 1 and
Supplementary Information Section S1 present detailed information about the precipitation data.
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Table 1. Detailed information and sources of different rainfall datasets used in this study. IMD—Indian Meteorological Department; TRMM—Tropical Rainfall
Measurement Mission; NCEP-CFSR National Center for Environmental Prediction Climate Forecast System Reanalysis.

Name and Type Spatial
Resolution/Coverage

Temporal
Resolution/Period Remarks, References and Data Sources

IMD
(gridded rainfall dataset) 0.25◦/Pan India Daily/1901–2013

The gridded data were generated from the observed data of 6995 gauging stations
across India using spatial interpolation for the period 1901–2013 [14]

Details about these data can be obtained from http://imd.gov.in
(homepage/rainfall information).

TRMM 3B42V7
(satellite product) 0.25◦/Global (50 N-S) Daily/1998–2014

Joint mission between the National Aeronautics and Space Administration (NASA)
and the Japan Aerospace Exploration Agency (JAXA) to monitor tropical

precipitation [6]
one type of the TRMM multi-satellite precipitation analysis (TMPA) products)

https://giovanni.gsfc.nasa.gov

Bias-corrected TRMM
(satellite product) 0.25◦/Global (50 N-S) Daily/1998–2014)

The bias of TRMM rainfall was corrected by applying monthly multiplicative
correction coefficients (MCC) of IMD rainfall [56]

MCCdaily = IMDtotal/TRMMtotal
https://giovanni.gsfc.nasa.gov

CFSR
(reanalysis dataset) 0.31◦/Global (50 N-S) Daily/1979–2014

Global, high resolution, coupled atmosphere–ocean–land surface-sea ice system
started in 1979 by the National Centers for Environmental Prediction [22]

https://globalweather.tamu.edu/

http://imd.gov.in
https://giovanni.gsfc.nasa.gov
https://giovanni.gsfc.nasa.gov
https://globalweather.tamu.edu/
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2.3. Verification Strategy

Various statistical metrics used to evaluate the satellite precipitation products with reference
to gauge-based IMD gridded data both qualitatively and quantitatively. IMD dataset is a popular
validated dataset used in several other works [57–61]. Pai et al. [14] and Yeggina et al. [62] evaluated
the performance of the IMD gridded dataset against the gauge rainfall estimates and showed that the
IMD gridded dataset could be used as a reliable alternative for gauge rainfall. Various qualitative
methods were used to measure the correspondence between estimates by precipitation product and
IMD data. Here, we use the false alarm ratio (FAR), probability of detection (POD) and critical success
index (CSI)—to evaluate the TRMM, bias-corrected TRMM and CFSR data with the reference rainfall
data (IMD). Detailed information on these statistical metrics is presented in Table 2 and Supplementary
Information Section S2. Instead of point-to-point analysis, we analyzed the spatial average rainfall
over the entire catchment considering the size and homogeneity of the catchment [63]. Based on the
average rainfall for a given day, these statistical measures were computed by comparing rainfall and
non-rainfall events for satellite (TRMM and CFSR) and reference (IMD) rainfall data.

Table 2. Definition of statistical metrics used to evaluate the TRMM, bias-corrected TRMM and CFSR
data with the reference rainfall data (IMD). These statistical measures were computed by comparing
rainfall and non-rainfall events for satellite (TRMM and CFSR) and reference (IMD) rainfall data.
In general, when the values of probability of detection (POD) < 0.65, FAR > 0.35 and CSI < 0.45, it is
assumed that the product performance is low in terms of detecting rainfall. The calculation of these
three metrics is explained in [64].

S. No Statistical Metrics Equation Description

1 Probability of
detection (POD) POD = H/(H + M)

It represents the detected rainfall events correctly by
satellite out of rainfall events by reference data. Its

ranges from 0 to 1 (1 is the best value)

2 False alarm ratio
(FAR) FAR = F/(F + H)

It represents the false, detected as rainfall event by
satellite when reference data showed no rainfall. Its

ranges from 0 to 1 (0 is the best value)

3 Critical success
index (CSI) CSI = H/(H + M + F)

It is more accurate when correct negative values are
not considered. Its ranges from 0 to 1 (1 is the perfect

value)

For the verification of the discharge simulation from the hydrological model, we adopted the
popular performance evaluation measures such as Nash–Sutcliffe coefficient (NS) [65], percentage of
bias (PBIAS) and the coefficient of determination (R2) in this study.

NS = 1−


∑n

i=1

(
Yobs

i −Ysim
i

)2

∑n
i=1

(
Yobs

i −Y
)2

 (1)

PBIAS =


∑n

i=1

(
Yobs

i −Ysim
i

)
× 100∑n

i=1

(
Yobs

i

)  (2)

Correlation coefficient =

∑n
i−1(Y

obs
i −Y

obs
)
(
Ysim

i −Y
sim

)
,√∑n

i−1(Y
obs
i −Y

obs
)2

√√∑n
i−1(Y

sim
i −Y

sim
)2

(3)

where Ysim
i and Yobs

i are the ith time step simulated and observed values, respectively. Y is the mean of
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The values of NS ranges from −∞ to 1, with NS = 1 indicating the best model. PBIAS (Equation (2))
measures the average tendency of the simulated data (Gupta et al. [66], and the optimal value of
PBIAS is zero. If PBIAS is a positive value, the model is underestimating the streamflow, and if
PBIAS is negative, the model overestimates the streamflow. The model is unsatisfactory if NSE ≤ 0.5,
satisfactory performance (0.5 < NS≤ 0.65), good performance (0.65 < NS≤ 0.75), very good performance
(0.75 < NS ≤ 1.00) and PBIAS >± 25% for the streamflow [67]. The R2 pattern similarity between
observed and simulated data and its value ranges between 0 and 1. Higher the value of R2, the higher
the similarity.

