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Abstract: Based on an analysis of related core papers and reports, this review presents a historical
perspective on ambient air pollution and ambient air quality development in the modern-day Czech
Republic (CR) over the past seven decades, i.e., from the 1950s to the present. It offers insights into
major air pollution problems, reveals the main hot spots and problematic regions and indicates the
principal air pollutants in the CR. Air pollution is not presented as a stand-alone problem, but in the
wider context of air pollution impacts both on human health and the environment in the CR. The
review is arranged into three main parts: (1) the time period until the Velvet Revolution of 1989, (2) the
transition period of the 1990s and (3) the modern period after 2000. Obviously, a major improvement
in ambient air quality has been achieved since the 1970s and 1980s, when air pollution in the former
Czechoslovakia culminated. Nevertheless, new challenges including fine aerosol, benzo[a]pyrene and
ground-level ozone, of which the limit values are still vastly exceeded, have emerged. Furthermore,
in spite of a significant reduction in overall emissions, the atmospheric deposition of nitrogen, in
particular, remains high in some regions.

Keywords: air pollution; air quality; 1950–2018; Czechoslovakia; emissions; aerosol; ground-level
ozone; atmospheric deposition; health outcomes; environmental issues

1. Introduction

The modern-day Czech Republic (CR), one of the two succession countries of the former
Czechoslovakia post 1993, is a Central European country with an infamous environmental pollution
history, including heavy air pollution with serious impacts in the past. These were mostly due to
emissions from burning poor-quality lignite of local provenience with very high contents of sulphur
used both for coal-powered thermal power plants and local, domestic heating systems. Extremely high
SO2 emissions affected the health of the inhabitants adversely and resulted in serious environmental
damage, including the decline of spruce forests. Furthermore, emissions from high stacks of large
power plants added substantially, due to long-range transport, to acid rain and the acidification of
ecosystems in other European regions, such as Scandinavia. The infamous ‘Black Triangle’, a border
region situated between the former Czechoslovakia, East Germany and Poland, belonged to the most
polluted areas of Europe at that time.

As a consequence of fundamental socioeconomic changes triggered by the Velvet Revolution of
1989, the introduction of new legislation, application of effective countermeasures in emission reduction
and modernisation of energy production and industry, alongside extensive gasification of local heating
systems, the overall situation in ambient air quality has improved substantially. An unprecedented
reduction in SO2 emissions of some 90% has been recorded, accompanied by reductions in TSP (total
suspended particles) and NOx (nitrogen oxides). Nevertheless, new challenges have emerged in air
pollution, such as fine aerosol particles, ground-level ozone, and benzo[a]pyrene (BaP), pollutants
of which the ambient air concentration currently extensively exceeds the legal limit values, affecting
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a substantial part of the population and vast geographical regions, and the concentrations of which
seem to be very difficult to decrease.

This review paper aims to address ambient air pollution in the CR in its historical perspective,
collating and summarising the essential information on ambient air pollution and changes thereto, in
context with its relevant negative impacts on the environment and human health over the last 70 years,
i.e., from the 1950s to the present. The review consists in three main parts covering the three principal
time periods: (1) the period until the Velvet Revolution of 1989, (2) the transition period between 1989
and 2000 and (3) the modern period after 2000.

2. Air Pollution in the Former Czechoslovakia (Prior to 1989)

2.1. Emission Sources and Source Areas

Czechoslovakia’s economy from the Second World War through the early 1980s grew at the expense
of severe degradation of its natural sources and environment [1–3]. At that time, Czechoslovakia was a
centrally planned economy under communist rule, with an emphasis on the massive development of
heavy industries [4]. Ambient air pollution has been considered a major environmental threat since the
1950s. At this very time, large coal-combustion power plants were put into operation [5,6], emitting
large quantities of sulphur dioxide (SO2), TSP, NOx and other pollutants [7]. These large emission
sources with high stacks (Figure 1) were concentrated in the northwest region of Bohemia (NWR,
location in map in Figure 2), in the Podkrusnohori region, adjacent to the German and Polish borders
in particular, where their operation was driven by local poor-quality lignite coal with extremely high
sulphur and ash content [8–10].
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Figure 1. Prunerov coal power plant (photo by the author). 

The sulphur content in the local coal varied widely according to the individual coal deposits. 
Coal mined in the North Bohemian Lignite Basin averaged about 1.2–3.5%, with a maximum total 
sulphur content as high as 15.8% and an ash content ranging between 2.6% and 69.9% [11]. Some 
50–95% of sulphur compounds in the coal were emitted into the air [12]. The emissions were highly 
dependent on the applied technology and leading of the burning process [13–15]. Moreover, other 
trace elements potentially harmful for the environment, such as As, Be, Pb, V, F, Cr, Cu and Se were 
found in elevated concentrations in North Bohemian coal and released into the atmosphere while 
burning. The highest concentrations of As (387 ppm), Sb (7.5 ppm) and W (108.5 ppm) were reported 
from the Czechoslovak Army Mine (abbreviated ČSA in Czech) quarry [11]. This coal was mined in 
open cast mines, the operation of which devastated the originally scenic landscape and caused the 

Figure 1. Prunerov coal power plant (photo by the author).

The sulphur content in the local coal varied widely according to the individual coal deposits. Coal
mined in the North Bohemian Lignite Basin averaged about 1.2–3.5%, with a maximum total sulphur
content as high as 15.8% and an ash content ranging between 2.6% and 69.9% [11]. Some 50–95% of
sulphur compounds in the coal were emitted into the air [12]. The emissions were highly dependent
on the applied technology and leading of the burning process [13–15]. Moreover, other trace elements
potentially harmful for the environment, such as As, Be, Pb, V, F, Cr, Cu and Se were found in elevated
concentrations in North Bohemian coal and released into the atmosphere while burning. The highest
concentrations of As (387 ppm), Sb (7.5 ppm) and W (108.5 ppm) were reported from the Czechoslovak
Army Mine (abbreviated ČSA in Czech) quarry [11]. This coal was mined in open cast mines, the
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operation of which devastated the originally scenic landscape and caused the end of numerous small
settlements as well as the environmental, social and moral decline of the entire region [16–18].
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Furthermore, other industries, such as chemical, metallurgical, textile, cellulose paper mills, and
glass and ceramic manufacture, added to the overall emissions [19]. The accumulation of numerous
large emission sources in the poorly ventilated Podkrusnohori valley in Northwest Bohemia resulted in
a poisonous air mixture, in particular during winter thermal inversions, when the ambient air pollutant
levels reached extremely high values [20]. Under the communist regime, however, information on
environmental, including ambient air, pollution was not available to the general population, and
half-classified materials were intended exclusively as reports for experts [21]. The SO2 annual mean
concentrations ranged in the order of hundreds of µg m−3, whereas the SO2 daily mean concentrations
ranged in the order of thousands of µg m−3. The measurements at that time recorded in the unpublished
internal reports of the Czech Hydrometeorological Institute (CHMI) in the above region, in particular in
the adjacent Krušné hory (Mts.) (Erzgebirge, the Ore Mts.) reached up to 130 µg m−3 of SO2 in annual
means during the 1970s (Figure 3). A daily mean of 1590 µg m−3 of SO2 (Figure 4) was recorded on 16
January 1982 [20]. For comparison, current ambient SO2 concentrations measured in the same region
are up to 10 µg m−3 of SO2 in the annual mean [22]. The Podkrusnohori region ranked amongst the
most polluted parts of the entire country [19]. Apart from the North Bohemia region, other emission
source regions included the major urban areas, such as Prague (the capital), Ostrava, Pilsen, Hradec
Králové and Brno, with numerous industrial enterprises and local heating systems operating on brown
coal and lignite, deteriorating the ambient air quality.
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With 3150 kilotons in 1985, i.e., a full 203 kg per person per year in 1985, SO2 emissions in the
Czech-Slovak Federal Republic (CSFR) were the highest in Europe, 2.48 times higher than in Western
Europe per unit of gross national product (GNP) [23]. Further, the total NOx emissions (expressed as
NO2) were estimated to be 1200 kilotons annually, i.e., 57 kg per person per year; hence Czechoslovakia
took an infamous first place in NO2 emissions in Europe [23].
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2.2. Ambient Air Quality Monitoring

