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Abstract: Typhoon WRF (TWRF) based on the Advanced Research Weather Research and Forecasting
Model (ARW WRF) was operational at the Central Weather Bureau (CWB) for tropical cyclone (TC)
predictions since 2010 (named TWREF V1). CWB has committed to improve this regional model, aiming
to increase the model predictability toward typhoons over East Asia. In 2016, an upgraded version
designed to replace TWRF V1 became operational (named TWRF V2). Compared with V1, which
has triple-nested meshes with coarser resolution (45/15/5 km), V2 increased the model resolution
to 15/3 km. Since V1 and V2 were maintained in parallel from 2016 to 2018, this study utilized
the real-time forecasts to investigate the impact of model resolution on TC prediction. Statistical
measures pointed out the superiority of the high-resolution model on TC prediction. The forecast
performance was also found competitive with that of two leading global models. The case study
further pointed out, with the higher resolution, the model not only advanced the prediction on the
TC track and inner core structure but also improved the representativeness of the complex terrain.
Overall, the high-resolution model can better handle the so-called terrain phase-lock effect and,
therefore, improve the TC quantitative precipitation forecast over the complex Taiwanese terrain.
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1. Introduction

Taiwan, located at the western Pacific Ocean, has an average three to four tropical cyclones
(TC) or typhoons every year, posting significant threats to the civilian lives and properties [1].
To reduce the severe damage, issuing accurate and timely TC predictions is a crucial task for
weather bureaus, and the Central Weather Bureau (CWB) of Taiwan is no exception. From 1970
to 2019, tropical cyclone track prediction was improved substantially (available online at https:
/[www.nhc.noaa.gov/verification/verify5.shtml). However, the prediction of TC structure change and
its intensity progressed much less [2,3]. Results showed that the reduction of track forecast errors
was an order greater than the intensity forecast. This disparity can arise from the scarce in situ
observations near the TC inner core, insufficient model resolution, complex multi-scale processes,
and atmosphere—ocean interactions. Therefore, there is potential to improve TC intensity prediction by
considering the issues mentioned above.

CWB’s operational regional numerical weather prediction (NWP) system was constructed
based on the ARW WRF model [4] in November 2007. Apart from the deterministic operational
forecast, TWRF (Typhoon WRF) system, which specifically targeted at TC prediction over East
Asia was operational at CWB since 2010 and was run operationally four times a day (initialized at

Atmosphere 2020, 11, 657; d0i:10.3390/atmos11060657 www.mdpi.com/journal/atmosphere


http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
https://www.nhc.noaa.gov/verification/verify5.shtml
https://www.nhc.noaa.gov/verification/verify5.shtml
http://dx.doi.org/10.3390/atmos11060657
http://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/2073-4433/11/6/657?type=check_update&version=2

Atmosphere 2020, 11, 657 2 of 15

0000/0600/1200/1800 UTC). Based on the operational deterministic forecast system, TWRF additionally
employed TC initialization scheme, including the relocation and synthetic vortex bogus [5].

The impact of the initial condition on TC forecast in TWRF was also investigated [6]. Firstly,
the development of the outer loop in WRF three-dimensional variational (3DVAR) data assimilation
system utilized more observations with the iteration procedure. Secondly, applying the partial cycling
strategy, which begins with a cold start from the analysis of Global Forecast System in National Centers
for Environmental Prediction (NCEP GFS) at 12-h prior to the analysis time and follows by two data
assimilation cycles at 6-h interval, provided a better initial condition by mitigating model spin-up time.
Here, the cold start could effectively mitigate the model-accumulated errors, particularly errors over
the observation-sparse West Pacific area. At the same time, two full cyclic assimilations can reduce the
model spin-up issue.

To further ameliorate model accumulated error, the blending scheme formulated on an incremental
spatial filtering scheme proposed by Yang (2005) [7] was implemented. In TWREF, the blending analysis
is obtained by combining large-scale patterns (wavelength > 1200 km) of the NCEP global analysis
and finer structure (wavelength < 1200 km) of the high-resolution TWRF every six hours. Hsiao et al.
(2015) [8] demonstrated the benefits of adding a blending technique in TWREF; not only did it remove
systematic errors resulting from cycles, but it also improved the TC track and rainfall prediction over
Taiwan. Apart from the benefits mentioned above, the blending strategy could tackle errors from
lateral boundary conditions [7,9-11].