2.4. Hydrological Model

The precipitation products mentioned above were used to drive a semi-distributed Soil and
Water Assessment Tool (SWAT) model. Here, we briefly describe the SWAT model and its governing
equations, procedures to set up the model, and finally, the way to calibrate and evaluate the model.

SWAT is a comprehensive, physically based, continuous in time, semi-distributed hydrological
model [68,69]. It was developed by the Agriculture Research Service of the United States Department
of Agriculture and used widely to study large scale hydrological conditions in different regions [70–73].
It mimics various hydrological components of watersheds by solving process-based equations.
The various processes in the SWAT model are simulated at daily time steps based on the water
balance equation (Equation (1), [74])

SWt = SWO +
t∑

i=1

(Rday −Qsur f − Ea −Wseep −Qgw) (4)

where SWo and SWt represent initial and water content at any time ‘t’ days (in mm), respectively.
Ea, Rday and Qsur f represent the amount of evapotranspiration, precipitation and surface runoff (in mm)
on any day. The amount of percolation and return flow on a day i (in mm) is denoted by Wseep&Qgw,
respectively. The Soil Conservation Service (SCS)-curve number (CN) method (Equations (5) and (6))
is used for estimating the surface runoff.

Qsur f =

(
Rday − Ia

)2(
Rday − Ia + S

) (5)

S = 254
(CN

100

)
− 1 (6)

Qsurf and Rday represent the accumulated runoff or rainfall excess (in mm) and rainfall received
on that particular day (in mm), respectively [74]. Ia denotes an initial loss that includes detention,
interception and percolation before the runoff. The retention factor is denoted by S marks retention
parameter. The retention factor is subjected to spatial variation owing to land-use change, soil type,
various management options, slope and temporal variation because of the changes in soil water.

The storage routing technique is used for calculating the percolation (Arnold et al. [75], assuming
that the percolation occurs whenever water content exceeds the field capacity, and the layer below is
unsaturated (Mosbahi et al. 2020 [76], Sridhar, 2013 [53]). In this study, the Penman–Monteith method
is adopted for estimating potential evapotranspiration. Using DEM, SWAT divides the entire basin into
different subbasins and subsequently into hydrological response units (HRUs) based on the unique
land use, soil classification, slope and various management combinations.

Primary meteorological variables such as temperature, precipitation, solar radiation, relative
humidity and wind speed are required in addition to land use, soil characteristics and land cover to
set up a hydrological model using SWAT. A brief description of the input data and data sources are
presented in Table 3. Moreover, the land use land cover and soil map of the study area are shown in
Figure 2. The daily river discharge data were obtained from the water resources information system of
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India (Central Water Commission, [77] for the period from 1985–2012 at Srikakulam station, as shown
in Table 3. The reservoir details, inflow and outflow data were obtained from the Andhra Pradesh
Water Resources Department and were incorporated in the model for implementing regulations.

Table 3. Detailed information on primary meteorological variables required to set up a hydrological
model using the soil water assessment tool (SWAT).

Data Type Scale Source

Digital elevation model (DEM) 30 m × 30 m Shuttle radar topography mission (SRTM) of
USGS (https://earthexplorer.usgs.gov/)

Land use/land cover (LULC) 500 m GIAM-IWMI (http://www.iwmi.cgiar.org)

Soil 1:1,500,000

http://www.fao.org/soils-portal/soil-survey/soil-
maps-and-databases/faounesco-soil-map-of-the-

world/en/
Food and Agriculture Organization (FAO)

Rainfall, temperature 0.25◦

(~32 km)

http://imdpune.gov.in/Clim_Pred_LRF_New/
Grided_Data_Download.html

Indian Metrological Department (IMD), PUNE

Solar radiation, relative humidity,
wind speed 0.31◦ (~38 km) https://rda.ucar.edu/datasets/ds093.1/

Climate Forecast System Reanalysis (CFSR)

Hydrological data Daily https://indiawris.gov.in/wris, (Central Water
Commission (CWC)_

Figure 2. Land use land cover classification (a) and soil map (b) with subbasins for Nagavali River
Basin (NRB). QSWAT interfaced with a quantum geographical information system (QGIS) was used for
developing the hydrological model.