The first measurements of ambient air pollution addressed sulphur dioxide (SO2) and total
suspended particles (TSP)—the then measured total sample of aerosol without particle fraction
distinction—and date back to the 1950s. The measurement activities at that time focussed on industrial
and highly populated areas and ambient air pollution was observed by the Public Health Service with
respect to serious human health impacts [24,25].

Regular ambient air quality monitoring has been in operation since the 1960s and individual
networks were aimed at the most polluted areas. The Czech Hydrometeorological Institute (CHMI)
has been responsible for nationwide ambient air quality monitoring since 1964. The first monitoring
sites were situated in the Podkrusnohori region in 1968. In 1969, the network expanded to the Ostrava
region and in 1970, to the Brno region [26]. Gradually, a fairly dense network was set up for monitoring
SO2 in particular. Smog regulation and warning systems were built, the first was put in operation in
North Bohemia in 1973 [27].

After covering the most heavily impacted regions, measurements also began in relatively
unpolluted areas, far from the major emission sources, in order to gain information on regional
background air pollution. The Svratouch site in the Czech-Moravian Highlands has supplied data on
air quality to the worldwide Background Air Pollution Monitoring Network (BAPMON) since 1972
and to the EMEP (European Monitoring and Evaluation Programme) since 1977 [28]. In the 1980s, the
Košetice site (KOS in Figure 2) was set up for environmental monitoring on a regional scale [29,30].
The air quality monitoring was supplemented by observations of precipitation chemistry, with the first
site established at Hrádek u Pacova in 1974 [31].

Apart from the CHMI, several other organisations were involved in ambient air quality
measurements for their own purposes, such as the Public Health Service (abbreviated in Czech
as HS), Organization for the Rationalization of Power Plants (abbreviated in Czech as ORGREZ),
Czech Geological Survey (abbreviated in Czech as ČGÚ, and later as ČGS), Forestry and Game
Management Research Institute (abbreviated in Czech as VÚLHM), Water Management Research
Institute (abbreviated in Czech as VÚV) and the Research Institute of Plant Production (abbreviated in
Czech as VÚRV).

Air pollution in Czechoslovakia culminated in the 1970s and 1980s. The monitoring results from
1971–1982 for the eight most heavily impacted regions defined by the then government (i.e., North
Bohemia, Mělnicko-Neratovicko, City of Prague, Hradecko-Pardubicko, Brno, West Bohemia and
Pilsen) were collated by the CHMI’s internal reports [20,32–38]. The incorporation of a certain area into
the impacted regions was based on the annual SO2 mean concentration above 30 µg m−3 (Figure 5).
Based on monitoring and dispersion modelling results, the above regions were categorised into three
different air pollution levels: (1) the most polluted, which were the North Bohemia and Prague regions,
(2) medium air pollution level—the West Bohemia, Ostravsko-Karvinsko and Mělnicko-Neratovicko
regions and (3) the lowest air pollution level—the Hradecko-Pardubicko and Brno regions. Interestingly,
the two most polluted regions, i.e., North Bohemia and Prague, showed similar air pollution levels,
though these originated from completely different emission sources. In North Bohemia, the problem
arose from large emission sources, whereas in Prague the local heating systems were the culprit.
Furthermore, with respect to distinct geomorphology, both Prague and the Podkrusnohori region have
been prone to frequent thermal inversion occurrence preventing pollutant dispersion [39–41].
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2.3. Human Health Outcomes

The first information on measured ambient air pollutant concentrations in the then Czechoslovakia,
available only in Czech, originate from as early as the 1950s. They cover some industrial regions and are
related to local inhabitant health outcomes [24,25]. Children living in areas with high air pollution were
somewhat retarded in growth. Furthermore, they evinced significant changes in their red blood cell
counts. It was recognised that children responded to elevated SO2 concentrations in similar way as to
rather lower O2 pressure, such as in the high mountains: an increase in the total surface of erythrocytes
ensured the transfer of O2 to tissues easier [42]. It was demonstrated that a stay of 1–3 months in a
clean atmosphere had favourable effects on such children, especially with respect to the haemoglobin,
and that this reaction continued for about three months after the children returned to the region with
polluted air. Hence children used to be sent to an open-air school, where the air was relatively clean [42].
Air pollution belonged amongst the factors not only impairing human health but contributing even to
all-cause mortality. According to Bobak and Marmot [43], an estimated 2–3% of the total mortality
could be attributed to air pollution in the CR in 1987. Bobak and Leon [44], in a study examining infant
mortality and air pollution in 1986–1988 for 46 of the 85 districts of Czechoslovakia, reported a weakly
positive association between neonatal mortality and ambient TSP and SO2 concentrations.

A comprehensive Teplice programme aimed at a thorough study of the impacts on human health
caused by ambient air pollution, including aerosol, genotoxic organic compounds and toxic trace
elements in one of most heavily impacted districts of North Bohemia [45]. A significantly higher
prevalence of adverse respiratory symptoms and decreased lung function were indicated as compared
to the relatively clean Prachatice district in South Bohemia [46]. Moreover, a study of the effects of
exposure on pregnancy and birth revealed an excess prevalence of low birth weight and premature
births [47]. Furthermore, within this study, it was indicated that air pollution may alter early childhood
susceptibility to infections [48]. Exposure to intermittent air pollution in the North Bohemian Teplice
district was shown to cause sperm DNA damage resulting in an increase in rates of male-mediated
infertility, miscarriage, and other adverse reproductive outcomes [49].

