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Abstract: Boundary profile evaluation (BPV) is an approach proposed in order to estimate water
vapor content in the atmosphere. It exploits radio occultation (RO) observations of the signals emitted
by the satellites of global navigation systems (GNSS) which are eclipsing (rising) as viewed by a low
earth orbit satellite (LEO). BPV requires, as a preliminary step, the estimation of the dry background
atmosphere model of refractivity (i.e., obtained from bending angle profiles) to be subtracted from
the real observations in order to extract water vapor profiles. The determination of the lowest layer of
the atmosphere over which the concentration of water vapor can be deemed negligible is particularly
crucial for a correct application of the BPV method. In this study, we have applied three methods to
set the starting altitudes for the dry air layers of the atmosphere: (1) by air temperature below some
threshold values (for example, 250 K); (2) by “smooth” bending angle profiles in ROs; (3) by saturated
water vapor pressure. These methods were tested with thermodynamic and bending angle profiles
from 912 radiosonde excursions colocated with RO observations. For every dry air starting altitude
we determined the best estimator from each of the three methods. In particular, by comparing those
estimators with the quantiles and momenta of the dry air starting altitude distributions, we achieved
improvements of up to 50% of the humidity profiles.

Keywords: GNSS radio occultation; dry air thresholds; mixing ratio vertical profiles; BPV method

1. Introduction

Radio occultation observations continuously measure the deflection angles of an
L-band signal (1–2 GHz) from a GNSS satellite to a receiver on a LEO which is viewing
the transmitter in the rising−setting phase behind the Earth’s disk (see Figure 1). In the
RO geometry, the GNSS signal is crossing the atmosphere. Thus, vertical profiles of air
refractivity near the Earth’s surface can be recovered by these observations because the
amosphere interacts with the signal, which modifies the direction (bending angle) and the
amplitude. In the last 20 years, thanks to missions such as CHAMP [1], MetOp/GRAS [2]
and FORMOSAT/COSMIC-1 and 2 [3], RO observations have provided a huge amount
of data to the scientific and user community, suitable for performing global change stud-
ies [4] and operational meteorology on a global range [5]. The original ideas using RO
for Earth observation were proposed as early as the 1960s [6,7]; the technique was widely
applied for studyng Mars’ and Venus’ atmospheres, with the Mariner and Pioneer space
missions [8–10] and the atmosphere of outer planets were probed with the Voyager mis-
sions [11]. However, it was only with the launch of the Global Positioning System (GPS)
constellation and several LEO satellites that the necessary global coverage of the Earth was
achieved, suitable for carrying out an atmospheric survey of the Earth [12]. We want to
point out that RO has been applied also between LEO−LEO satellites [13,14], with signals
operating on bands other than the L-band of the GNSS.
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Figure 1. Graphical representation of an RO observation. The main RO parameters are also reported. Radio signals from 
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on the spherical surface of constant refraction index 𝑛. Bending angles 𝛾 and impact parameters 𝑎 are estimated by 

Doppler shift measurements of the carrier frequency, if the satellites’ positions and velocities, respectively 𝑟𝑇, 𝑟𝑅 and 𝑉⃗⃗𝑇, 

𝑉⃗⃗𝑅 are known. More information about the mentioned parameters can be found in [15]. 
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mean deviations that are less pronounced in percentage with respect to those relative to 
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refractivity coefficient of water vapor due to its electric dipole moment. 

So, water vapor concentrations cannot be neglected for an accurate determination of 

the atmospheric temperature and pressure by RO. Besides, water vapor concentration is a 

fundamental parameter to know in its own right. This “rank deficiency” problem is usually 

solved in two ways: (1) by applying 1DVAR (NDVAR) techniques or (2) by merging 

observations with models in a “simple” or “direct” fashion, if we follow Kursinski’s 

classification [20]. As far as 1DVAR or NDVAR techniques are concerned, they consist of 

an optimization procedure that minimizes the sum of the quadratic errors from two data 
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relative contributions are weighted by the inverse of the related covariance error matrices 

[21,22]. The cost function to minimize is usually given in this form: 

𝐽(𝑥) =
1

2
 (𝑦 − 𝐻(𝑥))

𝑇
(𝐸 + 𝐹)−1(𝑦 − 𝐻(𝑥)) +

1

2
(𝑥 − 𝑥𝐵)

𝑇𝐵−1(𝑥 − 𝑥𝐵),  (1) 

where 𝑦 stays for the observed data, x for the data to be recovered, related to the observed 

data by the forward model 𝐻, 𝑥𝐵 represents the background information, while 𝐵, 𝐸 

and 𝐹  are the covariance error matrices, respectively, for the background data, the 

observed data and the forward model. In the case of ROs, 𝑦 may represent atmospheric 

refractivity or rawer experimental data, such as bending angles (BA) or excess Doppler 

shifts [23–26], 𝑥𝐵 is usually given by atmospheric models [27] or by forecasting [5], while, 

as far as the error covariance matrices estimations are concerned, there is nowadays a wide 

literature [28–31]. On the other hand, simple models recover humidity concentration 

Figure 1. Graphical representation of an RO observation. The main RO parameters are also reported.
Radio signals from the GPS transmitter deviate from the straight line by a bending angle γ towards
the LEO receiver, due to the refraction of the atmosphere. Impact parameter of the incoming signal is
denoted by a, while ϕ is the incident angle of the ray line on the spherical surface of constant refraction
index n. Bending angles γ and impact parameters a are estimated by Doppler shift measurements of

the carrier frequency, if the satellites’ positions and velocities, respectively
→
r T ,

→
r R and

→
VT ,

→
VR are

known. More information about the mentioned parameters can be found in [15].

In the absence of water vapor, solely by refractivity, we can estimate the vertical profiles
of temperature and pressure via the state equations of gases, the hydrostatic equilibrium
and empirical formulas for air refractivity in the L-band, as the Smith and Weintraub
microwave refractivity [16] or more recent analogous expressions [17–19]. However, in the
presence of water vapor such estimations are no more accurate. Indeed, the temperature
derived from ROs by neglecting water vapor concentrations, the so-called dry temperature
Tdry, can be lower than the real temperature T even by several degrees. In contrast, the
analogously defined dry pressure Pdry usually overestimates the real pressure P, with
mean deviations that are less pronounced in percentage with respect to those relative to
the temperatures. In Section 2, we see that this is a consequence of the high microwave
refractivity coefficient of water vapor due to its electric dipole moment.

So, water vapor concentrations cannot be neglected for an accurate determination of
the atmospheric temperature and pressure by RO. Besides, water vapor concentration is a
fundamental parameter to know in its own right. This “rank deficiency” problem is usually
solved in two ways: (1) by applying 1DVAR (NDVAR) techniques or (2) by merging
observations with models in a “simple” or “direct” fashion, if we follow Kursinski’s
classification [20]. As far as 1DVAR or NDVAR techniques are concerned, they consist of
an optimization procedure that minimizes the sum of the quadratic errors from two data
sources in competition, respectively background data and experimental data, whose relative
contributions are weighted by the inverse of the related covariance error matrices [21,22].
The cost function to minimize is usually given in this form:

J(x) =
1
2
(y− H(x))T(E + F)−1(y− H(x)) +

1
2
(x− xB)

T B−1(x− xB), (1)

where y stays for the observed data, x for the data to be recovered, related to the observed
data by the forward model H, xB represents the background information, while B, E and F
are the covariance error matrices, respectively, for the background data, the observed data
and the forward model. In the case of ROs, y may represent atmospheric refractivity or
rawer experimental data, such as bending angles (BA) or excess Doppler shifts [23–26], xB
is usually given by atmospheric models [27] or by forecasting [5], while, as far as the error
covariance matrices estimations are concerned, there is nowadays a wide literature [28–31].
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On the other hand, simple models recover humidity concentration profiles by determining
dry refractivity first and then operate a simple subtraction from the total refractivity (re-
fractivity due to dry air plus water vapor molecules). Dry refractivity is usually estimated
through external information, as temperature profiles [32,33], or by dry refractivity models
to be fitted with the RO data in the dry part of the atmosphere, that is, the stratosphere and
the upper troposphere. In the last case, the fitting result is successively extrapolated toward
the lower troposphere. This procedure is adopted, for example, by the boundary profile
evaluation (BPV) method [34,35], a standalone method which applies a constrained data fit-
ting in order to avoid an unphysical negative value for water vapor concentrations [36–38].
Obviously, particular attention must be put on the determination of the starting altitude of
the dry part of the atmosphere and its estimation from the RO data: a too high threshold
altitude for dry air would affect the accuracy of the extrapolation procedure, while a too
low one would falsify the fitting procedure, part of the data to be fitted actually being total
refractivity instead of dry refractivity. For example, in [34–38], concerning the BPV method,
the Kursinski’s criterium [39] was adopted, that is, air at temperatures below 250 K is
considered dry. Nevertheless, in the comparative studies [37,38] it was questioned if a
different, hopefully more accurate, definition/estimation for the dry air starting altitudes
could improve the BPV thermodynamic estimations.