QSWAT interfaced with a quantum geographical information system (QGIS) was used for
developing the model. Preliminary analysis was done to re-project all the information to a common
projection and was resampled to 30 m spatial resolution. TauDEM tool in QSWAT was used for stream
network generation and watershed delineation. The entire basin was divided into 43 sub-basins using

https://earthexplorer.usgs.gov/
http://www.iwmi.cgiar.org
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
http://imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
http://imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
https://rda.ucar.edu/datasets/ds093.1/
https://indiawris.gov.in/wris
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a threshold of 150 km2. A total of 200 HRUs were formed by fixing a threshold of 200 HRUs with
distinct land use, soil and slope. Here, the analysis was carried out at the hydrologic response unit
(HRU) level on a monthly time step. Further, SWAT calibration and uncertainty procedures (CUP)
2012 with sequential uncertainty fitting (SUFI-2) was used for auto-calibration, sensitivity analysis and
validation purposes (for more detail, please refer to Setti et al. [55].

3. Model Development and Evaluation

For simulating streamflow from different precipitation inputs, two different scenarios were
considered, which are as follows:

Scenario A: calibrating the model with IMD gridded data and rerunning the model with other
considered precipitation products; and

Scenario B: calibrating the model with each of the rainfall products.
Scenario A would allow investigating the impact of differences in rainfall products on streamflow

simulation accuracy, whereas Scenario B (with each of rainfall products) will help in investigating the
impact of input rainfall data on calibrated parameters, sensitivity analysis and streamflow simulation
accuracy and in verifying whether these rainfall products can be used as an alternative source of input
rainfall data for model calibration.

For both the scenarios, the sensitive parameters selection, automatic calibration and validation
were performed by SUFI-2 optimization algorithms in the SWAT-CUP tool package. Sensitive
parameters were identified using Latin-Hypercube One-factor-At-a-Time method with 2000 simulations.
This procedure tests the model sensitivity by modifying only one parameter at a time and keeping
the rest unchanged. In total, 18 parameters were identified from past literature (Setti et al. [63],
and sensitivity analysis was performed.

In this study, we considered the first two years, i.e., 1998–2000, as the warm-up period to reduce
the effect of initial conditions. The monthly simulated streamflow of the Nagavali River Basin
was calibrated over a time period of 2001–2008 and then validated in the period of 2009–2012 with
observation streamflow at Srikakulam station (as shown in Figure 1) using SWAT. For each iteration,
2000 simulations were run for the calibration period. Following each iteration, parameter ranges were
modified (nearest to fitted value) with reference to the values suggested by the program and also by
their reasonable physical limitations. Interested readers refer [78,79] for more details about the protocol
to calibrate the SWAT model.

4. Results and Discussion

We present the results in three categories, first comparing satellite data and reanalysis data with
ground-based IMD data, second, evaluating hydrological model based on the precipitation products
for two different scenarios, and finally, comparison of the annual water balance components.

4.1. Comparison of Satellite Data and Reanalysis Data with Ground-Based IMD Data

First, we computed statistical parameters such as minimum rainfall, maximum rainfall, standard
deviation, average and skewness coefficient of all precipitation products (Table 4) only for rainy days
(rainfall magnitude ≥2.5 mm/day).

We observed that the maximum precipitation values were slightly overestimated by TRMM and
CFSR datasets in comparison with the IMD product. Similarly, the CFSR is more positively skewed
than the IMD, showing the general tendency for overestimation. The empirical cumulative density
function (CDF) of the daily precipitation distribution during 1998–2012 was computed for the four
datasets (Figure 3). There is a slight difference in the CDF obtained for IMD, TRMM and CFSR data
at low values of rainfall. However, the deviation is significant in the precipitation range from 30 to
60 mm/day for TRMM and CFSR data. The CDF of the bias-corrected TRMM is closely matching with
that of IMD.
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Table 4. Statistical measures of four considered rainfall data sets estimated using only rainy days (rainfall
magnitude ≥2.5 mm/day) for the period from 1998–2013. TRMM—Tropical Rainfall Measurement
Mission; IMD—Indian Meteorological Department; NCEP-CFSR National Center for Environmental
Prediction Climate Forecast System Reanalysis.

Statistical Measures IMD TRMM Bias Corrected TRMM CFSR

Minimum rainfall (mm) 2.5 2.5 2.5 2.5
Maximum rainfall (mm) 140.2 157.7 119.4 176.4

Mean rainfall (mm) 11.9 13.3 11.9 12.6
Standard deviation(mm) 12.7 13.7 11.9 13.1

Skewness 3.8 3.4 3.2 4.3

Figure 3. Cumulative probability of four daily precipitation datasets (IMD, TRMM, bias-corrected
TRMM, CFSR) for NRB. Distribution of all precipitation values (a); distribution of precipitation below
30 mm (b); distribution of precipitation values between 30 mm to 60 mm (c).

IMD dataset for the time period from 1998–2013 revealed a total of 1591 rainy days and 4252
non-rainy days. On the other hand, the total rainy days estimated by the TRMM, bias-corrected TRMM
and CFSR are 978, 932 and 1161, respectively (Table 5).

Table 5. Contingency table for category estimation of rainy days and non-rainy days between observed
rainfall and satellite rainfall (TRMM and CFSR) with 2.5 mm/day threshold value during the period
of 1998–2013.