2.4. Environmental Issues

Severe air pollution affected both human health and the environment. Mismanaged forest
ecosystems were susceptible to additional stresses [50–57]. A substantial part of forest areas (more
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than 60%) were damaged in various degrees by air pollution, namely SO2 acting either directly or
indirectly via acid deposition and subsequent soil changes. The outcomes included increased mortality
and decreased increments in forests, loss of valuable ecotypes, impact on water management and
overall decrease in stability of the landscape [58–60]. Damaged forests were the most visible and
best-known symptoms of acid rain [61,62]. Losses on forest wood attributable to air pollution in
the then Czechoslovakia were estimated at 9.5 million m3 year−1 by the International Institute for
Applied Systems Analysis (IIASA); this estimate being reckoned conservative, as exclusively SO2

was accounted for, whereas NOx and NH3 were not considered [63]. Unprecedented forest decline,
namely in the Krušné hory Mts., Jizerské hory Mts. and Krkonoše Mts., in the 1970s and 1980s were
of major concern for the then foresters and forest management [64] and attracted infamous attention
from scientists all over the world. The Krkonoše National Park (KRNAP) was cited—together with the
adjacent Polski Park Narodowy—by the International Union for Conservation of Nature and Natural
Resources (IUCN) as the world’s most threatened protected natural area [65].

Though Czech environmental studies at that time were practically non-existent [21], some papers on
ambient air pollution impacts on the environment can still be mentioned. Air pollution was reported to
influence the nesting ecology of the house martin (Delichon urbica) in 141 villages and towns in Czechoslovakia,
including a significant reduction in nesting density, colony size and occupancy [66]. Fluoride pollution
in wild deer assessed in North Bohemia showed significantly decreasing exposures from the mid-1990s,
attributed largely to the implementation of emission control devices on coal-fired power plants [67].

Emissions were also blamed for the contamination of crops. Ustyak and Petrikova [68] reported
that the results of their study for North Bohemia in 1987–1992 indicated very high contamination of
agricultural crops by heavy metals and As. Specifically, 3–16% of fodder crop samples and 49–86% of food
crop samples were contaminated (i.e., they showed higher heavy metal contents than was permissible at
that time) in spite of a low degree of soil contamination. The main pollutants of fodder crops were Hg,
Cd, Pb and Co, whereas the main pollutants of food crops were Cd, Cr, Hg, As, Pb, Ni and Zn [68].

Air pollution also affected precipitation chemistry, and consequent atmospheric deposition and
stream water chemistry was observed [69]. The long-term effects of atmospheric pollution by metals
and acids were documented even on sediment cores from Čertovo Lake in the Šumava Mts., situated
in a relatively unpolluted region [70].

2.5. Air Pollution in the Context of the Former Communist Countries

The problem of severe ambient air pollution and consequent human health and environmental
impacts was not limited exclusively to the former Czechoslovakia, but involved other Central European
communist countries, such as the former GDR (Eastern Germany or the Democratic Republic of
Germany) and Poland [71–73]. These three countries ranked among the worst polluters due to
emissions from the power generation systems as well as heat production both for industry and
municipalities. These sources accounted for about 90% of total SO2 emissions and about 60–70% of
emissions of dust and NOx [74]. Fly-ash emission in Eastern Europe was greater than in any other
industrial region in the world [65]. The heavily industrialised ‘Black Triangle’ (sometimes also called
the ‘Dirty Triangle’) region encompassing Northern Bohemia, Silesia and adjacent portions of Eastern
Germany was infamous for its heavily impacted environment and the high frequency of winter smog
occurrence causing an adverse effect on the health of local inhabitants and on the environment [74].

2.6. Long-Range Transport

A few decades ago, air pollution was considered entirely a local problem. The acceptable solution
seemed to be building high stacks to disperse the emissions and thus reduce ground-level air pollutant
concentrations. Due to long-range transport, however, the previously local-scale problem developed
into a regional-scale issue [75]. Consequently, towards the end of the 1960s, due to the long-range
transport of air pollutants, namely SO2 and NOx, a substantial decrease in pH of precipitation and
subsequent acidification of both terrestrial and aquatic ecosystems was observed over large portions of
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Europe, including areas distant from major emissions sources, such as Norway and Sweden [76]. The
problem, popularly called ‘acid rain’, resulted in important negative changes in chemistry and biota
in lakes, running water and forests and triggered hot debates among both scientists and the general
population [77–80]. The then Czechoslovakia, as a major emitter country, also contributed substantially
and was blamed for air pollution export and consequent acidification problems elsewhere [23,81].

3. The Period after the Velvet Revolution, the 1990s

Some positive trends, such as a decrease in ambient air pollution by several pollutants can be
tracked back as far as the 1980s [82]. The improvement in the state of the environment, including the
ambient air quality, however, has been clearly visible only since the transition from the communist
past triggered by the Velvet Revolution in November 1989. In the beginning, this was due mainly to
industrial decline, then later as a result of economic restructuring and privatisation [62,83]. In fact,
the environmental issues, including the vast dissatisfaction of a considerable part of the population
over the then ambient air pollution, contributed substantially to the collapse of the old regime in
Czechoslovakia [84–87]. From the very beginning, a strong emphasis was therefore placed on solving
environmental problems, including air pollution and the adoption of relevant countermeasures to
improve the poor state of the environment [88].

As for the emissions, an unprecedented reduction in SO2 of some 90% was achieved
via a combination of newly adopted strict legislation measures, considerable investments into
desulphurisation remedies installed at large emission sources and a transfer from burning lignite to gas
in residential heating. For comparison, the reduction in SO2 emissions in most European countries at
the same time accounted for approximately 60% [89]. At the same time, TSP emissions also decreased
substantially [90], whereas NOx emissions decreased considerably less [91]. An important motivation
for improvements was also the preparation of the CR for accession to the EU [92]. The CR became a
candidate for accession in 1993 and made all efforts to implement the EU legislation, including the Air
Quality Law, well in advance.

The most pronounced improvement in a dynamic decrease in air pollutant emissions was seen in
the period between 1989 and 1998 [93–95], the impetus to this favourable development being the newly
set up strict emission limits to be met in 1998 (Figures 6 and 7). The existing major emission sources
were forced to modernise or close up, without the exceptions abundantly permitted so far. Residential
heating systems switched from burning coal to gas in many places, including Prague. A substantial
reduction of residential coal consumption in the CR from 1990 to 2014 was achieved, by a factor of
6.2 [96].
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ambient air quality, however, has been clearly visible only since the transition from the communist 
past triggered by the Velvet Revolution in November 1989. In the beginning, this was due mainly to 
industrial decline, then later as a result of economic restructuring and privatisation [62,83]. In fact, 
the environmental issues, including the vast dissatisfaction of a considerable part of the population 
over the then ambient air pollution, contributed substantially to the collapse of the old regime in 
Czechoslovakia [84–87]. From the very beginning, a strong emphasis was therefore placed on 
solving environmental problems, including air pollution and the adoption of relevant 
countermeasures to improve the poor state of the environment [88]. 