The High-resolution NWP model reduces truncation errors, resolves better scale interactions,
and has detailed physical parameterizations. Jin et al. (2014) [12] shows that the 3-km model better
resolved the TC inner core structure, including spiral bands and secondary circulations, compared with
the 9-km model. The prediction of TC evolution, such as the eyewall replacement process and the storm
size, was also improved [13-15]. Furthermore, Done et al. (2004) and Schwartz et al. (2009) [16,17]
show that convection-permitting models have higher quantitative precipitation forecast (QPF) skill
than lower-resolution models with parameterized convection.

One objective of NOAA Hurricane Forecast Improvement Project (HFIP) is to investigate the
potential gain of employing a high-resolution model. In particular, the Hurricane Weather Research
and Forecasting (HWRF) system utilizes a larger domain with higher resolution around the inner
core. The results showed that increasing horizontal resolution advanced the TC structure, track, and
intensity prediction. In addition, coupling the atmospheric model with the ocean model in HWRF
promotes the track and intensity prediction [18-20].

In this study, the impact of employed finer model grids on TWRF TC prediction, particularly
focused on the TC track and intensity, was explored. With increasing computing resources at CWB,
the real-time operational TWRF system migrated from 45/15/5 km (V1) to 15/3 km (V2) in 2016. Hence,
all TC cases over the Western North Pacific Ocean in 2016-2018 are covered in the TWRF V1 and V2.
The configuration of the TWREF system is given in Section 2. Section 3 provides results, including the
general evaluation and two case studies. Summary and future plans are given in Section 4.

2. Configuration of the TWRF

CWB has been dedicated to constructing an operational NWP system based on the ARW WRF
model [4] since 2007. As mentioned, TWREF specifically targeted at TC prediction and issued forecasts
regularly in typhoon season at CWB since 2010. One major update is to increase model resolution in
2016. Therefore, the oldest TWRF system (referred to as V1) operated from 2010 to 2018, and the latest
version (referred to as V2) came up in 2016. V1 and V2 both employed the same model physical schemes
including Goddard microphysics scheme [21], the Kain-Fritsch cumulus parameterization scheme [22],
the Yonsei University (YSU) planetary boundary layer scheme [23], the Noah land surface model [24],
and the Rapid Radiative Transfer Model for Global Climate Models longwave and shortwave radiation
schemes [25,26]. The initial condition for all the TWRF meshes was provided by the WRF 3DEnVAR
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which embedded in a partial cycling framework which consisted of a cold start from NCEP GFS
analysis 12 h before the initial time and followed with two 6-h assimilation cycles.

The major revelations of the update from V1 to V2 is that it reduces the number of model domains
could get the benefit of a higher horizontal and vertical model resolution. V1 has three nested meshes
with a horizontal resolution of 45/15/5 km (refer to V1D1/V1D2/V1D3) with 45 vertical levels (Figure 1a).
V2 decreased the domain numbers to two, but increased the horizontal resolution to 15/3 km (refer to
V2D1/V2D2) and vertical resolution to 52 levels (Figure 1b). The designation of computing domains
in V1 and V2 is described in Table 1. All nested domains employed one way nested function, which
excludes the feedback from the finer to the coarser domain.
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Figure 1. (a) Domains of the three-nested grids in the TWRF V1 version. The resolution is 45/15/5 km
for the three grids; (b) Domains of the two-nested grids in the TWRF V2 version. The resolution is
15 km for the outer grid and 3 km for the inner grid, respectively. (c,d) display the terrain height with
resolutions in the inner-most domain of V1 and V2, respectively. The digital numbers in (c,d) denote
the maximum terrain height which occurred at the position marked as a star sign.

Table 1. The designation using different TWRF versions (V) and resolutions in each domain (D).