Event IMD Observed Event TRMM Bias Corrected TRMM CFSR

Rainy days 1591
Hit (H) 978 932 1161

Miss (M) 613 659 430

Non-rainy days 4253
False alarm (F) 718 658 712

Correct negative 3535 3595 3541

Using the threshold of 2.5 mm/day, the values of POD, FAR and CSI were estimated. The value
of POD was found to be around 0.61, 0.69 and 0.73 (Table 6) for TRMM, bias-corrected TRMM and
CFSR, respectively, indicating the CFSR product is close to the IMD dataset in terms of hits. Similarly,
in terms of FAR and CSI, the CFSR data seems to perform better than the TRMM-based datasets.
For example, the CFSR data have the lowest value of FAR (0.38) and the highest value of CSI (0.50).
These analyses showed that the CFSR product has better performance than the other products like
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TRMM and bias-corrected TRMM. However, it to be noted that this analysis does not consider the
quantity of the rainfall; instead, it only finds hits and misses into consideration.

Table 6. Statistical metrics are calculated for daily data of Nagavali River Basin based on an average of
19 rainfall grids for the time series of 1998–2013.

Statistical Metrics TRMM Bias Corrected TRMM CFSR

Probability of detection POD 0.61 0.69 0.73
False alarm ratio FAR 0.42 0.39 0.38

Critical success index CSI 0.42 0.45 0.50

In order to compare the data products based on the rainfall amount, we choose the rainfall intensity
classification of the World Meteorological Organization (WMO) standard Geneva, Switzerland, 2012 [80]
(1) rain < 2.5 mm (no/tiny rain), (2) 2.5 mm≤ rain < 5 mm (low moderate rain), (3) 5 mm ≤ rain < 10 mm
(high moderate rain), (4) 10 mm ≤ rain < 20 mm (low heavy rain),(5) 20 mm ≤ rain < 50 mm (high heavy
rain),and (6) rain ≥ 50 mm (violent rain). The four considered precipitation datasets display a similar
probability of occurrence of dry days (rain < 2.5 mm/d), which are 49%, 44%, 44% and 37% for IMD,
TRMM, bias-corrected TRMM and CFSR, respectively. However, within the wet days, the probability
of occurrence of high, moderate rain (low heavy rain) was found to be 30% (22%), 26% (25%), 28% (24%)
and 31% (27%) for IMD, TRMM, bias-corrected TRMM and CFSR, respectively. It is observed that the
CFSR data have more probability of occurrence in the low heavy rain range than what is observed in
IMD data.

To evaluate the overall pattern and rainfall quantity, rainfall datasets on three different time
scales—daily, monthly and annual—were considered. On a daily scale, the linear Pearson correlation
between the IMD and other data sets such as TRMM, bias-corrected TRMM and CFSR datasets was
found to be 0.44, 0.83 and 0.82, respectively. The daily and average monthly time series of the rainfall
events of four datasets are shown in Figure 4a,b. It is evident that there is a significant difference
between precipitation products. The monthly variation of the precipitation values shows there is no
systematic over or under prediction by CFSR or TRMM data. For example, during the 2003 monsoon,
CFSR and TRMM overestimated the rainfall, whereas during the years 2004 and 2005, the rainfall was
underestimated. On the annual time scale (Figure 4c), different products show that there is a strong
similarity in terms of rainfall totals for the most part of the study period. However, in the latter part
of the study period (2009–2013), TRMM and CFSR data overestimate the rainfall compared to the
IMD-based values. The standard deviation of the four precipitation datasets computed at the annual
time scale over the 16 years considered is 270 mm, 222 mm, 193 mm and 415 mm for the IMD, TRMM,
bias-corrected TRMM and CFSR, respectively and the results of two-sample Kolmogorov–Smirnov
(Setti et al. [63] tests at the 5% significance level indicate that the four precipitation datasets have
different statistical distributions in the study area.

4.2. Hydrological Model-Based Evaluation of the Precipitation Products

As mentioned, two different scenarios were considered-calibrating the SWAT model with IMD
gridded data and rerunning the model with other considered precipitation products.

4.2.1. Scenario A: SWAT Model Calibrated with IMD Data

This scenario attempts to unravel the effects of the precipitation products on streamflow simulation,
specifically when the precipitation products driving the model is calibrated with IMD data.
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Figure 4. Comparison between observed rainfall product (IMD), satellite precipitation products
(TRMM, bias-corrected) and reanalysis data (CFSR) at daily (a), monthly (b) and (c) annual scale.

4.2.2. Calibration of the SWAT Model with IMD Data

Initially, model calibration was done using the IMD rainfall data as input to the model after
finding the sensitive parameters (using the method mentioned in Section 3). The calibration was done
using the SWAT-CUP with the objective function of maximizing the NS between the observed and
simulated flows. The performance statistics of the models’ simulation showed that the calibration is
good with reference to NS and correlation coefficient on the order of 0.85 and 0.79 and 0.91 and 0.88,
respectively, during the calibration and validation periods.