As for the emissions, an unprecedented reduction in SO2 of some 90% was achieved via a 
combination of newly adopted strict legislation measures, considerable investments into 
desulphurisation remedies installed at large emission sources and a transfer from burning lignite to 
gas in residential heating. For comparison, the reduction in SO2 emissions in most European 
countries at the same time accounted for approximately 60% [89]. At the same time, TSP emissions 
also decreased substantially [90], whereas NOx emissions decreased considerably less [91]. An 
important motivation for improvements was also the preparation of the CR for accession to the EU 
[92]. The CR became a candidate for accession in 1993 and made all efforts to implement the EU 
legislation, including the Air Quality Law, well in advance. 

The most pronounced improvement in a dynamic decrease in air pollutant emissions was seen 
in the period between 1989 and 1998 [93–95], the impetus to this favourable development being the 
newly set up strict emission limits to be met in 1998 (Figures 6 and 7). The existing major emission 
sources were forced to modernise or close up, without the exceptions abundantly permitted so far. 
Residential heating systems switched from burning coal to gas in many places, including Prague. A 
substantial reduction of residential coal consumption in the CR from 1990 to 2014 was achieved, by a 
factor of 6.2 [96]. 

 
Figure 6. Overall emissions of SO2, NOx, NH3, NM VOC and TSP in the Czech Republic (CR), according
to European Monitoring and Evaluation Programme (EMEP) data [97].



Atmosphere 2020, 11, 214 9 of 26

Atmosphere 2020, 11, 214 9 of 26 

 

Figure 6. Overall emissions of SO2, NOx, NH3, NM VOC and TSP in the Czech Republic (CR), 
according to European Monitoring and Evaluation Programme (EMEP) data [97]. 

 
Figure 7. Overall emissions of TSP, PM10 and PM2.5 in the CR, according to EMEP data [97]. 

The extent to which the changes in emissions were reflected in changes in ambient air quality is 
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means are missing in cases where the requirement of a sufficient number of measured values was 
not fulfilled [22]. The most impressive decreases, most obvious in the presented diagram for the 
UNL and TUS sites (both in NWR) and the Prague site LIB were recorded for SO2 (Figure 8). The 
ambient NOx concentrations (Figure 9) show decreasing trends, though much milder than for SO2, 
with the highest concentrations for the LIB site reflecting clearly the impact of a nearby main road, 
and somewhat lower concentrations for the NWR sites (UNL and TUS) under influence of large 
thermal power plants. Fairly large differences (as compared to SO2 and PM10) between NOx 
concentrations at different types of sites are evident. Ambient PM10 concentrations (Figure 10) also 
show overall decreasing trends with peaks at the beginning of the 2000s. Annual means of ambient 
O3 concentrations (Figure 11) are not decreasing and show contrasting patterns to the above 
pollutants (Figures 8–10). In accordance with the general assumption, the highest values were 
recorded at the CHU and BKR mountain sites, whereas the lowest values were measured at the 
Prague LIB site.  
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Ostrava-Poruba POR 242 B/S/R Ostrava 
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Tušimice TUS 322 B/R/IA-NCl NWR 2 

Ústí n.L.-Kočkov UNL 367 B/S/RN NWR 2 

Svratouch SVR 735 B/R/N-REG C-M Uplands 

Bílý Kříž BKR 890 B/R/N-REG Beskydy Mts. 
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1 Classification according to the European Commission EC Decision EoI 97/101/EC: 
B/S/R—background/suburban/residential, B/S/RN—background/suburban/residential, natural, 
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Figure 7. Overall emissions of TSP, PM10 and PM2.5 in the CR, according to EMEP data [97].

The extent to which the changes in emissions were reflected in changes in ambient air quality
is shown for several sites representing different environments, altitudes and geographical regions
(Table 1, location in map in Figure 2). The trends in annual mean concentrations of SO2, NOx, PM10

and O3 from the 1990s to the present time are presented in Figures 8–11. The individual annual
means are missing in cases where the requirement of a sufficient number of measured values was not
fulfilled [22]. The most impressive decreases, most obvious in the presented diagram for the UNL and
TUS sites (both in NWR) and the Prague site LIB were recorded for SO2 (Figure 8). The ambient NOx

concentrations (Figure 9) show decreasing trends, though much milder than for SO2, with the highest
concentrations for the LIB site reflecting clearly the impact of a nearby main road, and somewhat
lower concentrations for the NWR sites (UNL and TUS) under influence of large thermal power plants.
Fairly large differences (as compared to SO2 and PM10) between NOx concentrations at different types
of sites are evident. Ambient PM10 concentrations (Figure 10) also show overall decreasing trends
with peaks at the beginning of the 2000s. Annual means of ambient O3 concentrations (Figure 11) are
not decreasing and show contrasting patterns to the above pollutants (Figures 8–10). In accordance
with the general assumption, the highest values were recorded at the CHU and BKR mountain sites,
whereas the lowest values were measured at the Prague LIB site.

Table 1. Measuring sites (location in map in Figure 2), the long-term records of which are presented in
Figures 8–11.

Station Code Altitude [m a.s.l.] Classification 1 Region

Ostrava-Poruba POR 242 B/S/R Ostrava
Mikulov-Sedlec MIK 245 B/R/A-REG South Moravia

Praha4-Libuš LIB 301 B/S/R Prague
Tušimice TUS 322 B/R/IA-NCl NWR 2

Ústí n.L.-Kočkov UNL 367 B/S/RN NWR 2

Svratouch SVR 735 B/R/N-REG C-M Uplands
Bílý Kříž BKR 890 B/R/N-REG Beskydy Mts.

Churáňov CHU 1118 B/R/N-REG Šumava Mts.
1 Classification according to the European Commission EC Decision EoI 97/101/EC: B/S/R—background/
suburban/residential, B/S/RN—background/suburban/residential, natural, B/R/IA/NCI—background/rural/industrial,
agricultural/near city, B/R/A-REG— background/rural/agricultural-regional, B/R/N-REG—background/rural/natural-regional,
2 NWR—Northwest region.
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levels were hypothesised to contribute to the observed reduced life expectancy in the region [104]. 
For the first time, the environment including ambient air pollution of the Czech Republic was 
assessed in the context of Europe’s environment in the comprehensive report published by the 
European Environmental Agency (EEA) [105]. 
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The number of ambient air quality monitoring sites has changed continuously since 1969, the 
highest number of stations was in operation in the 1980s and 1990s. The optimisation of the 
monitoring network in the 2000s resulted in a reduction in the number of sites and the replacement 
of others. Currently, 198 stations in the Czech Republic monitor the air quality, 127 of which are 
operated by the CHMI. Of these 127 stations, 80 are automated [22].  