In this work, we firstly analyzed the possible criteria for dry atmospheric conditions.
Since water vapor molecules are, more or less, always present in the atmosphere, we have
to set a threshold value for humidity concentrations below which air can be safely assumed
dry. Obviously, working in the context of RO measurements, such threshold values have to
be set according to RO observation accuracies, even if we cannot exclude them, they could
find application in other contexts as well. We do this in two ways, depending on whether
we measure air humidity by water vapor mixing ratio or by wet refractivity (for a definition
of these quantities, see Equations (3) and (10) in Sections 2 and 3, respectively): (1) we define
as thresholds those values of water vapor mixing ratios corresponding to significative mean
deviations of air dry temperatures and/or pressures from the real ones, where the term
significative is related to some statistical considerations; (2) we define as thresholds those
values of wet refractivity having the same order of magnitude of the RO dry refractivity
uncertainties. Both in (1) and (2) we actually considered a set of possible threshold values,
rather than a single one: we do this because, depending on the particular method one
chooses to investigate the thermodynamic properties of the atmosphere, or depending on
the site location, different dry air criteria could be most suited for different users. Finally,
the dry air starting altitudes are defined as the highest altitudes corresponding to those
where these threshold values are exceeded.

Second, we tried to estimate the previously defined dry air starting altitudes by
quantities that can be recovered by RO observations. We considered three methods for
this task: (1) by (dry) air temperatures exceeding some threshold values (for example,
250 K, as in [39,40]); (2) by the appearance of irregular patterns in the bending angle
vertical profiles, as suggested in [41]; (3) by estimating water vapor mixing ratios and
wet refractivities via saturated water vapor pressure, this last derived for example by
the Murphy−Koop formula [42]. Such hypotheses were tested with a statistical study
concerning 912 thermodynamic and bending angle vertical profiles of the atmosphere, with
the first ones derived from experimental radiosonde data colocated with RO events.

The article is structured as follows. In Section 2 we determine more accurately the
effects of water vapor over the discrepancy between dry temperature and pressure with
respect to the real ones, so as to furnish in Section 3 the threshold values of water vapor
concentrations calibrated to the RO response to the thermodynamic of the atmosphere; the
analogous values of wet refractivity, calibrated to the dry refractivity uncertainty in RO
observations, are given too. In Section 4 we describe the RO derived quantities used to
estimate the threshold altitudes as defined in Section 3, whose performances are tested in
Section 5. A brief analysis of water vapor concentrations in the stratosphere is given in
Section 6, while in Section 7 we draw our conclusions.
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2. Dry Temperature and Pressure Behaviors Due to Water Vapor Concentrations

In Figure 2, the vertical profiles of dry temperature and pressure, obtained from
an RO event that took place at Gresik Island, Indonesia, on 1 January 2009, are reported
together with temperatures, pressures and water vapor mixing ratios measured by a balloon
excursion. As we can see, temperature−dry temperature differences rise up to 50 degrees
in concomitance with increasing mixing ratios, while at the same time the pressure−dry
pressure difference decreases up to −140 hPa. Such behavior of dry temperature under-
estimation coupled with dry pressure over-estimation is not casual: it is a consequence of
the high microwave refractivity coefficient a3 ∼ 1.73× 108 m3·K/kg of the water vapor,
due to its electric dipole moment, in the Smith and Weintraub equation:

N ∼= a1ρd +
(

a2 +
a3

T

)
ρw, (2)

where ρd, ρw are dry air and water vapor concentrations [kg/m3], a1 ∼ 2.23× 104 m3/kg
and a2 ∼ 3.29× 104 m3/kg [25] are the induced dipole moment refractivity coefficients for
dry air and for water vapor, respectively [15,43]. Let us see this in more detail. Equation (2)
can be written as

N = a1ρdry,

where ρdry is the air density obtained from the measured refractivity by assuming dry
atmosphere

ρdry ≈ ρd

[
1 +

(
a2

a1
+

a3

a1T

)
ρw

ρd

]
= ρd

[
1 +

(
a2

a1
+

a3

a1T

)
$r

]
,

with
$r =

ρw

ρd
. (3)

the water vapor mixing (density) ratio. For a layer of air subject to a pressure P due to the
above air column weighing on it, we get

P =

(
ρd
md

+
ρw

mw

)
RT ≈

ρdry

md
RT(0)

dry , (4)

from the ideal gas state equation, where md = 28.96 g/mol and mw = 18.02 g/mol are the
molar mass of dry air and water vapor, respectively, while

T(0)
dry ≈ T

 1 + md
mw

$r

1 +
(

a2
a1
+ a3

a1T

)
$r

. (5)

In the typical range of air temperatures, a2/a1 + a3/(a1T) ∼ 20 > 1.6 ' md/mw,
so T(0)

dry is always lower than T. Actually, differences between temperatures and dry
temperatures are partially mitigated with respect to what Equation (5) suggests, since, in
order to determine Tdry, in (4) we have to replace the real pressures P with Pdry, the air
pressures measured from RO observations by neglecting again water vapor. By assuming
for simplicity a constant value for the gravity acceleration g, and denoted with ρ = ρd + ρw
the total density, we have:

Pdry(h)− P(h) = g
∫ htop

h

[
ρdry(z)− ρ(z)

]
dz = g

∫ htop

h

[
a2

a1
+

a3

a1T(z)
− 1
]

ρw(z) dz ≥ 0. (6)

That is, Pdry ≥ P, at least if no other biases are present in the estimation of Pdry. Then
we have

Tdry = md
Pdry − P

ρdryR
+ T(0)

dry ≥ T(0)
dry . (7)
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Figure 2. Vertical profiles of real temperature T and dry temperature Tdry (top), and real pressure P and dry pressure Pdry
(bottom), together with mixing ratio $r for a RO taking place at Gresik Island, Indonesia, on 1 January 2009.

Despite this last correction, Tdry can be lower by several degrees than T for non-
negligible values of the mixing ratio, while differences between Pdry and P are relatively
less pronounced. Temperature and pressure trends, shown in Figure 2, as a particular
case, find a more general and accurate description in Figure 3, where the nean deviations
(MD) and the root mean square deviations (RMSD) of the dry temperatures and pressures,
derived from the 912 RO observations considered in this study, are reported for various
altitudes, together with mean values of mixing ratios. Deviations of the dry temperatures
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and pressures are calculated with respect to the temperatures and pressures measured by
the colocated balloon excursions, that in the following will be considered as the real ones.
For pressures, whose values in a vertical profile change up to three orders of magnitude,
relative deviations are actually considered. In formula:

Tdry MD =
n

∑
i=1

Ti − Tdry,i

n
, Tdry RMSD =

√√√√√ n

∑
i=1

(
Ti − Tdry,i

)2

n
,

Pdry MD =
n

∑
i=1

Pi − Pdry,i

n·Pi
, Pdry RMSD =

√√√√√ n

∑
i=1

(
Pi − Pdry,i

)2

n·P2
i

, (8)

where n from now on will denote the number of samples. Temperature and pressure
corresponding to given altitudes are obtained via linear interpolation for both the RO
and balloon profiles. RO observations come from FORMOSAT-3/COSMIC-1 mission [44],
they occurred in 2009 (see Figure 4 for location and date of the events), with the colocated
balloon data [45] from the RAwinsonde OBservation (RAOB) program [46]. Colocated
events were selected by requiring the following conditions: (1) RO profiles with impact
parameters falling below an altitude of 10 km from the Earth’s surface; (2) radiosonde
excursions reaching altitudes above 21 km; (3) radiosonde excursions without data lacking
in their profiles.

From Figure 3 we observe that the mean values of the water vapor mixing ratios
$r showed an exponential trend varying with altitude, with non-negligible mean values
starting from 10–11 km that increased up to ~5 × 10−3 toward the surface. As far as
the temperatures were concerned, almost no biases between real and dry temperature
were present at altitudes above ~11 km, while below such values, when water vapor
concentrations became non-negligible, MD (and RMSD) monotonically increased up to
~15 K (22 K). For pressures, things were more complicated, since we registered positive
biases between data from radiosondes and data from ROs at high altitudes (30 km). Such
biases, having different sources than the water vapor, which is absent at those altitudes,
showed a decreasing trend even if with an irregular pattern. The water vapor effects on
this trend seemed to start at ~8 km, when the pendency of the pattern further decreased
(that is, MDs decreased more rapidly below 8 km); besides, the RMSDs inverted the trend
and started to increase for altitudes below ~7 km.

In Table 1, we report the dry temperature MDs and dry pressure relative MDs, this
time relative to the altitudes at which the given values of the mixing ratio, reported in
the first column, were achieved for the first time from the top of the atmosphere. Mean
altitudes and mean real temperatures and pressures are reported too, together with the
number of samples, which varied since in some vertical profiles the higher values of the
mixing ratio were never achieved. The balloon data was linearly interpolated in order to
match the altitudes of the (denser) RO vertical profiles.