In the second step, the other precipitation products are used for driving the calibrated model.
Figure 5 shows the streamflow simulation results from each of the precipitation products, and the
corresponding performance statistics are shown in Table 7. It is observed that even though the TRMM
dataset-based model is performing satisfactorily in driving the model, according to Moriasi et al. [67].
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However, streamflow estimates show systematic overestimation with PBIAS = −15.3%. Interestingly,
the systematic difference has significantly reduced in the bias-corrected TRMM-based model with
PBIAS = −7.4%. The streamflow simulation using the CFSR data seems to be overestimated with PBIAS
= −16.2%. However, it is to be noted that in the case of the CFSR, the streamflow overestimations
are not systematic; rather, the pattern streamflow closely follows the precipitation pattern. There is
considerable streamflow overestimation in the year 2003, during which the rainfall estimates were
higher than the IMD data. On the other hand, the streamflow simulation was underestimated during
the years 2000, 2004 and 2005, where the rainfall estimates from CFSR were lower than IMD. Thus,
there is no systematic under or overestimation in the streamflow simulation.

Figure 5. Comparison of streamflow simulation obtained from model calibrated with IMD data when
driven using different precipitation datasets during the period (2000–2008).

Table 7. Comparison of the satellite streamflow simulation performance statistics for Scenario A (model
calibrated with IMD data).

Statistical Metrics

Performance of Different Datasets under Scenario A

IMD TRMM Bias Corrected
TRMM CFSR

R2 0.87 0.60 0.68 0.54
NS 0.85 0.55 0.62 0.52

PBIAS −5.5 −15.3 −7.4 −16.2
P-factor 0.83 0.65 0.8 0.65
r-factor 0.67 0.48 0.63 0.91

These aforementioned results demonstrated that the bias-corrected TRMM data are a potential
alternative to IMD data.

4.2.3. Scenario B: SWAT Model Calibrated Individually with Precipitation Products

This scenario evaluates the applicability of the precipitation products for calibrating the model
and investigates the differences in model calibration, sensitive parameters and the ability to simulate
streamflow accurately.

4.2.4. Sensitive Parameters

To evaluate the difference introduced at the stage of sensitivity analysis by using different
precipitation products, we compared the ranking of the sensitive parameters obtained. Out of several
parameters, we selected 18 commonly used parameters (Table 8) for streamflow simulation using four
precipitation products.



Atmosphere 2020, 11, 1252 14 of 26

Table 8. Description of parameters and their range values used for sensitivity analysis.

S. No Parameter Description Min Max

1 CN2.mgt * SCS runoff curve number for moisture condition II, which
controls the surface runoff

−0.1 0.1

2 ALPHA_BF.gw Baseflow alpha factor for groundwater flow response to changes
in recharge 0 1

3 GW_DELAY.gw Groundwater delay represents the time taken by water move
from the bottom soil layer to the upper shallow aquifer (days) 30 450

4 GWQMN.gw
Threshold depth of water in the shallow aquifer required for

return flow to occur. If it is decreased, baseflow will be decreased
(in mm)

0 5000

5 GW_REVAP.gw

Groundwater “revap” coefficient (Water movement from shallow
aquifer to vegetation roots). If it is close to zero, the movement of
water is restricted; if it approaches 1, the rate of water approaches

the rate of evapotranspiration

0.02 0.2

6 RCHRG_DP.gw Deep aquifer percolation fraction from the root zone which
recharges in a deep aquifer 0 1

7 REVAPMN.gw
Threshold depth of water in the shallow aquifer for “revap” to

occur (mm). Controls the water movement from a shallow aquifer
to a deep aquifer

0 1000

8 SLSUBBSN.hru Average slope length 10 150

9 HRU_SLP.hru Average slope steepness (m/m) 0 1

10 OV_N.hru Manning’s “n” value for overland flow 0.01 30

11 LAT_TTIME.hru Lateral flow travel time (days) 0 180

12 ESCO.hru
Soil evaporation compensation factor (represents the process of

evapotranspiration from soil moisture to atmosphere, if the ESCO
is reduced, the evaporation is increased)

0 1

13 EPCO.hru
Plant uptake compensation factor (The amount of water uptake

by a plant for transpiration, If EPCO value is 1, the model allows
more of the water uptake demand)

0 1

14 SURLAG.bsn Surface runoff lags time (days). It controls the fraction of water to
allow to the reach on the day 0.05 24

15 SOL_AWC().sol Available water capacity of the soil layer 0 1

16 SOL_K().sol Saturated hydraulic conductivity (mm/h). This relates to soil
water flow rate to the hydraulic gradient. 0 2000

17 CH_K2.rte
Effective hydraulic conductivity in main channel alluvium

(mm/h). If streams have continuous groundwater contribution,
the effective conductivity will be zero.

0.1 500

18 ALPHA_BNK.rte Baseflow alpha factor for bank storage (Contributes flow to the
reach within the subbasin) 0 1

* Indicates that the CN2 values are reported as percentages of variation of the original value.