Even though Czech ambient air quality improved substantially after 2000, the levels for some 
ambient air pollutants are still not satisfactory [22]. Aerosol/suspended particles, ground-level ozone 
and benzo[a]pyrene are considered the major problems, similarly to elsewhere in Europe [106].  

The national legislation on air quality management evaluation in the Czech Republic is based 
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protection as amended (‘Air Protection Act’). The ambient air quality is observed and monitored by 
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focusses its activities mainly on covering the criteria pollutants, i.e., the pollutants for which limit 
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During the 1990s, Czechoslovakia started to be involved in various international activities,
including individual studies, projects and programmes bringing numerous interesting results
(e.g., [98–103]). For example, within a CAESAR (Central European Study on Air pollution and
Respiratory health) study encompassing 25 study areas in six Central and Eastern European countries
(Bulgaria, the Czech Republic, Hungary, Poland, Romania and the Slovak Republic), high PM10 and
PM2.5 levels were indicated, with large changes between seasons, likely due to local heating. The
measured PM levels were hypothesised to contribute to the observed reduced life expectancy in the
region [104]. For the first time, the environment including ambient air pollution of the Czech Republic
was assessed in the context of Europe’s environment in the comprehensive report published by the
European Environmental Agency (EEA) [105].

4. Air Pollution in the Modern-Day Czech Republic (after 2000)

The number of ambient air quality monitoring sites has changed continuously since 1969, the
highest number of stations was in operation in the 1980s and 1990s. The optimisation of the monitoring
network in the 2000s resulted in a reduction in the number of sites and the replacement of others.
Currently, 198 stations in the Czech Republic monitor the air quality, 127 of which are operated by the
CHMI. Of these 127 stations, 80 are automated [22].

Even though Czech ambient air quality improved substantially after 2000, the levels for some
ambient air pollutants are still not satisfactory [22]. Aerosol/suspended particles, ground-level ozone
and benzo[a]pyrene are considered the major problems, similarly to elsewhere in Europe [106].

The national legislation on air quality management evaluation in the Czech Republic is based on
European legislation. The basic legislative norm in the CR is Act No. 201/2012 Coll., on air protection
as amended (‘Air Protection Act’). The ambient air quality is observed and monitored by a nationwide
long-term monitoring network operated by the Czech Hydrometeorological Institute (CHMI) [22].
CHMI, an institute designated to monitor and assess the ambient air quality in the CR, focusses its
activities mainly on covering the criteria pollutants, i.e., the pollutants for which limit values were set
up on the basis of WHO recommendations [107,108] by relevant national legislation. In accordance
with EU legislation [109], these are in particular SO2, NOx, PM10, PM2.5, CO, benzene, benzo[a]pyrene,
and toxic metals in aerosol (Pb, Cd, As, Hg), monitored on a regular basis. Currently, due to historic
reasons, the CR belongs to the countries with the densest monitoring networks [110]. Nevertheless, in
accordance with legislation, the major regular monitoring activities are focused primarily on highly
populated major urban agglomerations, whereas monitoring in smaller towns and communities is
scarce, in spite of the fact that there are strong indications that they are highly polluted in particular
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due to local heating emissions, and in reality they are inhabited by a considerable share of the Czech
population [111–113].

CHMI runs two types of stations: automated and manually operated. The automated stations
measure continuously and give 1 h mean concentrations, whereas the manually operated stations
give 24 h mean concentrations. Precipitation chemistry is sampled on a monthly or weekly basis by
automated wet-only samplers. All the measured air quality data are stored in a central nationwide
ambient air database, ISKO (the Czech acronym for the Air Quality Information System) [22]. In
addition, a supersite observatory, Košetice, is run by the CHMI, participating in numerous international
activities, including long-term programmes and scientific projects [114]. The regular annual reports
providing detailed information on air quality are available and can be downloaded at the CHMI
website [115] in Czech and English versions. The results of continuous monitoring are summarised
and presented in user-friendly colour maps indicating the hotspot areas and problem regions. The
results are interpreted in the context of both human health and environmental effects. Apart from these
annual graphic yearbooks, long-term analyses are also available [116–118].

Furthermore, in addition to the nationwide ambient air quality monitoring run by the CHMI,
numerous other measuring activities are operated by other institutes and organisations for different
purposes. These include, e.g., the monitoring of persistent organic pollutants (POPs), which are not
explicitly included among the criteria pollutants but are widely recognised as extremely harmful
substances (due to their persistency and bioaccumulation) on human health [119–123]. In addition
to direct measurement, tree needles and mosses were proven to be useful monitors giving similar
information on POPs as high-volume air monitoring [124,125].

With regard to aerosol, not only lawful mass concentration, but also particle number concentration
(particle number size distribution) is measured, suitable in particular for aerosol dynamics and source
apportionment studies [126–128]. In addition, the main fractions of carbonaceous aerosols, i.e., organic
carbon (OC) and elemental carbon (EC) are measured in both urban and rural areas [129,130].

4.1. Aerosol

Aerosol, or suspended particles, is considered to be a major air pollution problem in the CR,
similarly to elsewhere [106]. According to the latest annual report [22] providing an assessment of
ambient air quality based on established limit values [109], in 2018, the daily limit value of 50 µg m−3

for PM10 was exceeded over 3.2% of the entire territory of the CR (in a grid of 1 × 1 km) inhabited by
approximately 14% of the population; the annual limit value of 40 µg m−3 for PM10 was exceeded at
0.1% of the entire territory of the CR with approximately 0.3% of the population. The annual limit value
of 25 µg m−3 for fine fraction of PM2.5 was exceeded in 1.2% of the entire territory of the CR inhabited
by approximately 6.1% of the population. The annual limit value of 1 ng m−3 for benzo[a]pyrene, an
established human carcinogen [131,132] related to PM2.5 aerosol fraction and indicator of polycyclic
aromatic hydrocarbons (PAHs) exposure, was exceeded in a number of cities and municipalities, on
12.6% of the entire CR territory inhabited by an astounding 35.5% of the country’s inhabitants [22].
The trends in BaP based on long-term monitoring by the CHMI at several suburban sites, representing
the exposure in residential areas of Czech cities in 2004–2018 are presented in Figure 12.