Table 1. Mean values of altitude, temperature, temperature−dry temperature and relative pressure−dry pressure differences
together with the number of samples corresponding to given values of mixing ratio. Uncertainties are also given in brackets.

$r n
¯
h

(km)

¯
T

(K)

¯
P

(hPa)
T−Tdry

(K)

(
P−Pdry

)
/P

(%)

1× 10−6 912 14.49 (±2.94) 217.12 (±9.32) 146.92 (±84.52) 0.14 (±2.17) 0.49 (±1.16)
1× 10−5 911 11.52 (±3.24) 220.51 (±7.92) 229.87 (±98.76) 0.16 (±2.33) 0.48 (±1.18)
2× 10−5 911 10.28 (±3.06) 224.24 (±7.52) 273.16 (±100.86) 0.21 (±2.20) 0.44 (±1.15)
3× 10−5 910 9.55 (±2.95) 227.10 (±7.82) 302.27 (±104.00) 0.29 (±2.18) 0.40 (±1.11)
4× 10−5 910 8.92 (±2.74) 229.41 (±7.84) 327.78 (±103.96) 0.44 (±2.31) 0.37 (±1.08)
5× 10−5 910 8.43 (±2.56) 231.46 (±8.13) 349.06 (±102.65) 0.62 (±2.38) 0.35 (±1.07)
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Table 1. Cont.

$r n
¯
h

(km)

¯
T

(K)

¯
P

(hPa)
T−Tdry

(K)

(
P−Pdry

)
/P

(%)

7.5× 10−5 910 7.72 (±2.37) 235.14 (±8.83) 383.67 (±105.51) 0.93 (±2.49) 0.31 (±1.01)
1× 10−4 909 7.22 (±2.17) 237.86 (±8.88) 409.62 (±106.76) 1.19 (±2.57) 0.29 (±0.97)

2.5× 10−4 896 5.78 (±2.14) 247.70 (±9.21) 500.86 (±130.56) 2.59 (±3.51) 0.10 (±0.72)
5× 10−4 850 4.70 (±2.17) 255.27 (±9.04) 580.10 (±148.72) 4.59 (±4.79) −0.15 (±0.64)

7.5× 10−4 798 4.13 (±2.13) 259.39 (±8.25) 625.53 (±154.79) 6.01 (±5.34) −0.32 (±0.63)
1× 10−3 726 3.88 (±2.05) 262.15 (±7.92) 645.69 (±152.67) 7.46 (±5.92) −0.45 (±0.65)
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3. Dry Air Starting Altitudes Definitions
3.1. Definitions by Water Vapor Mixing Ratios

From Figure 3 we deduce that water vapor firstly affects dry temperature profiles,
while the effects on dry pressures are visible only at lower altitudes. So, for a definition of
dry air starting altitudes by mixing ratios, calibrated to the RO observations, we can limit
ourselves to the dry temperature deviations alone.

By statistical analysis of the 912 vertical profiles considered in this study, the differ-
ences between the balloon temperatures and dry temperatures ∆T = T− Tdry result in a
mean value of 0.0251 K and a standard deviation of 2.4974 K, in the altitude range from
20 km to 30 km where water vapor is negligible. Assuming an identical normal distribution
for ∆T even in the range 0–20 km in the absence of water vapor, from a unilateral mean
test we obtain the mean value ∆T = 0.16 K, relative to the subset of altitudes with a
mixing ratio of 10−5 (see Table 1), is a significative increment of the mean, with a level of
confidence of almost 95% (for ∆T = 0.21 K, corresponding to a mixing ratio of 2 × 10−5,
we have an increment of the mean with a level of confidence exceeding 99%). That is, dry
temperature deviations that we register when $r = 10−5 cannot be attributed to the typical
dispersions of temperature in dry air, but are actually the effect of this (low) value of water
vapor concentration. Such deviations increase with the increasing of the mixing ratio, and
at $r ∼ 2.5× 10−4, corresponding to a temperature close to the Kursinski’s temperature
threshold of 250 K, we register a deviation that exceeds the standard deviation of ∆T itself.

From these considerations we define the dry air starting altitude h$,ri by means of the
following threshold values for the mixing ratio:

h$,ri ≡ altitude at which $r & ri for the first time from the top of the atmosphere toward the ground (9)(
ri = 10−5, 5× 10−5, 10−4, 1.5× 10−4, 2× 10−4, 2.5× 10−4

)
.

The chosen values for ri are those of relevant interest from the data exposed in Table 1
and from the previous statistical analysis, together with some intermediate values. We
remark that in the following we will not try to determine which values of ri are, in general,
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the best suited, since this is a consideration that actually depends on the particular method
one choses to integrate RO observations in order to take account of the water vapor. We
will just see how good the estimations of these starting altitudes are, by the quantities
that we will define in Section 4. Nevertheless, we have to observe that for ri = 2.5× 10−4,
corresponding to Kursinski’s temperature of 250 K, we register quite a large deviation of
dry temperature from the real one (~2.5 K).

3.2. Definitions by Wet Refractivity

Another possible criterion to establish a dry air starting altitude concerns the wet
refractivity, in particular when compared with the uncertainty in refractivity in an RO
observation due the remaining sources of error. We say that air ceases to be dry when the
wet refractivity, calculated from the known values of water vapor concentrations, exceed
the uncertainty in the refractivity estimation from RO observations, so becoming the main
source of error for N.

Wet refractivity Nw is proportional to water vapor concentration ρw via the second
and the third terms in the Smith and Weintraub relation (1)

Nw ∼=
(

a2 +
a3

T

)
ρw, (10)

Given δNd the uncertainty in dry refractivity, we set

hN ≡ altitude at which Nw & δNd for the first time from the top of the atmosphere toward the ground. (11)

So, at h < hN , wet refractivity can be seen as the main source of error for dry refractiv-
ity. Starting from this altitude, wet refractivity has to be estimated.

About δNd , we considered two estimations:

1. δNd = 0.05

2.
δNd
Nd

=

{
0.002 i f 10 km ≥ h > 20 km

10−0.07·h−2 i f h < 10 km
,

where Nd is the dry refractivity. The first is an absolute estimation and comes directly from
the FORMOSAT-3/COSMIC-1 data, which include for each RO a vertical profile for the
uncertainty in dry refractivity. After considering all the vertical profiles in our study, taking
for each profile the values of δNd in the altitude range from 7 to 13 km—where we expect to
encounter water vapor for the first time—and after mediating all of these values, we obtain
the number 0.05. Refractivity uncertainties at these altitudes, as reported in COSMIC-1 data,
are estimated from Doppler frequency uncertainties through error propagation [47], so they
just take into account the so-called measurement or structural errors, such as instrument
thermal noise, reference link noise and atmospheric scintillations [48,49] while neglecting
the modeling errors concerning, in particular, the local spherical symmetry assumption.

The second one is a relative estimation and comes from a schematized version of
the relative uncertainty profile reported in Kursinski et al. [15]. Contrary to the previous
estimations, they considered the deviations from local spherical symmetry as well as the
source of errors and uncertainty increments below 10 km, which, as we can see in Figure 5
where expression 2 is graphically reported, were mainly due to the possible presence of
horizontal gradients in the atmosphere.

We then define two threshold altitudes, hN1 and hN2, respectively, if we consider
expression 1 or 2 for δNd In general, the second estimation for refractivity uncertainty being
greater than the first, we will usually have hN1 > hN2.
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4. RO Estimators for Dry Air Starting Altitudes

In this Section, we consider three atmospheric quantities, derivable by RO data, which
can be used to estimate the dry air starting altitudes defined in Section 3. They are the
(dry) air temperature, the difference of the bending angle from its total variation and the
saturated water vapor pressure.

4.1. Air Temperature

From Table 1, we see that the given values of mixing ratio correspond to air tem-
perature values with small relative uncertainties (3–4%), if compared to the uncertainty
concerning pressure, approximatively equal to 25–55%, or concerning altitude, equal to
20–50%. So, we reverse the scheme of Table 1 and estimate mixing ratios starting from (dry)
air temperatures.

In Kursinski [39], an air temperature of 250 K or less in the troposphere is considered
a safe condition for negligible amounts of water vapor. Such an empirical hypothesis is mo-
tivated by some thermodynamic considerations, water vapor not having enough cinematic
energy to break the chemical bonds in the water vapor droplets at those temperatures. In
Figure 6, we report a vertical profile of the mixing ratio together with the profile of dry
temperatures for an RO event colocated with a radiosonde excursion: as one can see, an
appreciable amount of water vapor is concomitant with a dry air temperature exceeding
250 K.