To identify the sensitivity parameters of each precipitation dataset, the model was run with 2000
simulations of eighteen selected parameters. Interestingly, the most sensitive parameters obtained for
the four datasets were significantly different (Table 9) except for the deep percolation factor and curve
number (CN2) that comes out to be significant for all products. The second most significant factor
was ESCO using IMD and TRMM, whereas it was ALPHA_BF and GWQMN using bias-corrected
TRMM and CFSR data. The most sensitive parameters from all the data sets include RCHRG_DP,
ESCO and GWQMN, which show that the crucial processes governing the hydrology of the system are
evapotranspiration and groundwater recharge, which is in line with the general understanding of the
dominant processes in forest and agricultural catchment.
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Table 9. Sensitivity parameter ranking for each dataset with default parameter values using sequential
uncertainty fitting (SUFI)-2 algorithm. Interestingly, the most sensitive parameters obtained for the
four datasets were significantly different except for the deep percolation factor and curve number
(CN2) that comes out to be significant for all products. The second most significant factor was soil
evaporation compensation factor (ESCO) using IMD and TRMM, whereas it was baseflow alpha factor
(ALPHA_BF) and threshold depth of water in the shallow aquifer (GWQMN) using bias-corrected
TRMM and CFSR data.

S. No Parameter IMD TRMM Bias Corrected
TRMM CFSR

1 r__CN2.mgt 6 1 2 1
2 v__ALPHA_BF.gw 18 18 17 14
3 v__GW_DELAY.gw 12 13 15 10
4 v__GWQMN.gw 3 6 8 3
5 v__GW_REVAP.gw 5 8 14 5
6 v__RCHRG_DP.gw 1 2 3 2
7 v__REVAPMN.gw 13 10 10 15
8 v__SLSUBBSN.hru 7 4 4 6
9 v__HRU_SLP.hru 8 5 6 7

10 v__OV_N.hru 16 11 12 11
11 v__LAT_TTIME.hru 17 7 7 9
12 v__ESCO.hru 2 3 1 4
13 v__EPCO.hru 11 12 11 17
14 v__SURLAG.bsn 15 16 18 18
15 r__SOL_AWC().sol 9 9 5 8
16 r__SOL_K().sol 14 14 9 13
17 v__CH_K2.rte 10 17 16 12
18 v__ALPHA_BNK.rte 4 15 13 16

4.2.5. Model Calibration

Here, out of the eighteen parameters, the ten most sensitive parameters for each dataset were
further considered for calibration of the corresponding models.

The individual models were developed based on four different data sets and were calibrated at a
monthly scale using the SUFI-2 algorithm. The results from the model calibration are enumerated
for all the models in Table 10. Following the model performance classification of Moriasi et al. [67],
the model based on IMD precipitation data performs well with NS (R2) values on the range 0.85(0.87)
and 0.79(0.82) during the calibration and validation period, respectively. On the other hand, the CFSR
data-based model performance is satisfactory with the NS values 0.76 and 0.73 during calibration and
validation, respectively. The models based on TRMM and bias-corrected TRMM dataset produced
better results with NS equal to 0.71 and 0.74, respectively, as shown in Table 10. A similar pattern was
observed in the PBIAS values during the calibration and validation period.

Figure 6 shows the streamflow simulation results during calibration and validation. Based on the
simulation results obtained during calibration and validation, it can be seen that the IMD data produces
the best results in comparison with the other datasets. However, closer simulation was obtained using
the TRMM bias-corrected dataset. It is also to be noted that the bias-corrected TRMM datasets are
yielding better results when compared to the TRMM data. Further, the results based on CFSR are also
satisfactory when compared to its performance in Scenario A. However, there is an overestimation
of streamflow for most of the simulations except for the years 2000, 2004 and 2005. This implies that
the recalibration of the model with the individual dataset has increased the model performance to a
greater extent. A similar observation was also reported by Tuo et al. [2] and Zhang et al. [41].
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Table 10. Comparison of NS and R2 values during the calibration (2000–2008) and validation (2009–2012)
periods obtained when models were recalibrated with individual precipitation product as input.

Statistical Results during the Calibration and Validation Period

Statistical Metrics

Calibration Validation

IMD TRMM TRMM-Bias CFSR IMD TRMM Bias Corrected
TRMM CFSR

R2 0.87 0.76 0.78 0.77 0.82 0.77 0.74 0.74
NS 0.85 0.71 0.74 0.76 0.79 0.72 0.72 0.73

PBIAS −5.5 −13.4 −7.2 −14.3 −6.2 −15.2 −8.1 −17.2
P-factor 0.83 0.68 0.72 0.64 0.85 0.67 0.69 0.61
r-factor 0.67 0.46 0.59 0.40 0.79 0.44 0.61 0.41
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Figure 6. Simulated and observed hydrograph of the best simulation during the calibration (2000–2008)
and validation periods (2009–2012) of four dataset products when the models were individually
calibrated with the corresponding precipitation datasets.
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Besides the evaluation of the results from the best simulation from each precipitation data set,
as explained above, we also investigated the ensemble of all available simulations. We calculated the
distribution of the NSC values obtained for the total of 2000 simulations. Figure 7 shows the empirical
CDF of the NSC values obtained from the four models. All four models reached a satisfactory level
of performance. However, interesting results were obtained using the bias-corrected TRMM data
set, where most of the simulations (around 80% of the model simulations) were above NSC = 0.5,
while IMD, TRMM, CFSR data sets had a lower fraction on the order of 70%, 20% and 65%, respectively.
IMD data-based model displays a larger fraction (50%) of model simulations having NSC > 0.65,
which represents excellent model performance. On comparing the bias-corrected TRMM dataset
and TRMM-based models, there is a significant improvement in the bias-corrected TRMM-based
results. This analysis indicates the uncertainty in terms of model performance when using different
precipitation data sets.