With respect to PAHs as a group, a study [133] measuring 15 PAHs (including seven which are
carcinogenic) in PM1 in the winters of 2013 and 2017 in industrial, urban and rural sites indicated
values ranging between 60.8 ng m−3 (in the city of Ostrava) and 11.7 ng m−3 (in the small town of
Čelákovice). The burning of biomass and coal used for residential heating in old-style boilers emits
high PaH concentrations in particular [134]. PAH concentrations linked to local heating, as one of the
important sources, were also found at the National Atmospheric Observatory Košetice (NAOK), a rural
background site in the CR [135]. Particle-bound carcinogenic PAHs concentration may be applied as
an indicator for estimation of the biologically active (mutagenic, genotoxic, embryotoxic) components
used for epidemiological studies of the effects of air pollution on human health [136].
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Due to long-term monitoring results, the Moravian-Silesian region/Ostrava region is recognised
not only as a Czech hotspot for PM and BaP, but also truly as a European hotspot [22,106]. Ambient
BaP concentrations frequently exceed the limit value of 1 ng m−3 at some sites of this region by seven
to nine times [22]. The Ostrava region, with its concentrated heavy industry was in the past nicknamed
the steel heart of the country. The heavy air pollution in this region results from several major sources,
such as traditional steel and coke plants, local heating (with common burning of waste or coal powder)
and traffic and, last but not least, by regional transport of polluted air masses from industrial parts of
Poland [137–143]. Industry is apparently the major source of ultrafine particles (UFP) [144,145], the
aerosol fraction which is blamed for the strongest effects on human health [146].

The local heating systems in Czech towns and villages burning either coal or wood also contribute
substantially to PM exposures [111–113,147–149]. It is estimated that nearly 20% of the households in
the CR are heated individually by the combustion of solid fuels [150]. That wood burning might be a
dominant source of PM10 mass followed by coal combustion was somewhat surprisingly demonstrated
even for the residential section of Mladá Boleslav, an industrial town famous for its large Skoda
automotive factory [151]. Moreover, an incorrectly led combustion process [152], including the
co-combustion of fuel with municipal waste, which is a common (though banned) practise in some
regions (in particular with low-income residents who use this practise due to economic reasons), adds
substantially to both PM and BaP emissions [153]. Currently, a programme subsidising the change of
old types of manually operated boilers, which do not meet the emission requirements of European
legislation [154] is under way, promoted and supported by the Ministry for the Environment.

All kinds of transport add substantially to this pollution and road vehicles in some places might
even be the principal source of aerosol, such as in Prague, with a still unfinished city bypass and the
major roads crossing the very centre of the city [155,156]. The hotspots are to be found in particular at
places along the main roads, as was shown, e.g., in a study aimed to quantify the UFP exposure in the
breathing zone in residential neighbourhoods of streets [157].

Serious health outcomes, including genotoxicity, due to the permanent high ambient PM and
BaP exposures were reported for the Ostrava region by several studies conducted recently [158–163].
Furthermore, a moderately strong association between air pollutant concentrations and respiratory
difficulties among asthmatic children and adolescents was reported [164]. The association between
particle number and PM2.5 concentrations and daily hospital admissions due to cardiovascular and
respiratory diseases was reported for Prague [165]. A long-term study of the health impacts of air
pollution on children in heavily polluted parts of the CR revealed that air pollution significantly
affected children’s health and resulted in increased respiratory morbidity [166,167].
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4.2. Ground-Level Ozone

Ground-level O3, recognized as an air pollutant only recently, has been monitored in the CR
since 1993. Though emissions of O3 precursors have decreased substantially (NOx, VOC and CO
by approximately one half and CH4 by one quarter in the CR and in neighbouring countries), no
corresponding decrease in O3 ambient levels has been observed. In a thorough time trend analysis of
continuous data from 26 long-term monitoring sites of various types (urban, mountain, rural) reflecting
different environments in 1994–2015, statistically significant decreasing trends were recorded only at
about one-half of these [117]. The fact that O3 concentrations show high year-to-year variability due to
their strong dependence on meteorological conditions of the specific year [168–170] was demonstrated
also on the Czech data [171]. Both meteorology and air pollution (precursor emissions) are responsible
for day-to-day variability in O3 concentrations. This was shown for five Czech rural sites representing
middle-elevated forests in Central Europe, where daily O3 levels were significantly associated with air
temperature, global solar radiation, relative humidity and ambient NOx concentrations, the association
being highly non-linear [172]. The phytotoxic potential of O3, expressed by exposure index for forests
AOT40F—a measure of potential effects as used throughout Europe [173]—is high for most of the
CR [110,174,175]. The highest AOT40F values observed reached 38–39 ppm h; and the critical level
for forest protection of 5 ppm h is usually exceeded early in the growing season, generally in May, at
most of the measuring sites [176]. The O3 spatial exposure pattern correlates strongly with the map
showing global solar radiation across the CR [177]. The highest O3 exposures are found in the relatively
unpolluted, with respect to other pollutants, southern portions of the CR [172]. The O3 concentrations
increase with the altitude, whereas the increase of AOT40 with rising altitude is less clear [178].

Apart from long-term monitoring sites, measuring pollution continuously using the reference
method as declared by the EU, as well as standard Quality Assurance/Quality Control (QA/QC)
procedures (EC, 2008), for developing more detailed O3 spatial patterns in more detailed scales, diffusive
(passive) samplers were used. According to recommendations given by Krupa and Legge [179], these
were used for indicative measurements within environmental studies conducted in protected natural
areas (the Jizerské hory Mts., Orlické hory Mts., Novohradské hory Mts. and České Švýcarsko National
Park), in complex, less accessible terrain in forested mountain areas without electricity available for
standard measurements, and proved very successful, offering high precision and accuracy [180–183].

To date, published papers on the O3 biological effects on Czech forests are ambiguous [183–188].
However, despite the fact that the recorded O3 concentrations are fairly high, no serious harmful
effects attributable to O3 have been published so far. This conclusion, i.e., that there is no clear field
evidence in forests under high O3 concentrations in the CR, corresponds with similar reports from
studies conducted throughout Europe (e.g., [189]).

In contrast to environmental studies, epidemiological studies indicated clear O3 impacts on human
health. In a five-year study (2002–2006) in Prague, including the 2003 and 2006 ozone abundant summer
seasons, a statistically significant association between O3 levels and daily mortality from respiratory
diseases was revealed [187]. A relative risk of 1.080 (95% CI: 1.031–1.132) was observed for mortality
from respiratory diseases per 10 µg m−3 increase in 1 day lagged daily mean O3 concentrations, which
acknowledged that O3 exposure in Prague, though lower when compared to many other European
cities, is high enough to influence human health adversely [190]. This factor should be examined
more with respect to climate change with an increasing frequency of extreme weather, including heat
waves [191].