Designation TWREF Version Domain Resolution
V1D1 Vi outer-most domain 45 km
V1D2 Vi1 middle domain 15 km
V1D3 V1 inner-most domain 5 km
V2D1 V2 outer domain 15 km

Vv2D2 V2 inner domain 3 km
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The mother domain of V1 and V2 has identical horizontal domain coverage, providing an
opportunity to evaluate the effect of model resolution on the TC forecast from an operational point of
view. Due to the increasing computing resource, the domain coverage of the finest mesh was expanded
in V2. Hence, the 3-km mesh has horizontal domain coverage comparable to that of the 15-km mesh in
V1. Benefits are expected from the larger 3-km domain owing to the more cloud-resolving process and
avoiding the dilution from the lateral boundary condition. Moreover, it is expected that the model
could resolve the topography with higher accuracy with finer horizontal resolution. This amelioration
in topography is critical to represent the terrain phase-lock effect between the TC rainfall pattern
and TC position [27-29]. As shown in Figure 1c,d, the 5-km mesh in V1 and 3-km mesh in V2 have
maximum terrain height of 3015 and 3331 m over Taiwan Island, respectively.

In order to evaluate the benefits of model resolution robustly, a total of 82 TC cases in the western
North Pacific Ocean from 2016 to 2018 were collected. In this study, the real-time operational track and
intensity forecasts of TWRF V1 and V2 are compared. All these model forecasts and TC information
could be found on the CWB website (available online at https://rdc28.cwb.gov.tw/TDB/).

3. Performance Comparison between TWRF V1 and V2

3.1. Comparison of Track and Intensity Predictions

In order to highlight the TWRF performance, the comparison among the track and intensity
prediction from operational TWRF V1/V2, NCEP GFS, and European Centre for Medium-Range
Weather Forecasts-Integrated Forecast System (ECMWEF-IFS) were collected and verified against the
CWB best-track dataset. The verification covered TC cases from 2016 to 2018, as mentioned in Section 2,
and all the comparisons used homogeneous samples.

In this study, TWRF V1/V2 employed the same operational procedure, partial cycle strategy,
data assimilation method, and model physic schemes, enabling a fair comparison between the two.
First of all, with identical computing domain, 15-km V2D1 reduced track errors at all lead times
compared with 45-km V1D1 (Figure 2a). The errors are 290 and 242 km at the 84-h lead time for
V1 and V2, respectively, and up to a 16.6% averaged improvement is achieved with V2. In terms of
the operational point of view, the benefits of migrating to a higher resolution model on the TC track
prediction were proved robustly.
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Figure 2. Homogeneous comparisons of track errors with TWRF at 0~84-h lead times (a) V1D1 and
V2D1 (b) V1D1, V1D2, V2D1 and V2D2 domains from 2016 to 2018. The numbers in parentheses along
the x-axis denote the case numbers.

It is reasonable to speculate that the large scale environment has a dominant effect on track
prediction. Therefore, using a larger high-resolution domain is helpful for improving the track forecast.
However, costly computing resources are required to integrate the high-resolution model with a large
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domain size. Consequently, it is worthwhile to understand what benefit we can get from the nested
mesh grid. Figure 2b shows, statistically, that the track errors for V1D1 and V1D2 are almost the same,
though the individual case is different due to the one-way nested strategy. While the 3-km V2D2 is
slightly better than the 15-km V2D1 after the 36-h forecast, only a slight track forecast improvement can
be obtained from the nested domain, which may be due to the limited nested domain size. Note that the
cases were collected within the inner domain so that the statistics could be homogeneously compared
in Figure 2b. Therefore, the case numbers at each lead time in Figure 2b was only about a half compared
with that in Figure 2a. Moreover, under the same 15-km resolution, 15-km V2D1 reduced track errors
compared with 15-km V1D2 at all lead times. This improvement may be contributed from the domain
size; however, V1D2 received boundary condition constantly from its 45-km mother domain, which
contains larger synoptic scale forecast errors (shown in Section 3.2). This worse boundary condition
may enlarge the difference of track errors between the two domains as the forecast hour increased.

In this study, TC intensity was represented by minimum sea-level pressure near the TC center.
As shown in Figure 3, the higher model resolution substantially reduced the intensity errors up to 50%
from 45-km V1D1 to 15-km V2D1 at an 84-h forecast with an identical computing domain (Figure 3a).
Figure 3b shows that the intensity forecast was improved from 45-km V1D1 to 15-km V1D2, and
15-km V2D1 to 3-km V2D2, respectively. However, the results in 15-km V1D2 and 15-km V1D1 are
comparable. Unlike the track forecast, the results show that we can get the benefit of the intensity
forecast through all the lead times from the multi-resolution grids: the higher the resolution, the better
the forecast performance. The results also demonstrate the significant advantage from the nested
grid function to improve the TC intensity forecast and effectively reduce the computing resources.
Moreover, the error characteristics are similar in the initial condition, proving the benefits of the
high-resolution model integration under the partial cycle strategy.
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Figure 3. Same as in Figure 2, except for (a,b) the cases with intensity (minimum center sea-level
pressure) errors.