In our study we tested Kursinski’s hypothesis, together with additional threshold
temperatures. In particular, we will compare the previously defined altitudes h$,ri , hN1 and
hN2 of Equations (4) and (5), respectively, with

hTi ≡ altitude at which the dry temperature Tdry ≥ Ti for the first time from the tropopause toward the ground. (12)

(Ti = 210 K, 215 K, 220 K, 225 K, 230 K, 235 K, 240 K, 245 K, 250 K, 255 K)

Contrary to definitions (9) and (11), hTi is calculated starting from the tropopause. Such
a request is motivated by the temperature gradient inversion at the tropopause. Indeed,
in the stratosphere we encounter favorable thermodynamic conditions for water vapor
formation. Nevertheless, before they could reach the stratosphere from the troposphere,
water vapor molecules cross the colder tropopause, where most of them usually go in con-
densation, that is, in a hydrostatically unfavorably denser state for the higher layers of the
atmosphere. A thermodynamic based estimator such as (12), concerning air temperature,
would often result in false positives by localizing water vapor in the stratosphere. So, we
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have to limit its application to the troposphere, de facto renouncing the few occasions on
which water vapor could nevertheless be detected in the stratosphere (see Section 6 for
more details).
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Figure 6. Mixing ratio profile (blue) and temperature profile (black) from an RO event colocated with a radiosonde excursion.
The 250 K threshold altitude for air temperature is also plotted.

Observe that when tropospheric temperatures are greater than Ti, then, according to
definition (12), hTi = htrop, with htrop the tropopause altitude. Concerning the tropopause
definition used in this study, we refer to Section 6 as well.

Finally, we test Kursinski’s and similar hypotheses for both the dry temperatures,
recovered by RO observations, and the real temperatures, from balloon data. We will denote
with h(RO)

Ti
and h(b)Ti

the altitudes relative to the first and the second case, respectively.

4.2. Difference of the Bending Angle from Its Total Variation

Rao et al. [41] noted that the bending angle profiles usually show an irregular or a
“random walk” pattern in correspondence of the tropopause and of water vapor as well (see
Figure 7). While in [41] an algorithm was set for a “radio tropopause altitude” definition,
no analogous rule was given concerning water vapor appearance.

We try to estimate threshold altitudes for water vapor concentrations directly from
bending angle profiles γ(h) by looking at their total variation [50], that we remember was
defined as:

TVγ(h) = γ(h0) +
∫ h0

h

∣∣∣∣dγ

dh
(z)
∣∣∣∣dz,

where h0 is a reference altitude to be defined, while h ≤ h0. For its ability to detect sharp
variations of a function, the total variation operator is often used in denoising problems [51],
in deconvolution problems [52], in segmentation [53], and in inpainting [54,55].
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Figure 7. Bending angle (blue) and wet refractivity (black) profiles from an RO event colocated with a radiosonde
atmospheric excursion. A slight irregular behavior for the bending angle at ~18 km is in correspondence with the
tropopause altitude (red circle).

In general, TVγ deviates from γ when γ shows non-monotone behavior: then a
significative deviation of TVγ from γ could indicate water vapor presence, according
to [41] (see Figure 8).
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Defined γ̃ = TVγ − γ, we considered the following altitudes to estimate the dry air
starting altitudes of Section 2:

hγ̃i
≡ altitude at which γ̃ & γ̃i for the first time from h0 toward the ground. (13)(

γ̃i = 5× 10−6 rad, 10−5 rad, 5× 10−5 rad, 10−4 rad, 1.5× 10−4 rad, 2× 10−4 rad, 2.5× 10−4 rad
)

We set both h0 = 25 km and h0 = htrop, denoting with h(25)
γ̃i

and h(tp)
γ̃i

the altitude
calculated in the first and in the second case, respectively. Observe that in the first case, at
least in principle, we can detect water vapor concentration even in the lower stratosphere,
contrary to the previous method based on air temperature.

With the γ̃i values reported in (13), we saw that we could not properly estimate the
dry air starting altitudes corresponding to the higher values of ri in (9), while we could
cover the remaining cases corresponding to the lower/medium ones. On the other hand,
considering further, greater values for γ̃i with respect to those in (7) would be useless,
since the corresponding hγ̃i

as defined in (13) would present large dispersions, due to the
extremely random character of the bending angle in the presence of large amounts of water
vapor. For this reason, this method will not be applied to the mixing ratio starting altitudes
h$,ri with ri > 10−4.

4.3. Saturated Water Vapor Pressure

Saturated water vapor pressure Ps gives an upper bound for water vapor concen-
tration in the atmosphere, usually being Pw ≤ Ps with the exception of a few cases of
supersaturation [56]. So, as long as the theoretical value of PS estimated from RO data does
not exceed certain cut-off values, the hypotheses of dry air can be maintained.

An accurate prediction of the saturated water vapor pressure in the atmosphere is
not an easy task, given the various elements to take into consideration: water drop radius
dimensions/ice crystal structures, supercooled metastable state of water, salt and aerosol
concentrations, and so on (see [57,58] for more details). As a preliminary study we will
consider the following equation, relating Ps (hPa) with the temperature T (K):

Ps(T) =


Ps;i(T) i f T ≤ 233.15
Ps;w(T) i f T ≥ 253.15

Ps;i(T) + T−233.15
20 [Ps;w(T)− Ps;i(T)] i f 233.15 < T < 253.15

. (14)

Here Ps;i and Ps;w are, respectively, the saturation pressure for ice and water relative to
flat surfaces. Such a choice, similar to that adopted in [59] even if concerning different inter-
vals, is suggested by the homogeneous solidification of water, occurring at ∼ −40 ◦C [57],
and by some studies [60] concerning the heterogeneous ice nucleation by deposition mode,
that does not seem to occur at temperatures lower than ∼ −30÷−20 ◦C. We remember
that deposition is the only mode in which water vapor solidifies in the presence of aerosols
without a transient state of liquefication (but see Marcolli [61], on ice nucleation in particle
capillaries). Concerning Ps;i and Ps;w, there are various definitions in the literature; here we
have adopted the equations of Murphy and Koop [42]:

ln Pw;i = 9.550426− 5723.265
T

+ 3.53068 ln T − 0.00728332·T − ln 100,

ln Pw;s = 54.842763− 6763.22
T

− 4.210 ln T + 0.000367·T+

tanh[0.0415(T − 218.8)]
(

53.878− 1331.22
T

− 9.44523 ln T + 0.014025·T
)
− ln 100. (15)

In Figure 9, we report the transition curve for water vapor as adopted in this study.
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With Ps given by the dry temperature profiles calculated from the RO data, we can
define

P(s,RH)
w = RH·Ps, (16)

with 0 ≤ RH ≤ 100 indicating a fixed value of relative humidity. P(s,RH)
w is an estimation

of the wet partial pressure. From it and from the dry pressures and temperature, we can
easily derive the mixing ratio and the wet refractivity, and consequently the quantities
h(s,RH)

ρ,ri , h(s,RH)
N1 , h(s,RH)

N2 in an analogous way to the quantities to compare hρ,ri , hN1, hN2

defined in Section 3. However, for the same reasons exposed in Section 4.1 concerning
hTi definition, the quantities h(s,RH)

ρ,ri , h(s,RH)
N1 , h(s,RH)

N2 —collectively denoted as h(s,RH)—will
be calculated starting from the tropopause and not from the top of the atmosphere. For
relative humidity, we set RH = 30%, a characteristic value for the tropopause/high
troposphere [59,62,63], where we expect to meet threshold conditions for the lower value
of humidity concentration, and RH = 40% for higher values of humidity concentrations,
usually occurring at lower quotes.

This method, based on water vapor saturation pressure, is conceptually similar to that
based on air temperature exposed in Section 4.1, since the Murphy and Koop equations
which we use to calculate Ps depend just on temperature alone. With respect to the air
temperature method, now we can obtain quantities that better match the terms that we
want to estimate. The downside is that we have to make aprioristic assumptions about the
air’s relative humidity.

5. Results

As said before, for our statistical study we considered 912 RO observations colocated
with radiosonde excursions, on the 1st of January, the 19th of February and the 1st of May
of 2009. The site locations are reported in Figure 4. As one can see, the events cover all over
the world, even if they are mainly concentrated at the northern middle latitudes.
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For all these locations we determined the altitudes h(RO)
Ti

, hγ̃i
, h(s,RH) by RO observa-

tions and h$,ri and hN from radiosonde excursions data. Concerning the former quantities,
we calculated their mean deviation (MD), the root mean square deviation (RMSD) and
the correlation coefficients with respect to the latter ones. For the dry air starting alti-
tudes h$,10−5 , h$,5×10−5 , h$,10−4 , hN1 and hN2, we determined the best estimators among the

three families of altitudes h(RO)
Ti

, hγ̃i
, h(s,RH) here considered, by varying Ti, γ̃i and RH,

respectively, (for hγ̃i
we consider both the cases h0 = 25 km and h0 = htrop). For the lower

starting altitudes h$,1.5×10−4 , h$,2×10−4 and h$,2.5×10−4 , concerning the greatest values of
mixing ratio here considered, estimations were not performed with the hγ̃i

altitudes, the
selected values of γ̃i being too low for a good approximation. The best estimators were
selected by requiring that the sum of the RMSD with the absolute value of the MD was
minimum (at parity of this sum, those with the highest correlation coefficient): we also
calculated the coefficients a, b of their linear regressors, with the relative RMSDs.