4.3. Atmospheric Deposition

Atmospheric deposition, as an important self-cleaning process of the atmosphere, removes air
pollutants from the air on one hand, while on the other hand it acts as a contamination source for other
spheres, such as the hydrosphere, pedosphere and biosphere [170]. The long-term monitoring results
have shown a significant decrease in sulphur deposition at most measuring sites [94,116,192]. The
spatial pattern of changes in sulphur deposition fluxes between 1995 and 2011 revealed a decrease
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over forested areas in a wide range of 18.1 to 0.2 g m−2 year−1 with the highest improvement in the
formerly most heavily impacted areas [116]. In contrast, nitrogen deposition has not improved much,
and its spatial patterns are far more complex. The highest decrease in N deposition flux between 1995
and 2011 was a mere 2.5 g m−2 year−1 in the formerly most heavily impacted areas, a stagnation in
Southern and Northern Moravia and a mild increase of 0.4 g m−2 year−1 in the Jizerské Mts., close to
the Polish and German borders [116]. The trends in air pollutant emissions are reflected in changes in
atmospheric chemistry and deposition, including changing proportions of the ion ratios of NO3

−/SO4
2−,

NH4
+/SO4

2− and NH4
+/NO3- in precipitation [94,116,193].

Similarly as in other regions of Europe and US [194,195], it was demonstrated that in the CR,
by not considering (1) deposition path via fog and (2) unmeasured constituents of dry deposition,
such as NH3 and HNO3(g), the total sulphur and nitrogen depositions are likely to be underestimated
substantially [196,197]. Although the chemistry of fog is regularly observed at only a few sites in the
CR, and information on fog chemistry is scarce [198,199], it is widely recognised that fog in the CR is
enriched as compared to rain, particularly in SO4

2- and NO3
- [103,104,200]. Moreover, the hydrological

input of fog, namely in forested mountain areas, in the CR above 800 m above sea level might not
be negligible [201]. SO2 and NOx, precursors of SO4

2- and NO3
- in fog, were shown to be (apart

from the relative humidity) significant explanatory variables modelling the fog probability at Czech
sites [202]. The fog pathway should definitely be accounted for in real deposition flux studies, although
fog occurrence in the CR has decreased significantly over the last sixty years [203]. The chemistry of
rime (as a part of horizontal deposition) has been studied recently at 10 regional mountain-top sites in
the CR [204–207], nevertheless the contribution of rime to atmospheric deposition has been unclear
thus far.

Improving ambient air quality and decreasing atmospheric deposition have also been demonstrated
by long-term nationwide biomonitoring, including analyses of mosses and tree bark [208–213].
Furthermore, peat bogs proved useful for reflecting the history of heavy metal atmospheric deposition.
An analysis of historical rates of Pb deposition over the past 150–200 years using 210 Pb dated in
sphagnum-derived peat cores peaking in 1965–1992 confirmed a period of the highest production and
burning of local lignite [214]. Peaks in Hg accumulation rates in peat cores were indicated between the
1950s and 1980s, reflecting the emissions from intensive coal burning in Central Europe [215]. Moreover,
tree rings can be used as an archive for air pollution as was demonstrated for the Pb and 206Pb/207Pb
ratio [216]. A decrease in arsenic deposition for the Orlické hory Mts. (Adlergebirge) near the
Czech–Polish border in the winters of 1984–1986 and 2003–2015 was reported by Doušová et al. [217].

Recovery from acid deposition with respect to changes in soil, stream water and lake water
chemistry was reported from numerous places in the CR after the SO2 and NOx emission reduction in
Central Europe [218–222]. Nevertheless, in spite of a certain N deposition decrease, it was indicated
that Czech forest soil horizons up to 20 cm in depth are still affected by a high N input [223], and in
some regions elevated N deposition results in soil nutrient imbalances, in particular between nitrogen
and phosphorus and nitrogen and magnesium [224]. Consequently, a higher proportion of nitrophilous
species was detected in Czech forests during recent decades [225]. It was shown that a high acidic
deposition, apart from geographical variables affects the climate–growth association of Picea abies, the
most important tree species in the CR [226,227].

5. Conclusions

This review presents the ambient air quality development over the last 70 years in the territory of
the modern-day Czech Republic. Major activities and achievements in ambient air quality management
are indicated. The long-term nationwide monitoring results are supplemented by goal-directed
one-time studies. Furthermore, apart from the air quality itself, the ambient air pollution impacts on
both human health and the environment are collated.

It is obvious that much has been done in air pollution prevention, and that ambient air quality in
the CR has improved substantially over the period under review due to newly introduced stringent
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legislation and technical countermeasures. Nevertheless, there are still activities which remain
significant emission sources, such as local heating and vehicle transport travelling through communities,
which are political issues that are hard to manage. The share of the population permanently exposed
to PM and BaP concentrations above limit values remains considerable, and O3 exposure for both
humans and the environment is of high concern. Furthermore, despite significant emission reduction,
atmospheric deposition, in particular of nitrogen, remains high in some regions.

Long-term ambient air quality monitoring has generated a vast database, which is still, in spite of
numerous published studies, largely unexplored. This invaluable source of information should be
examined more thoroughly. An association of historical and modern-day results might be one of the
interesting goals for future analysis, offering a new perspective. Moreover, the ambient air quality data
offer a unique input for large environmental studies and models, exploring in detail how air pollution
affects the biosphere and hydrosphere, including forest, agricultural, natural and water ecosystems.
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ústav na období 2018–2022” financed by the Czech Ministry of Environment.

Acknowledgments: I would like to thank Petra Tichá and Jana Schovánková, both from the Czech
Hydrometeorological Institute, for preparing Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8,
Figure 9, Figure 10, Figure 11and Figure 12 and Erin Naillon for proofreading of this manuscript.

Conflicts of Interest: The author declares no conflict of interest.

References
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34. Hrdá, J. Znečištění Ovzduší v Mělnicko-Neratovické Oblasti (Ambient Air Pollution in Mělnicko-Neratovicko);
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observations on the Czech Krusne Hory plateau adjacent to a heavily industrialised valley. Atmos. Environ.
2002, 36, 353–360. [CrossRef]
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Kosetice Observatory; ČHMÚ: Praha, Czechoslovakia, 2001.

115. CHMI Website. Available online: http://portal.chmi.cz/files/portal/docs/uoco/isko/grafroc/grafroc_GB.html
(accessed on 7 January 2020).
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118. Hůnová, I.; Bäumelt, V.; Modlík, M. Long-term trends in nitrogen oxides at different types of monitoring
stations in the Czech Republic. Sci. Total Environ. 2020. [CrossRef]

119. Holoubek, I.; Klánová, J.; Jarkovský, J.; Kohoutek, J. Trends in background levels of persistent organic
pollutants at Kosetice observatory, Czech Republic. Part I. Ambient air and wet deposition 1996–2005. J.
Environ. Monit. 2007, 9, 557–563. [CrossRef] [PubMed]

120. Holoubek, I.; Houšková, L.; Šeda, L.; Holoubková, I.; Korínek, P.; Boháček, Z.; Čáslavský, J. Project TOCOEN.
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sources). Ochrana Ovzduší 2013, 25, 6–12.