Figure 7. Distribution of Nash simulation values during calibration obtained using different
precipitation datasets for the Nagavali River Basin.

4.2.6. Parameter Uncertainty

The parameter uncertainty when using different precipitation data sets was estimated by
investigating the variations in the best-fit parameters, and the range of parameters obtained during
the calibration. Table 11 and Figure 8 show the values and range of the best-fit parameters of the
calibrated parameters of nine global sensitive hydrological parameters, respectively. Among the critical
parameters shown in Figure 8, ESCO, an important parameter related to soil evaporation, have different
ranges for the different datasets. It is also to be noted that the range of the parameters for ESCO
obtained using IMD is different from the ones obtained from other precipitation data sets. TRMM and
CFSR dataset-based models have a high ESCO value >0.5 when compared to IMD, and TRMM
bias-corrected-based models indicate lower evapotranspiration compared to other datasets, which are
also reflected in overestimation of streamflow.

Deep aquifer percolation fraction (RCHRG_DP) (the most dominant parameter in four precipitation
datasets) displays variation in both best values and the ranges considering all the precipitation inputs.
This indicates that the IMD-based model allows more water for deep percolation when compared to
the CFSR-driven model. Similarly, the best parameter ranges for GWQMN (a parameter controlling
the depth of water in the shallow aquifer) were higher for the IMD-based model when compared to
the other models, which indicates the model-based in TRMM and CFSR data resulted in less shallow
aquifer storage.
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Interestingly, there is no significant difference in the CN2 parameter, which reflects the surface
runoff in terms of both the best parameter and the ranges. However, for other parameters, such as SOL
_AWC, HRU_SLP, CH_K2, the ranges and the best fit values are different.

Table 11. Values for best-fit parameters obtained using the four different datasets. Among the important
parameters, ESCO, an important parameter related to soil evaporation, have different ranges for the
different datasets. The range of the parameters for ESCO obtained using IMD is different from the ones
obtained from other precipitation data sets.

S. No Parameter IMD TRMM Bias Corrected
TRMM CFSR

1 v__ESCO.hru 0.11 0.56 0.06 0.67
2 v__SLSUBBSN.hru 42.59 145.7 36.7 145.6
3 v__HRU_SLP.hru 0.28 0.06 1.0 0.11
4 r__SOL_AWC().sol −0.03 0.037 0.054 0.03
5 r__CH_K2.rte 367.1 X X X
6 r__CN2.mgt −0.152 −0.09 -0.15 −0.19
7 V__ALPHA_BNK.rte 0.33 X X X
8 V__RCHRG_DP.gw 0.073 0.047 0.06 0.011
9 V__GW_REVAP.gw 0.13 0.079 X 0.115

10 V__GWQMN.gw 4577 3196 3234 3942
11 V__OV_N.hru X 13.47 X 21.1
12 V__LAT_TTIME.hru X 85 47 28.8
13 V__GW_DELAY.gw X X X 72

Figure 8. Calibrated parameter ranges (y-axis) of global sensitive hydrological parameters for the four
precipitation datasets within the initial parameter range.

Overall, the analysis shows that different precipitation inputs affect both the best estimate of a
parameter as well as its ranges. It is to be noted that the SWAT-CUP adjusts parameters in such a
way that the observed streamflow values are matched. Even though the models capture the observed
flow, the parameter values, and hence the distribution of water in the catchment, are entirely different.
For example, the average water balances of the various components in the study area using different
precipitation data set lead to different values of evapotranspiration, base flow, percolation, but more
or less similar surface runoff values. It can be observed that the calibrated bias-corrected TRMM
forced the model to have low ESCO when compared to the other models resulting in higher values
of evapotranspiration.
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4.2.7. Uncertainty in Streamflow Simulation

Even though the parameter uncertainties contribute to uncertainty in all outputs, variables were
obtained from the model. In this section, we limit our discussion only to the uncertainty in the
streamflow, as shown in Figure 9. We evaluated the uncertainty using the p-factor, and R-factor
obtained during the calibration. The p-factor represents the fraction of observed streamflow falling
within the 95PPU band and varies from 0 to 1, where p = 1 indicates that 100% of the observed flow
falls within the 95% confidence band (i.e., a perfect model simulation considering the uncertainty).
The R-factor is estimated as the ratio of the average width of the 95% confidence band and the standard
deviation of the observed streamflow. A value of R < 1.5, again depending on the situation, would be
desirable for this index. According to Abbaspour et al. [81], R-value less than 1.5 would be desirable
for satisfactory model simulation.
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Figure 9. 95PPU plots along with the observed and simulated flows using best parameter values for
the four datasets during the calibration period (2000–2008) at the monthly time scale.
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In this study, the percentage of observed data bracketed by 95PPU uncertainty for IMD, TRMM,
bias-corrected TRMM and CFSR is 83%, 68%, 72% and 64%, respectively during the calibration and
85%, 67%, 69% and 61%, respectively during the validation period as shown in Figure 9 and Table 10.
However, comparing the r-factors (which measures the width of the 95PPU), it can be observed that
the CFSR and bias-corrected TRMM-based models have low values indicating the higher levels of
uncertainty. Further, the observed peak values do not fall within the 95PPU obtained from these data
sets. Thus, it is clear from these results different precipitation inputs generate discrete prediction
uncertainties for estimation of streamflow.