Nevertheless, for our scope, rather than a linear regressor we needed an optimal
overestimator, that is, a new quantity—defined for example by a polynomial function of
the estimator—by which we can overestimate the majority of the dry air starting altitudes,
minimizing at the same time the MDs. We achieved this with the straight line h(0.9), a first
order polynomial of the estimator, whose detailed definition is reported in Section 5.1. So,
for each best estimator we calculated the coefficients of the line h(0.9) and the relative MD,
too. All these data are reported in Table 2.

5.1. Mixing Ratio Starting Altitudes Estimati

In Figure 10, we show the distributions for the dry air starting altitudes defined
by the mixing ratio. As one can immediately note, h$,10−5 , h$,5×10−5 and partly h$,10−4

have a bimodal character; we will see below that the second mode is mainly due to the
starting altitudes lying in the stratosphere. Concerning the other starting altitudes, they
are essentially unimodal and can be well approximated by Gaussians as part of a slightly
positive skewness.

In Figures 11 and 12 we show the scatterplots of the altitudes h$,5×10−5 and h$,10−4

with their best estimators, respectively, h(RO)
230 K, h(RO)

235 K for the dry air temperature altitudes,

h(tp)
3×10−4rad, h(tp)

1.5×10−4rad for the bending angle-total variation ones, and h(s,30)
$,5×10−5 , h(s,30)

$,10−4

for those defined by the saturation pressure of water vapor. In Figure 13, there are the
scatterplots of the altitudes h$,2.5×10−4 , with the best estimators h(RO)

245 K and h(s,40)
$,2.5×10−4 . For

the other dry air starting altitudes, all the relevant data concerning the estimation process
are collected in Table 2.

In Figures 11 and 12, we reported with red points those events for which h$,5×10−5

and h$,10−4 fall in the stratospheric region. By projecting those points onto the y-axis, we
see that the altitudes h$,5×10−5 and h$,10−4 higher than 15 km, corresponding in Figure 10
to the position of the second modes, mainly refer to the stratosphere. The same is true
for h$,10−5 . So, we can conclude that the bimodal character of the dry air starting altitude
distributions for the lower values of the mixing ratio are due to water vapor concentration
in the stratosphere. The percentage of the starting altitudes falling in the stratosphere are
reported in Table 2.
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Table 2. Best estimators of the dry air starting altitudes. Data below give, in row order: (1) mean value and standard deviation for the starting altitude; (2) stratospheric probability for
the starting altitude; (3) starting altitude best estimator; (4), (5) and (6) MD, RMSD and correlation coefficient r between the starting altitude and its best estimator; (7) and (8) a and b
coefficients of the linear regressor hlin. regr. = a·hbest est. + b ; (9) RMSD of the linear regressor; (10) and (11) a and b coefficients of the altitude h(0.9) = a·hbest est. + b. ; (12) MD of the h(0.9)

altitude. Data obtained by omitting stratospheric altitudes are reported in brackets.

$ N

h$,10−5 h$,5×10−5 h$,10−4 h$,1.5×10−4 h$,2×10−4 h$,2.5×10−4 hN1 hN2

Main interval (km) 11.52 ± 3.24
(9.86 ± 2.02)

8.43 ± 2.56
(8.01 ± 1.90)

7.22 ± 2.17
(7.13 ± 1.99) 6.59 ± 2.15 6.14 ± 2.14 5.78 ± 2.14 10.31 ± 2.48

(9.55 ± 1.67)
7.63 ± 2.98

(7.24 ± 2.42)

Stratospheric probability (%) 34.76 5.37 0.99 0.44 0.11 0 20.29 4.71

Te
m

pe
ra

tu
re

(R
O

)

Best estimator h(RO)
210 K

(*) h(RO)
230 K h(RO)

235 K h(RO)
240 K h(RO)

240 K h(RO)
245 K h(RO)

215 K
(**) h(RO)

230 K

MD (km) −0.52 (1.66) −0.25 (0.25) 0.21 (0.31) 0.03 0.50 −0.07 0.25 (1.37) −0.18 (1.12)

RMSD (km) 3.65 (2.22) 2.46 (1.31) 1.71 (1.42) 1.71 1.72 1.82 2.78 (1.90) 2.74 (1.97)

r 0.08 (0.73) 0.42 (0.76) 0.65 (0.74) 0.65 0.67 0.61 0.16 (0.69) 0.46 (0.75)

Li
ne

ar
re

gr
es

so
r a 0.14 (0.83) 0.59 (0.81) 0.77 (0.80) 0.74 0.76 0.66 0.24 (0.68) 0.76 (1.01)

b (km) 10.00 (0.75) 3.61 (1.36) 1.46 (1.14) 1.72 1.12 2.03 7.78 (2.07) 1.40 (−1.21)

RMSD (km) 3.23 (1.39) 2.33 (1.23) 1.65 (1.34) 1.63 1.58 1.69 2.45 (1.21) 2.64 (1.61)

h(0.9)

a −0.49 (0.91) 0.80 (0.92) 0.91 (0.95) 0.98 1.04 0.93 −0.78 (0.83) 1.00 (1.11)

b (km) 21.69 (0.90) 2.95 (1.66) 1.74 (1.41) 1.59 0.81 2.35 22.91 (1.99) 0.89 (−0.32)

MD (km) 4.75 (1.53) 1.07 (1.27) 1.27 (1.33) 1.48 1.58 1.86 4.32 (1.41) 1.42 (1.63)

B
en

di
ng

A
ng

le

Best estimator h(25)
10−4rad h(tp)

1.5×10−4rad h(tp)
3×10−4rad

- - - h(tp)
5×10−6rad h(tp)

3×10−4rad

MD (km) −0.10 (1.98) 0.17 (0.71) 0.21 (0.31) − - - −0.05 (0.99) −0.08 (0.40)

RMSD (km) 4.85 (4.07) 3.73 (3.02) 3.26 (3.10) − - - 3.41 (2.49) 3.94 (3.33)

r −0.01 (0.29) 0.20 (0.40) 0.31 (0.36) − - - 0.13 (0.55) 0.31 (0.33)

Li
ne

ar
re

gr
es

so
r a −0.01 (0.16) 0.14 (0.24) 0.21 (0.23) - - − 0.12 (0.34) 0.18 (0.25)

b (km) 11.60 (7.92) 7.26 (5.89) 5.66 (5.45) - - − 9.07 (5.95) 6.30 (5.32)

RMSD (km) 3.24 (1.93) 2.53 (1.74) 2.06 (1.85) - - − 2.46 (1.39) 2.92 (2.28)

h(0.9)

a −0.13 (0.16) 0.20 (0.30) 0.36 (0.36) - - − −0.30 (0.31) 0.37 (0.26)

b (km) 17.66 (10.54) 9.11 (7.66) 7.07 (6.97) - - − 17.49 (8.06) 7.54 (8.84)

MD (km) 4.62 (2.62) 2.42 (2.29) 2.52 (2.53) - - − 4.11 (1.78) 3.07 (3.18)
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Table 2. Cont.

$ N

h$,10−5 h$,5×10−5 h$,10−4 h$,1.5×10−4 h$,2×10−4 h$,2.5×10−4 hN1 hN2

Sa
tu

ra
ti

on

Best estimator h(s,30)
$,10−5 h(s,30)

$,5×10−5 h(s,30)
$,10−4 h(s,40)

$,1.5×10−4 h(s,40)
$,2×10−4 h(s,40)

$,2.5×10−4 h(s,30)
N1 h(s,40)

N2

MD (km) −0.83 (1.39) −0.27 (0.24) −0.14 (−0.04) 0.29 0.20 0.13 −0.12 (0.93) 0.10 (0.61)

RMSD (km) 3.79 (2.09) 2.61 (1.48) 1.84 (1.54) 1.83 1.91 1.93 2.78 (1.63) 3.11 (2.21)

r 0.05 (0.70) 0.40 (0.74) 0.65 (0.73) 0.66 0.66 0.67 0.15 (0.67) 0.44 (0.69)

Li
ne

ar
re

gr
es

so
r a 0.08 (0.70) 0.48 (0.66) 0.64 (0.66) 0.63 0.58 0.57 0.22 (0.68) 0.45 (0.58)

b (km) 10.68 (1.94) 4.51 (2.53) 2.70 (2.44) 2.23 2.46 2.42 8.06 (2.39) 4.14 (2.69)

RMSD (km) 3.23 (1.45) 2.35 (1.27) 1.66 (1.35) 1.62 1.60 1.59 2.45 (1.24) 2.67 (1.74)

h(0.9)

a −0.54 (0.82) 0.70 (0.77) 0.74 (0.74) 0.81 0.77 0.73 −0.64 (0.83) 0.57 (0.71)

b (km) 21.99 (2.30) 3.85 (2.94) 3.24 (3.18) 2.48 2.90 3.35 20.81 (2.31) 4.92 (3.39)

MD (km) 4.69 (1.71) 1.09 (1.29) 1.26 (1.33) 1.46 1.67 1.91 3.98 (1.43) 1.67 (1.70)