153. Tomsej, T.; Horak, J.; Tomsejova, S.; Krpec, K.; Klanova, J.; Dej, M.; Hopan, F. The impact of co-combustion of
polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants, particulate
matter, PAHs and 1,3,5- triphenylbenzene. Chemosphere 2018, 196, 18–24. [CrossRef]

154. CEN. EN 303–5:2012 Heating Boilers—Part 5: Heating Boilers for Solid Fuels, Manually and Automatically Stoked,
Nominal Heat Output of up to 500 KW; CEN: Brussels, Belgium, 2012.

155. Braniš, M. Air quality of Prague: Traffic as a main pollution source. Environ. Monit. Assess. 2009, 156,
377–390. [CrossRef]
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200. Křeček, J.; Palán, L.; Stuchlík, E. Acid atmospheric deposition in a forested mountain catchment. IForest 2017,
10, 680–686. [CrossRef]
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203. Hůnová, I.; Brabec, M.; Malý, M.; Valeriánová, A. Long-term trends in fog occurrence in the modern-day
Czech Republic, Central Europe. Sci. Total Environ. 2019, in press. [CrossRef]

204. Bohdalkova, L.; Novak, M.; Voldrichova, P.; Prechova, E.; Veselovsky, F.; Erbanova, L.; Krachler, M.;
Komarek, A.; Mikova, J. Atmospheric deposition of beryllium in Central Europe: Comparison of soluble
and insoluble fractions in rime and snow across a pollution gradient. Sci. Total. Environ. 2012, 439, 26–34.
[CrossRef]

205. Voldrichova, P.; Chrastny, V.; Sipkova, A.; Farkas, J.; Novak, M.; Stepanova, M.; Krachler, M.; Veselovsky, F.;
Blaha, V.; Prechova, E.; et al. Zinc isotope systematics in snow and ice accretions in Central European
mountains. Chem. Geol. 2014, 388, 130–141. [CrossRef]

206. Cimova, N.; Novak, M.; Chrastny, V.; Curik, J.; Veselovsky, F.; Blaha, V.; Prechova, E.; Pasava, J.; Houskova, M.;
Bohdalkova, L.; et al. Lead fluxes and 206Pb/207Pb isotope ratios in rime and snow collected at remote
mountain-top locations (Czech Republic, Central Europe): Patterns and sources. Atmos. Environ. 2016, 143,
51–59. [CrossRef]

207. Novak, M.; Sipkova, A.; Chrastny, V.; Stepanova, M.; Voldrichova, P.; Veselovsky, F.; Prechova, E.; Blaha, V.;
Curik, J.; Farkas, J.; et al. Cu-Zn isotope constraints on the provenance of air pollution in Central Europe:
Using soluble and insoluble particles in snow and rime. Environ. Pollut. 2016, 218, 1135–1146. [CrossRef]

208. Suchara, I.; Sucharová, J. Distribution of 36 element deposition rates in a historic mining and smelting
area as determined through fine scale biomonitoring techniques, Part II: Relative long-term accumulated
atmospheric deposition levels. Water Air Soil Pollut. 2004, 153, 229–252. [CrossRef]

209. Sucharova, J.; Suchara, I. Distribution of 36 element deposition rates in a historic mining and smelting area as
documented through fine-scale biomonitoring techniques. Part I: Relative and absolute current atmospheric
deposition levels detected by moss analyses. Water Air Soil Pollut. 2004, 153, 205–228. [CrossRef]

210. Conkova, M.; Kubiznakova, J. Lead isotope ratios in tree bark pockets: An indicator of past air pollution in
the Czech Republic. Sci. Total Environ. 2008, 404, 440–445. [CrossRef]

211. Suchara, I. Temporal and spatial changes in spruce bark acidity at the scale of the Czech Republic in the last
two decades, and the current abundance of epiphytic lichen Hypogymnia physodes. Water Air Soil Pollut.
2012, 223, 1685–1697. [CrossRef]

http://dx.doi.org/10.1023/A:1026146723728
http://dx.doi.org/10.1016/j.scitotenv.2016.09.140
http://www.ncbi.nlm.nih.gov/pubmed/27697340
http://dx.doi.org/10.1016/0269-7491(95)00106-9
http://dx.doi.org/10.1016/j.atmosenv.2018.10.051
http://dx.doi.org/10.3112/erdkunde.2011.03.03
http://dx.doi.org/10.1016/j.envpol.2016.01.061
http://dx.doi.org/10.1016/0022-1694(94)05096-G
http://dx.doi.org/10.1016/S0169-8095(02)00081-9
http://dx.doi.org/10.3832/ifor2319-010
http://dx.doi.org/10.1007/s40710-018-0327-2
http://dx.doi.org/10.1016/j.scitotenv.2018.04.322
http://www.ncbi.nlm.nih.gov/pubmed/29913609
http://dx.doi.org/10.1016/j.scitotenv.2019.135018
http://dx.doi.org/10.1016/j.scitotenv.2012.08.089
http://dx.doi.org/10.1016/j.chemgeo.2014.09.008
http://dx.doi.org/10.1016/j.atmosenv.2016.07.057
http://dx.doi.org/10.1016/j.envpol.2016.08.067
http://dx.doi.org/10.1023/B:WATE.0000019915.70739.bf
http://dx.doi.org/10.1023/B:WATE.0000019944.33209.83
http://dx.doi.org/10.1016/j.scitotenv.2008.04.025
http://dx.doi.org/10.1007/s11270-011-0975-6


Atmosphere 2020, 11, 214 26 of 26

212. Suchara, I.; Sucharová, J.; Holá, M. The influence of contrasting ambient SO2 concentrations in the Czech
Republic in 1995 and in 2000 on the characteristics of spruce bark, used as an air quality indicator. Ecol. Indic.
2014, 39, 144–152. [CrossRef]

213. Suchara, I.; Sucharová, J.; Holá, M. Spatiotemporal changes in atmospheric deposition rates across the Czech
Republic estimated in the selected biomonitoring campaigns. Examples of results available for landscape
ecology and land use planning. J. Landsc. Ecol. 2015, 8, 1–19. [CrossRef]

214. Vile, M.A.; Wieder, K.; Novák, M. 200 years of Pb deposition throughout the Czech Republic: Patterns and
Sources. Environ. Sci. Technol. 2000, 34, 12–21. [CrossRef]
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