Additionally, Figure 3b also shows that the evolution of forecast errors has a larger variant in 3-km
V2D2. The finest 3-km V2D2 grid had forecast errors ranged from —4 to 4 hPa, and the coarsest 45-km
V1D1 had it ranged from 16 to 19 hPa in contrast. It turned out that the 3-km V2D2 over-predicted
the TC intensity after a 48-h forecast. It is reasonable to speculate that a higher horizontal resolution
could resolve the TC inner core structure in more detail and tend to take further advantage of the TC
intensity prediction.

In addition to the in-house comparison, we further evaluated the performance of TWRF V2 with a
9-km ECMWF and 13-km NCEP global model (Figures 4 and 5). For V2D1, which has a coarser grid
than both the NCEP and ECMWEF models, the track errors were comparable to ECMWFEF up to a 36-h
forecast and worse after. In contrast, TWRF V2D1 has similar track errors with NCEP GFS up to a 60-h
forecast and then outperform the NCEP GFS after (Figure 4a). However, the intensity errors of V2D1
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were larger than ECMWEF and NCEP, which both have higher horizontal resolution and more accurate
initial condition (Figure 4b). For V2D2, which has a finer grid than both NCEP and ECMWF model,
the 72-h track prediction skill was comparable to ECMWF and better than NCEP, except for the first
12-h (Figure 5a). In addition, the intensity errors of V2D2 had the smallest bias compared with the
other two (Figure 5b). Note that the cases from NCEP, ECMWE, and TWRF were collected within the
V2D2 domain, so that the statistics could be homogeneously compared in Figure 5b. Due to the twice
daily data sets from the ECMWE, the case numbers at each lead time in Figure 5b was only about a half
compared with that in Figure 3b.

280
——NCEP 12
240 - V2D1 /—\—\_\
ECMWF
— < g |
§ 200 % |
-~ [
£ 160 S 4
o S
$ 120 3
© S 0
= L
80 £ .
. ——NCEP
“* Tl——vaD1
40 7 (@) ECMWF (b)
T T T T T T T T T T I T 1
0 12 24 36 48 60 72 84 0 12 24 36 48 60 72 84
(655) (559) (489) (435) (374) (319) (265) (221) (655) (559) (489) (435) (374) (319) (265) (221)
Forecast Hours Forecast Hours

Figure 4. Multi-model comparisons among NCEP, ECMWF, and TWRF V2D1 include (a) track, (b)
intensity (minimum center sea-level pressure) errors for 2016-2018 with a homogeneous sample. Note
that the first two systems are global models. The numbers in parentheses along the x-axis denote the
case numbers.
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Figure 5. Same as in Figure 4, except for (a,b) the cases with V2D2.

To conclude, results from TWRF V2 suggested that a higher-resolution NWP system increased
the predictability toward TC in terms of both its track and intensity. For a multi-resolution nested
grid, benefit from higher resolution can be obtained from the intensity forecast but limited in the
track forecast. While it is true that global models are not aimed at predicting TC intensity changes,
good representations of TC intensity and structure are still desirable as multi-scale interactions between
TCs and their environment [30,31]. On top of that, the comparison with the leading global models also
suggested that TWRF V2 has competitive forecast skill.
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3.2. Comparison of Synoptic-Scale Forecast

The concept of steering flow is extensively applied to account for TC motion [32,33] because
of the dominant role of the environmental flow. Therefore, the synoptic-scale forecasts, including
temperature, u-component wind, and relative humidity, were verified against the NCEP GFS analysis
within the whole domain of V1D1/V2D1, and V1D2/V2D2 from 2016 to 2018. For both 24-h and 72-h
forecasts, 15-km V2D1/3-km V2D2 had a smaller root mean square errors (RMSE) compared with
45-km V1D1/15-km V1D2 at all vertical levels (Figures 6 and 7). However, the improvement is more
modest in the D2 forecast, which may be due to the smaller domain coverage. Additionally, V2 had
smaller analysis errors compared with V1, suggesting the benefit of employing partial cycle procedure
(not shown). To conclude, V2 in general had higher synoptic forecast accuracy compared with V1,
which is consistent with the improvement of the track prediction.
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Figure 6. Vertical profile of the RMSE of temperature (T), U-component wind (U), and the relative
humidity (RH) at the 24-h (dashed lines), and 72-h (solid lines) forecasts in V1D1 (blue lines) and V2D1
(red lines), verified against NCEP analysis. Composites were made for 2016 and 2018.
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Figure 7. Same as in Figure 6 except for the V1D2 and V2D2.
3.3. Case Studies