(*) h(RO)
210 K = h(RO)

trop in the 67% of cases. (**) h(RO)
215 K = h(RO)

trop in the 41% of cases.
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Stratospheric water vapor also has the effect of “ruining” the estimations of h$,ri

by quantities that, with the exception of h(tp)
γ̃i

, are not designed to be applied above the
tropopause. In Table 2, for those dry air altitudes with non-negligible stratospheric compo-
nents in their distribution, all the statistical data are recalculated by omitting the strato-
spheric contribution. These additional data are reported by parenthesis: as one can see,
they indicate a consistent improvement in the estimation process. For example, in the
estimation of h$,10−5 , h$,5×10−5 and h$,10−4 by the h(RO)

Ti
and h(s,RH)

$,ri altitudes, we register
correlation coefficients of 0.70–0.74 when we limit ourselves to the troposphere, contrary to
a correlation coefficient of 0.40–0.42 for h$,5×10−5 or even of 0.05–0.08 for h$,10−5 when we
consider the stratosphere as well.
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Atmosphere 2021, 12, 1276 19 of 34Atmosphere 2021, 12, x FOR PEER REVIEW 19 of 33 
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Figure 11. Scatterplots among the dry air starting altitudes h$,5×10−5 and the three best estimators h(RO)
230 K (top left),

h(s,30)
$,5×10−5 (top right) and h(tp)

1.5×10−4rad (bottom). Correlation coefficients (r) are reported bottom right, for each graph.
Red points denote starting altitude falling in the stratosphere, blue points in the troposphere. Purple broken lines denote
the h(0.9) straight lines, while grey broken lines the estimators’ quartiles.
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Figure 12. Scatterplots among the dry air starting altitudes h$,10−5 and the three best estimators h(RO)
235 K (top left),

h(s,30)
$,10−4 (top right) and h(tp)

3×10−4rad (bottom). Correlation coefficients (r) are reported bottom right, for each graph. Red
points denote starting altitude falling in the stratosphere, blue points in the troposphere. Purple broken lines denote the
h(0.9) straight lines, while grey broken lines the estimators’ quartiles.
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6.59 ± 2.15 6.14 ± 2.14 5.76 ± 2.16 

10.31 ± 2.48 

(9.55 ± 1.67) 

7.63 ± 2.98 

(7.24 ± 2.42) 

Stratospheric 

presence (%) 
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Figure 13. Scatterplots among the dry air starting altitudes h$,10−5 and the two best estimators h(RO)
245 K (left) and h(s,30)

$,10−4 (right).

Correlation coefficients (r) are reported bottom right, for each graph. Purple broken lines denote the h(0.9) straight lines,
while grey broken lines the estimators’ quartiles.

Concerning the other, lower, dry air starting altitudes, with almost no data in the
stratosphere, we have correlation coefficients of ~0.65, slightly worse than those relative
to the starting altitude defined by lower mixing ratios when the stratospheric data are
omitted. This is mainly due to two reasons. First, as we can see from Table 1, starting
from $r = 3× 10−5, dry temperature deviations from real temperatures increase not only
in mean but even in variance. So, we expect a more scattered distribution of h(RO)

Ti
and

h(s,RH)
$,ri for higher values of Ti and ri, than is actually the case if we compare the graphs of

Figure 13 with the analogous graphs of Figure 11 or Figure 12. This can also be seen by
looking at Table 3, where the same data concerning h(RO)

Ti
are applied with the altitudes

h(b)Ti
defined by the real temperatures. For the starting altitudes h$,1.5×10−4 , h$,2×10−4 and

h$,2.5×10−4 , we have correlation coefficients equal to 0.71, 0.72 and 0.74, so not too far from
the correlation coefficients concerning the other starting altitudes when the stratospheric
samples are neglected. Second, we adopted the convention to set the estimating altitudes
equal to zero if, in the RO vertical profiles, the threshold values for the dry air temperatures,
for the γ̃i and for the “saturated” mixing ratios were never reached, even when the RO data
do not cover the first kilometers of the atmosphere near the ground. This rarely happens
with the h(RO)

Ti
and h(s,RH)

$,ri best estimators of h$,ri , if ri ≤ 10−4, but it sometimes occurs
when ri > 10−4, as the points along the y-axis in the scatterplots of Figure 13 testify. Those
points also contribute to reducing the correlation coefficients.
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Table 3. Best estimators of the dry air starting altitudes by the h(b)Ti
altitudes, concerning real temperatures. Data below give, in row order: (1) mean value and standard deviation for the

starting altitude; (2) stratospheric probability for the starting altitude; (3) starting altitude Best estimator; (4), (5), (6) and (7) MD, RMSD and correlation coefficient r between the starting
altitude and its Best estimator; (7) and (8) a and b coefficients of the linear regressor hlin. regr. = a·hbest est. + b; (9) RMSD of the linear regressor; (10) and (11) a and b coefficients of the
altitude h(0.9) = a·hbest est. + b; (12) MD of the h(0.9) altitude. Data obtained by omitting stratospheric altitudes are reported in brackets.

$ N

h$,10−5 h$,5×10−5 h$,10−4 h$,1.5×10−4 h$,2×10−4 h$,2.5×10−4 hN1 hN2

Main interval (km) 11.52 ± 3.24
(9.86 ± 2.02)

8.43 ± 2.56
(8.01 ± 1.90)

7.20 ± 2.17
(7.13 ± 1.99) 6.59 ± 2.15 6.14 ± 2.14 5.76 ± 2.16 10.31 ± 2.48(9.55 ± 1.67) 7.63 ± 2.98(7.24 ± 2.42)

Stratospheric presence (%) 34.76 5.37 0.99 0.44 0.11 0 20.29 4.71

Te
m

pe
ra

tu
re

(b
)

Best estimator h(b)210 K
(*) h(b)230 K h(b)240 K h(b)240 K h(b)245 K h(b)250 K h(b)215 K

(**) h(b)235 K

MD (km) −0.47 (1.72) −0.15 (0.34) −0.35 (−0.25) 0.28 0.02 −0.34 0.31 (1.37) −0.03 (0.42)

RMSD (km) 3.66 (2.28) 2.38 (1.25) 1.66 (1.34) 1.58 1.55 1.56 2.77 (1.90) 2.57 (1.62)

r 0.08 (0.72) 0.45 (0.79) 0.69 (0.77) 0.71 0.72 0.74 0.17 (1.69) 0.52 (0.76)

Li
ne

ar
re

gr
es

so
r a 0.14 (0.73) 0.64 (0.84) 0.79 (0.81) 0.80 0.78 0.77 0.25 (0.68) 0.84 (1.01)

b (km) 9.99 (1.39) 3.09 (1.00) 1.79 (1.56) 1.06 1.36 1.58 7.63 (2.07) 1.25 (−0.53)

RMSD
(km) 3.23 (1.41) 2.28 (1.17) 1.57 (1.26) 1.51 1.49 1.45 2.44 (1.21) 2.55 (1.57)

h(0.9)

a −0.47 (0.96) 0.93 (0.94) 0.93 (0.95) 0.99 0.98 0.96 −0.76 (0.84) 1.11 (1.11)

b (km) 21.42 (0.34) 1.56 (1.33) 1.95 (1.75) 0.98 1.46 1.97 22.52 (1.77) 0.34 (0.20)

MD (km) 4.74 (1.60) 0.87 (1.16) 1.11 (1.17) 1.21 1.35 1.39 4.18 (1.41) 1.15 (1.47)

(*) h(b)210 K = h(b)trop in the 68% of cases. (**) h(b)215 K = h(b)trop in the 17% of cases.
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Even if we omit the stratospheric altitudes, a correlation coefficient not exceeding 0.74
is a discrete but not an extremely good result. Indeed, the goodness of these estimators lies
in another aspect. By looking at the graphs of Figures 12 and 13, with the exception of the
h(tp)

γ̃i
cases, we see that the points distribution mainly concentrates around the diagonal axis,

it blurs below the diagonal but leaves the area ~1.5 km above the diagonal nearly empty.
The same is true for the scatterplots of h(RO)

230 K and h(s,30)
$,5×10−5 with h$,5×10−5 in Figure 11, if we

limit ourselves to the tropospheric altitudes. This means that even if the estimators h(RO)
Ti

and h(s,RH)
$,ri do not completely succeed in accurately predicting the dry air starting altitudes

defined in Section 3, probably due to the variability of the relative humidity together with
the stratospheric problem, nevertheless, they could be very useful in setting an upper limit
to the distribution of h$,ri . Such a property can be highlighted by the altitude h(0.9), defined
for each estimator hest as follows: once divided, the estimator range in four intervals is
delimited by its quartiles, h(0.9) is a first order polynomial of the estimator that, for each
interval, minimizes the square of its local mean deviations from the starting altitudes,
exceeding at the same time at least 85% of the starting altitudes. Besides, it is additionally
required that it exceeds at least 90% of all the starting altitudes, globally.