4.3. Comparison of the Annual Water Balance

Figure 10 represents the annual average of the water balance components based on the different
rainfall inputs. For comparison, the observed streamflow and evapotraspiration (ET) are provided from
the literature. Figure 10a presents the results of the models calibrated with IMD data (Scenario A),
and Figure 10b shows the results of the model obtained when calibrated with individual data rainfall type.

Figure 10. The annual average of hydrologic components such as precipitation, streamflow and
evapotranspiration obtained using different rainfall inputs for a model calibrated with (a) IMD data
and (b) individual rainfall data.

4.3.1. Precipitation

The catchment averaged rainfall estimates from the TRMM and CFSR indicate that these data sets
have a general tendency for overestimating the rainfall when compared to the IMD datasets. This is
consistent with the results reported in [41].
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4.3.2. Streamflow

On comparing the observed and the simulated streamflow volume, we noted that the model
based on IMD data produced annual streamflow accurately; nevertheless, the performance of other
data sets depends on how the model was calibrated.

When the model was calibrated with IMD data (Scenario A), the CFSR-based model overestimated
the average annual streamflow. In particular, it can be seen from Figure 5 that the non-monsoon
streamflow was higher. However, TRMM and bias-corrected TRMM models result in slight over and
underestimation, respectively. The results closely follow the pattern in the rainfall estimates showing
that rainfall is the primary driving factor in streamflow simulation. Under Scenario B, all the models
show comparatively better ability in capturing the streamflow volume; however, bias-corrected TRMM
showed the ability to reproduce the streamflow accurately. Moreover, significant improvement in the
CFSR data-based model was reported.

4.3.3. Evapotranspiration

The IMD-based model simulation of ET (641.5 mm) was well within the range of 600–700 mm
in the study area [53]. Under Scenario A, TRMM, CFSR, and bias-corrected TRMM resulted in an
overestimation of the ET, but the amount of overestimation is different. Even though TRMM and CFSR
have similar precipitation amounts, but the distribution of the water balance components is different.
This difference may be attributed to the difference in the rainfall pattern and intensity, as discussed in
Section 4.1. On calibrating the model with the satellite data sets (the objective function used here is the
performance of streamflow volume), TRMM and bias-corrected TRMM significantly overestimated the
ET, whereas the CFSR data resulted in lesser value and close to IMD-based model estimation. Overall,
we notice a considerable increase in both ET and streamflow estimates for all the data sets due to the
overestimation of the rainfall.

It was observed that the precipitation dataset is primary data in driving hydrological model and
also the main source of uncertainty as different precipitation dataset leads to different best parameter
ranges. Further, uncertainty in the input precipitation propagates to the uncertainty to the model
estimates of the water balance components and, therefore, on the water resources management and
policy decisions made based on the model results.

5. Conclusions

We compared four different precipitation datasets of different categories, source and resolution,
namely IMD, TRMM, bias-corrected TRMM and CFSR using a hydrological model. We investigated
the impact of precipitation products on hydrological model calibration, model predictions for a
forest-dominated river basin in India. The following are salient features obtained from the study.

All the considered precipitation products showed a good correlation with each other as well as the
IMD gridded data on a daily scale. The CC of CFSR and bias-corrected TRMM with the IMD data were
approximately 0.8. However, a quantitative comparison of the precipitation showed that CFSR and
TRMM data have a slight tendency to overestimate precipitation. We also observed that bias-corrected
TRMM data are comparable with the IMD data. The deviation is significant in the precipitation range
from 30 mm/day to 60 mm/day.

We created two scenarios were for evaluating the precipitation using the SWAT model. In Scenario
A, the model was calibrated using IMD precipitation data as input, and later this model was run with
other data sets. In Scenario B, individual models were developed with each of the rainfall products as
input. From these scenarios, we observed that the performance of streamflow modeling increased
when the model was calibrated individually for each of the rainfall products.

The results from Scenario B showed that the different precipitation datasets resulted in multiple
sets of sensitive parameters, parameter ranges and water balance components. The IMD data-based
model yielded the best results in terms of streamflow simulation. The model based on the bias-corrected



Atmosphere 2020, 11, 1252 22 of 26

TRMM dataset produced closer results and thus can be used as an alternate for gauge precipitation.
In summary, the choice of precipitation products has a vital role in model performance, prediction
uncertainties and parameter uncertainties in streamflow simulations. Water balance estimation based
on different precipitation datasets can lead to different conclusions, and therefore uncertainty generated
by the use of different precipitation inputs must be taken into consideration.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/11/1252/s1,
Section S1: Detailed Information on Precipitation Products; Section S2: Statistical Metrics.
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