In this study, we selected two typhoon cases, Nesat and Haitang, which struck Taiwan Island
in succession within 24 h. TC Nesat, with a maximum strength of 950 hPa, made landfall from the
east coast of Taiwan at 1200 UTC on 29 July 2017 (Figure 8). Haitang, a weaker TC with a maximum
strength of 990 hPa at 0000 UTC on 30 July, made landfall from southern Taiwan at 1200 UTC on 30 July
2017. Their combining rainfall over the Central Mountain Range and southern Taiwan resulted in
economic loss over USD 2 million and caused more than 111 injuries.
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Figure 8. The CWB best tracks and TWRF predicated tracks for Nesat and Haitang starting on 0000
UTC 29 July 2017. Black line with filled typhoon symbols is the observation for Nesat, and open
typhoon symbols is for Haitang. The orange lines are the predicted tracks from V1D2, and the purple
lines are from the V2D2.

To demonstrate the benefit of increasing model resolution, TC track prediction from 15-km V1D2
and 3-km V2D2 were compared (Figure 8). The model prediction was initialized at 0000 UTC on
29 July 2017. For typhoon Nesat, the impact of model resolution on the track prediction was relatively
small since both models had a similar track with a landfall time 3 h earlier than the CWB best track.
For typhoon Haitang, in contrast, using a high-resolution model improved both track and intensity
forecast significantly. While the 15-km V1D2 failed to identify the TC after 0000 UTC 30 July since it
predicted an intensity that was too weak, the 3-km V2D2 had TC structure and landfall point close to
the best track. These results demonstrated the superiority of using high-resolution model for TC track
prediction, particularly for weak TC.

To compare the structure of Nesat in 5-km V1D3 and 3-km V2D2, the 6-h forecast was further
examined. Figure 9 shows the model-derived and observed column-maximum radar reflectivity, which
was from Taiwan’s operational radar network that included four S-band and two C-band Doppler
radars. The reflectivity from 3-km V2D2 exhibited a clear eyewall and spiral rain band, which matched
the radar observations (Figure 9b). In contrast, the 5-km V1D3 had a disorganized eyewall and a
rainfall structure that was too smooth compared with the observations (Figure 9c).

Moreover, Figure 10 displayed the azimuthally averaged of tangential and radial wind speeds,
secondary circulation, temperature anomaly, and vertical velocity in the radius-height cross-section.
It is not surprising that the 3-km V2D2 (Figure 10a) revealed stronger tangential wind near the surface
compared with 5-km V1D3 due to its organized inner core structure (Figure 9b). In addition, it
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also had a stronger convergent inflow in the lower troposphere (below 3 km) and with a slightly
weaker divergent outflow in the upper troposphere, leading to the secondary circulation, which had
more organized updrafts. Furthermore, Figure 10c exhibited stronger vertical velocity in the eyewall
region and warm core with a maximum of 7 °C at about 6 km. By contrast, the 5-km V3D3 had a
disorganized and weaker inner core structure compared with 3-km V2D2, implying the critical role of
model resolution on resolving TC structure.
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Figure 9. Radar reflectivity (dBZ) for TC Nesat at 6-h forecast (valid for 0600 UTC 29 July 2017) from
(a) observation, (b) V2D2 and (c) V1D3.
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Figure 10. The azimuthally averaged: (a) tangential (shaded; ms~!) and radial (contour; ms™!) wind
speeds, and secondary circulation (vectors, ms™1), (c) temperature anomaly (shaded; °C) and vertical
velocity (contour; ms™1) for the V2D2 domain. (b,d) as in (a,c) but for the V1D3 domain, respectively.
Results are for a 6-h forecast starting on 0000 UTC 29 July 2017.