More formally, denoted by hest,i, i = 1, · · · 4, the subset of estimators that fall in the
i-th quartile interval, by hdry,i the corresponding subset of the dry air starting altitudes, by
hest,i and hdry,i their respective means, and finally with qα(·) the α-quantile of a distribution,
then

h(0.9) = a·hest + b,

where the real numbers a, b minimize the functional

F(a, b) = Θ
[
q0.9

(
hdry − a·hest − b

)]
+

4

∑
i=1


(

hdry,i − a·hest,i − b
)2

2
+ Θ

[
q0.85

(
hdry,i − a·hest,i − b

)], (17)

with

Θ[x] =
{

0 i f x ≤ 0
+∞ i f x > 0

.

For the mathematical method used to derive a, b, we refer to the Appendix A. The
values of a, b, together with the minimized mean deviation

MD = hdry − a·hest − b =
1
4

4

∑
i=1

(
hdry,i − a·hest,i − b

)
,

are reported in Table 2, with the corresponding h(0.9) straight lines shown in Figures 11–13,
together with the quartiles of the estimators.

The idea to consider subintervals is motivated by the request that h(0.9) could work
well as the upper bound in every portion of the estimator range. This ensures in particular
that, once estimated, a, b by the present statistical analysis, h(0.9) could be rightly applied
even at those latitudes and longitudes less represented in this study—that is, those places
in Figure 9 not covered enough by the events points—whose altitudes may have a different
distribution from the global one and may be more concentrated in some subset of the whole
dataset.
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As part of the correlation coefficients, in order to test the estimation procedures
described above, we can compare the uncertainties that we achieve with these estimators—
that is, their RMSDs—with the standard deviations of the dry air starting altitude distri-
butions. The last are reported in the first row of Table 2 together with their mean values.
In other words, we can check how much better we succeed in applying this estimation
procedure with respect to simply using the mean value of the dry air starting altitudes
as estimator. With the h(RO)

Ti
altitudes, we can estimate the quantities h$,10−4 , h$,1.5×10−4

and h$,2×10−4 with an RMSD that is ~20% lower than the respective standard deviations, a
percentage that increases to ~25% if we consider linear regressors; we have a similar result
for h$,2.5×10−4 too, with an improvement of ~16% that rises to 22% with the linear regressor.
In contrast, when the stratospheric percentage increases, we achieve almost no gain for
h$,5×10−5 , while for h$,10−5 it is practically better to revert to its mean value rather than

applying the (best) estimator h(RO)
210 K. The same is true for the h(s,RH)

$,ri estimators, even if the

results are now slightly worse than the h(RO)
Ti

ones, in particular when we do not consider

linear fittings. However, it is with the lines h(0.9) that we register the best improvements.
First, we can see from Table 2 that in all cases, with the exception of h$,10−5 , h(0.9), the mean
deviations are lower than the RMSDs of the estimators; this is true even when the linear
fitting is considered, if we further exclude the altitudes h$,2×10−4 and h$,2.5×10−4 . However,

the mean deviations of h(0.9) and the RMSDs of the estimators or the standard deviations of
the starting altitudes have a different statistical meaning. Indeed, by assuming a Gaussian
distribution for a dry air starting altitude, we know that 90% of the samples lie within
approximatively 1.3 standard deviations above the mean. Using this value as a basis of
comparison, that is, if we compare the altitude h(0.9) derived by h(RO)

Ti
or h(s,RH)

$,ri with the
0.9-quantiles of the starting altitude distributions, after a few calculations we achieve an
improvement for the upper bound estimation of the starting altitude that goes from ~33%
for h$,2.5×10−4 to ~67% for h$,5×10−5 ,. Besides, h(0.9) performances are not affected by water
vapor presence in the stratosphere, except when the fraction of dry air starting altitude
percentage greater than the tropopause height exceeds 10%, as in the case of h$,10−5 .

For the hγ̃i
estimators, we note from the graphs in Figures 11 and 12 that their point

distributions are much more scattered than the h(RO)
Ti

and h(s,RH)
$,ri ones, resulting in lower

correlation coefficients and higher RMSDs. Indeed, by looking at several vertical profiles,
we have seen that the appearance of water vapor concentrations is always accompanied
with some deviation of bending angle profile with respect to its total variation. Never-
theless, the amount of this deviation is extremely variable, even with respect to the same
increment of water vapor concentration. In conclusion, it is very difficult to characterize a
specific value of water vapor concentration with a given value of γ̃ and so it is not easy to
predict the dry air starting altitudes from the bending angle total variation altitudes.

In Section 6, we will test if the h(25)
γ̃i

altitudes, the only altitude from those defined in
Section 4 that can be applied above the tropopause, can at least detect water vapor presence
in the stratosphere.
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5.2. Wet Refractivity Starting Altitudes Estimations

For the wet refractivity starting altitudes, we can apply similar considerations from the
previous subsection. By looking at Figure 14, we note that hN1 and hN2 starting altitudes
present a bimodal distribution, with the second modes above 15 km that again have to
be attributed to water vapor in the stratosphere, as we deduced from Figures 15 and 16.
In particular, in Figure 15 we can see how the hN1 altitudes that fall in the stratosphere,
exceeding 10% of the total, mainly determine the h(0.9) line. Neglecting the stratospheric
altitudes, hN1 and hN2 show again a gaussian behavior, with even less skewness than the
h$,ri altitudes. Probably due to its definition, hN2 has a larger standard deviation than hN1,
despite having fewer samples in the stratosphere (see Table 2).
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From Table 2, we see that the hN1 estimation, as in the h$,10−5 case, is not well per-
formed by all the methods considered in this study, if compared with the hN1 mean value
and standard deviations. For hN2, it is again best approximated by a temperature-based
estimator, h(RO)

230 K, with an RMSD less than ~8% with respect to the hN2 standard deviation

(~11% if we consider its linear regressor), while for h(s,RH)
N2 , the best estimation is achieved

when we set RH = 40%. However, with this higher value of relative humidity, the wet
refractivity threshold is never reached in some RO events, so that there are several points
along the y-axis in the top-right graph of Figure 16, contrary to the case with the estimator
h(RO)

230 K, whose scatterplot with hN2 is shown in the top-left graph of the same figure. For the
h(0.9) lines, we have again an improvement of ~60% with respect to the 0.9 quantile of the
hN2 distribution. Finally, for the hγ̃i

altitudes, again they result in the worst estimators.
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Figure 15. Scatterplots among the dry air starting altitudes hN1 and the three best estimators h(RO)
215 K (top left),

h(s,30)
N1 (top right) and h(tp)

5×10−6rad (bottom). Correlation coefficients (r) are reported bottom right, for each graph. Red
points denote starting altitude falling in the stratosphere, blue points in the troposphere. Purple broken lines denote the
h(0.9) straight lines, while grey broken lines are the estimators’ quartiles.
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Figure 16. Scatterplots among the dry air starting altitudes ℎ𝑁2 and the three best estimators ℎ230 𝐾
(𝑅𝑂)  (top left), ℎ𝑁2
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Figure 16. Scatterplots among the dry air starting altitudes hN2 and the three best estimators h(RO)
230 K (top left),

h(s,40)
N2 (top right) and h(tp)

3×10−4rad (bottom). Correlation coefficients (r) are reported bottom right, for each graph. Red
points denote starting altitude falling in the stratosphere, blue points in the troposphere. Purple broken lines denote the
h(0.9) straight lines, while grey broken lines are the estimators’ quartiles.
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6. Water Vapor in the Stratosphere

Water vapor concentration in the stratosphere is usually very low, $r ∼ 10−6. This
is due to the cold tropopause temperature, which causes most of the water vapor coming
from the troposphere to condense, forming denser than air agglomerates—water, ice
aerosols—unable to reach the higher atmospheric layers. Nevertheless, as we can see
from Figures 11 and 12 and from Table 2, in few cases, water vapor reaches non-negligible
values ($r > 5× 10−5–10−4) of concentration in the stratosphere. These higher than usual
concentrations are mainly caused by direct injection from an overshooting convention
mechanism and methane oxidation [64]. Monitoring water vapor concentrations in the
stratosphere is very important in the context of climate change: some studies [65] calculate
a stratospheric water vapor impact on global warming of 5–10% from all greenhouse gases,
even if others [66] underestimate such an effect.

As said before, with two of our proposed methods to localize threshold values for
water vapor concentrations, that is, by temperature and by saturation pressure, we cannot
investigate what happens above the tropopause. However, with the irregular bending
angle profile method, when we set h0 > htrop in definition (7), we could, in principle, detect
water vapor in the stratosphere. So, in this section we will test the bending angle method
limited to the stratosphere, hoping that in this restricted region it could work better than in
the general case.

Before exploring such possibilities, we spend some words about the method used
to determine the tropopause. In a comparative study such as the present one, this is a
delicate task, as it is important to adopt a definition that, when applied both to the RO
dataset and to the radiosonde dataset, gives tropopause altitude estimations that are as
close as possible. According to the World Meteorological Organization (WMO) [67], the
tropopause is defined as “the lowest level at which the (temperature) lapse rate decreases
to 2 ◦C/km, provided that the average lapse rate between this level and all higher levels
within 2 km does not exceed 2 ◦C/km”. This Lapse Rate definition for the Tropopause
(LRT), introduced in 1957 and still widely used, presents nevertheless some inconveniences:
first, for some temperature profiles such a lapse rate condition is not always achieved,
or it is achieved at altitudes greater than 30 km. Besides, it is sometimes affected by
the vertical resolution of the temperature profile. For this reason, some authors [68]
consider a weakened or simplified version of the lapse rate tropopause, which uses only
the local lapse rate and the 2 km average. Second, in the tropics, the coldest point of the
temperature (CPT) is well marked, and more meaningful than the temperature lapse rate to
identify the tropopause. Other possible tropopause definitions concern ozone or other gas
concentrations [62,69], potential vorticity [70], and definitions based on the bending angle
profile in an RO, corresponding to an irregular pattern [6] or to a deviation from bending
angle models with a constant temperature lapse rate hypothesis, as that of Hopfield [71].
In this study, temperature being the only quantity available for both the datasets, we opted
for a temperature-based definition for the tropopause.

In Figure 17, we considered four possible variants for this. In Figure 17a, we report
the scatterplot of the LRT altitudes with the temperatures given by the radiosonde excur-
sion against the LRT altitudes obtained by the (dry) temperatures from the ROs, while
in Figure 17b the same scatterplot with the tropopause defined by the coldest point. In
Figure 17c,d we consider two additional tropopause definitions: for Figure 17c, we pro-
posed a weak version of the CPT, defined as the lowest level at which temperature as a
local minimum, more precisely a minimum limited to an interval of 2 km centered at the
considered level; for Figure 17d, we considered an even more simplified version of the
WMO definition than that in [68], by requiring just the mean lapse rate of 2 ◦C/km in an
interval of 2 km centered at the given level without the local condition of lapse rate. For all
the adopted definitions, we restricted the tropopause in a vertical window going from 6 km
to 12 km at the poles and from 13 km to 21 km at the equator. If the required condition is
not satisfied in those intervals, the upper bound interval was adopted for the tropopause
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altitude. For the definition of Figure 17d, which we call the weak LRT definition, if the
required condition is not satisfied, then the weak CPT was applied.
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Figure 17. Scatterplots of the tropopause altitude as estimated by the real temperature profile (x-axis)
versus the tropopause altitudes by the RO observations (y-axis), for (a) the LRT, (b) the CPT, (c) the
weak CPT and (d) the weak LRT definitions.

As one can see, the weak LRT definition gives the best results concerning correlation
and RMSDs. The points are highly concentrated along the diagonal, with some scattering
just around 14 km. The weak CPT also gives good results in the comparative study. Note
that, with the exception of the LRT definition, the tropopause distributions for the last two
definitions are not very dissimilar with respect to the CPT distribution, for both the balloon
and RO profiles, a part of a slight underestimation for the higher tropopause levels. So, we
can correctly adopt the weak LRT in our study.

Turning back to water vapor concentrations in the stratosphere, in Figure 18, we plot
both the mean mixing ratio vertical profile (blue, identical to that of Figure 3) then the con-
ditioned mean mixing ratio vertical profile (red), the latter by selecting only those profiles
for which h$,5×10−5 > htrop. The altitudes are scaled with respect to the tropopause height.
As one can see, the mixing ratio behavior in the case of h$,5×10−5 > htrop is more complex
than the general one: we expect to find dry air starting altitudes above ~1.6 htrop, together
with a dry air window around the tropopause, where humidity concentration reaches
a minimum, while the wet stratosphere is mainly concentrated between 1.2 ÷ 1.6 htrop.
Besides, observe that below ~0.3, the tropopause altitude air with stratospheric water vapor
is mainly drier, with respect to the general case.
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Figure 18. Mean values of mixing ratios for all the cases (blue) and for the cases with the starting
altitude h$,5×10−5 higher than the tropopause (red). Altitudes are scaled with respect to tropopause
elevations.

In this more complex situation, we limit ourselves to simply detecting the presence
of water vapor in the stratosphere, instead of determining dry air threshold altitudes. We
try to do this by comparing the probabilities for dry air starting altitudes to lie above the
tropopause with the probabilities for the same event conditioned this time by the estimators
to be in the stratosphere as well. If these probabilities are very different, than we can find
a dependency between the conditioned and the conditioning event, that is we can make
predictions about water vapor in the stratosphere from RO observations. In Table 4, we
report the results obtained following this approach. For this study we just considered
the starting altitudes h$,10−5 , h$,5×10−5 , h$,10−4 , hN1 and hN2, for which the probability of
falling in the stratosphere, reported in the first row, was not extremely low or null, while
as estimators we used the altitudes h(25)

γi . In the remaining rows, the probabilities for the
starting altitudes to lie in the stratosphere, conditioned by the estimator to be above the
tropopause as well, are reported. All the probabilities are given in percentages.

Table 4. Probabilities for the dry air starting altitude to be in the stratosphere (first row) and the

probabilities for the same events conditioned by the estimators h(25)
γi to be in the stratosphere as well.

h$,10−5 h$,5×10−5 h$,10−4 hN1 hN2

Stratospheric probability (%) 34.76 5.37 0.99 20.29 4.71
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h(25)
5×10−6rad

39.30 6.15 1.12 22.80 5.31

h(25)
10−5rad

39.32 6.22 1.13 22.63 5.37

h(25)
5×10−5rad

38.03 5.61 1.21 21.67 5.00

h(25)
10−4rad

37.54 4.98 1.33 21.10 4.65

h(25)
1.5×10−4rad

37.99 5.02 1.43 20.61 4.84

h(25)
2×10−4rad

38.30 4.84 1.55 20.50 4.64

As we can see, the conditioned probabilities are just slightly different from the orig-
inal ones; the bending angle altitude estimators in the stratosphere constitute almost an
independent event with respect to the starting altitudes in the stratosphere. So, even this
RO method fails to detect water vapor in the stratosphere.
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7. Conclusions

Accuracy, global coverage and continuous operativity due to its insensitivity to clouds
make the GNSS-RO a great instrument for weather forecasts and climate change moni-
toring. The flipside is that from RO observations alone we cannot predict water vapor
concentrations, and RO estimations of atmospheric temperature and pressure actually
lose accuracy in humid air, as we have seen in Figure 3 and Table 1. While this problem
is usually solved by considering additional information, in the form of data from other
experimental sources or background data such as forecasts, nevertheless in some stand-
alone methods, such as BPV, it is important to determine, by means of the same RO data,
the threshold altitudes above which RO techniques keep their accuracy in estimating the
main atmospheric parameters. In the present study, after determining the dry air starting
altitudes by water vapor mixing ratios and wet refractivity under the criterion to preserve
RO accuracy, we considered three possible methods to estimate these altitudes: by (dry) air
temperatures, by water vapor saturation pressure, and by bending angle profile irregular-
ity. For the first two estimators, they showed similar results, even if the air temperature
predictions were slightly better. They cannot be applied to the stratospheric region, so they
lack in accuracy in estimating h$,10−5 and hN1 altitudes, which frequently fall above the
tropopause. However, for the other starting altitudes, the estimations were good enough, if
compared with the information that we can achieve from the starting altitude distributions
themselves: in particular, for the safe condition of over-estimating the starting altitudes
with 90% of probability, with the h(0.9) line we can optimize such a condition up to reduce
the mean distance from the starting altitudes by more than half the same distance for the
90 percentile of the starting altitude distributions themselves.

For the irregular bending angle pattern estimator, via the deviation of the bending
angle profile with its total variation, we did not achieve results as good as the other two
methods. Indeed, even by removing the stratospheric altitudes, the linear correlation
coefficients assumed very low values, not exceeding 0.55. We also did not achieve good
results in detecting water vapor in the stratosphere with this method.
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Appendix A

In a similar way as performed in [37], we approximate the functional F(a, b) of
Equation (17) with the following functional

F̃(a, b) = λ2 exp

 q0.9

(
hdry − a·hest − b

)
λ

+
4

∑
i=1


(

hdry,i − a·hest,i − b
)2

2
+ λ2 exp

 q0.85

(
hdry,i − a·hest,i − b

)
λ


,
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where the parameter λ is a length and assumes very low values with respect to the consid-
ered altitudes. Indeed, as λ→ 0+ , we have the following punctual convergence:

λ2 exp
[ x

λ

]
→ Θ[x] =

{
0 i f x ≤ 0

+∞ i f x > 0
.

Once a value was fixed for λ (in our case, λ = 10−3 km), we applied the steepest
descent method in order to minimize F̃. Actually, admitting F̃ several local minima, we
opted for considering numerous fixed values for the parameter a, uniformly distributed in
the interval −0.7 ≤ a ≤ 2, while the steepest descent method was applied just with respect
to the parameter b. Denoted by ba the minimizing value of b for a given fixed value of a, we
selected the best couple (a, ba) by a direct comparison among the various values of F̃(a, ba)
so obtained.
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