On the other hand, the radar reflectivity for Haitang at 0600 UTC 30 July 2017 is shown in
Figure 11a. Haitang had an asymmetric inner core structure due to its weaker intensity and destruction
by the terrain. Compared with observations, the 3-km V2D2 predicted the rainfall system over the
south and scattered storms over the east of Taiwan (Figure 11b). Still, the 5-km V1D3 had much
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scattered rain bands, which coincided with the weak TC intensity in the 15-km V1D2, as depicted
in Figure 8. Overall, the detailed inner core structure was resolved in the 3-km V2D2 for both cases,
again highlighting the crucial role of the high-resolution model on predicting TC structure.
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Figure 11. Same as in Figure 9 (a—c), but for TC Haitang at 30-h forecast (valid for 0600 UTC 30 July 2017).

As shown in Figure 12, the rainfall forecasts from TWRF V1 and V2 were compared with the
observation from operational QPESUMS (Quantitative Precipitation Estimation and Segregation Using
Multiple Sensors) [34]. In QPESUMS, a gridded, hourly rainfall estimation is updated every 10 min
with a 1-km horizontal resolution. The rainfall is estimated using the empirical Z-R (reflectivity—rainfall)
relation and corrected by rainfall measurements from Taiwan’s surface rain gauge network using a
local bias correction method.

Figure 12. The 0~24-h accumulated rainfall (mm) from (a) observed, (b) V2D2, and (c) V1D3 initiated
at 0000 UTC 29 July 2017. (d-i) as in panels (a—c), except for the 24~48-h and 0~48-h accumulated
rainfall, respectively. The digital numbers denote the maximum rainfall which occurred at the position
marked as a star sign.

Consistent with radar observations (Figure 9), the 24-h accumulated rainfall on 28 July had two
rainfall extremes associated with Nesat (Figure 12a). One in northeast Taiwan was owing to its TC inner
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core precipitation system during landfall, and the other over southern Taiwan was contributed by its
associated outer rain band. This rainfall pattern is related to the terrain orientation in Taiwan (Figure 1)
and TC position, known as the terrain phase-lock effect [27,29]. As shown in Figure 12b, 3-km V2D2
captured the position and magnitude of rainfall systems. In particular, for the rainfall extreme in
the south, V2D2 had a 24-h accumulated rainfall that reached 629 mm, which was close to 606 mm
in observation. Although V1 and V2 produced comparable track forecasts (Figure 8), the maximum
rainfall in the 5-km V1D3 was only 360 mm. Results from 3-km V2D2 pointed out, with the higher
resolution, that the model not only advanced the prediction on the TC track and inner core structure
(Figure 9), but also improved the representativeness of the complex terrain (Figure 1). Combing all the
above factors, the high-resolution model can better handle the so-called terrain phase-lock effect and
therefore improve the TC quantitative precipitation forecast over the complex Taiwanese terrain.

On 29 July, Haitang produced rainfall amount up to 652 mm during its landfall period (Figure 12d).
The 3-km V2D2 had accumulated rainfall between 200-300 mm (Figure 12e), which was less than
observations, but still outperformed 5-km V1D3 (Figure 12f), which had an incorrect rainfall pattern
since the TC in V1D3 had already dissipated before landfall (Figure 11c). As shown in Figure 12g-i,
the two-day accumulated maximum rainfall was 1054, 898, 412 mm for observation, V2D2 and V1D3,
respectively. Overall, the 3-km V2D2 outperformed the 5-km V1D3 in both cases, showing that a
high-resolution model can effectively improve the model QPF skill over the complex Taiwan terrain.

4. Summary and Future Plan

Taiwan has active typhoon (tropical cyclone, TC) activities due to its geographic location in the
western North Pacific (WNP); about three to four TC make landfall every year. To reduce the ensuing
loss, issuing accurate and timely TC predictions is the most priority task for the weather service.

The Central Weather Bureau (CWB) of Taiwan has dedicated itself to constructing an operational
NWP system based on the ARW WRF model since 2007. In 2010, A special development specifically
designed for TC prediction, TWRF V1 (Typhoon WREF version 1) was first operational in CWB. During
the past 10 years, several enhancements in operational TWRF has been proved to elevate the TC
forecast accuracy. This success was brought by the implementation of typhoon relocation and the
bogus scheme, the revision of the data assimilation technique, and the combination of the partial cycle
strategy and blending technique [5,6,8]. In 2016, a succeeding model, version TWRF V2, which has a
higher model resolution of 15/3 km compared with 45/15/5 km in TWRF V1, began operation.

In 20162018, V1 and V2 were real-time operationally maintained in parallel, in which both
employed the same operational procedure, data assimilation method, and model physical schemes.
Therefore, the two versions enable the opportunity to conduct a fair comparison, aiming to understand
the impact of increasing model resolution on the TC prediction. In this study, a total of 82 TC cases were
collected and compared using homogeneous samples. The major findings are summarized as follows.

1.  With identical computing domains, 15-km V2D1 reduced 16.6% of track errors and 50% of
intensity errors in 45-km V1D1 at an 84-h forecast, robustly proving that employing the finer grid
improved the TC forecast. In nested domains, the reduction of intensity errors was agreeing with
increasing model resolution. However, the track forecast between different model resolutions
was comparable, which might result from their limited domain size. Besides, the 3-km mesh
had the smallest intensity errors in the initial condition, implying the benefits of high-resolution
model integration under the partial cycle strategy.

2. Apart from in-house evaluation, the comparison with the leading global models suggested that
TWREF V2 has competitive forecast skill. Due to the coarser grid, 15-km V2D1 has a larger intensity
errors and comparable track errors with the 13-km NCEP and 9-km ECMWF global models.
With the finer grid compared with the above two global models, 3-km V2D2 had the smallest
intensity bias. Furthermore, its 72-h track prediction skill was comparable to ECMWF and better
than NCEP.
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3. Case studies clearly identified the improvement of TC track, intensity, and the TC inner core
structure in the high-resolution model. Further, the complex terrain in Taiwan was resolved
with more details in the finer grid. As a consequence of this progress, the high-resolution model
captured the terrain phase-lock effect, and therefore improved the TC quantitative precipitation
forecast skill over the complex terrain.

Presently, how to effectively improve the predictability toward TC-related rainfall remains in
question. In Taiwan, improving the inner core-related heavy rainfall is no doubt imperative, but how
to capture the extreme rainfall resulted from distant TC due to the terrain phase locking effect is a
challenging target in CWB. In particular, such distance rainfall is often enhanced by the interaction of
TC outer circulation and northeasterly/southwesterly monsoons [35,36]. Under limited computing
resources, the moving nested mesh in HWRF better predicted the TC intensity and inner core
structure [18-20]. However, this strategy is not suitable for predicting TC-related rainfall in Taiwan
due to the relatively small movable nested domain, particularly for the remote heavy rainfall events
which TCs are far away from Taiwan.

To enclose both TC evolution and Taiwan in the high-resolution mesh under fixed computing
resources, we designed a suite of inner domains (3-km D3s), which covered Taiwan Island, and selected
automatically in the initialization process based on current TC location (Figure 13). Compared with
the fixed operational domain, which cannot ensure cover the most TC evolution, the 3-km D3s is
expected to further improve TC track, intensity, and inner core prediction since the 3-km domain
covers the entire TC during its model integration. Additionally, it has the potential to resolve the
multi-scale interaction between large scale weather systems, TC, and terrain lifting effect. A preliminary
experiment with TC Maria, which centered outside the operational 3-km domain at the initial time
(blue box in Figure 13), supports part of our assumption. The 3-km D3s strategy the decides nested
domain (red box in Figure 13) based on Maria’s position at the initial time, which ensured the existence
of TC in the initial condition, reduced model track errors (Figure 14). It is, therefore, a strategic design
to leverage up the advantage of the high-resolution model on QPF over Taiwan under the limited
computing resources. In order to have a comprehensive evaluation, more case studies and various
verification are in progress.

60°E 90°E 120°E 150°E 180°
40°N 40°N
30°N 30°N
20°N 20°N
1 OoN -'l‘ | 1 OoN
0° 0°
s L4 -~

90°E 105°E 120°E 135°E 150°E

Figure 13. Future plan for the design of choice of multiple inner domains. The blue box is the current
operational domain as shown in Figure 1b.
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Initiate at 0600.UTC 7 July, 2018 ——3km D3s
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Figure 14. Tracks of Maria in every 6 h from the CWB best track (black line), the blue and red line
represented for the forecast track from the original TWRF operation V2D2 (blue line with the blue box
in Figure 13) and the 3-km D3s strategy decided nested domain (red line with the red box in Figure 13)
for a 102-h forecast starting from 0600 UTC 7 July 2018.
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