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Abstract: In recent years, the industrial emission of air pollution has been reduced via a series of
measures. However, with the rapid development of modern agriculture, air pollution caused by
agricultural activities is becoming more and more serious. Agricultural activities can generate a large
amount of air pollutants, such as ammonia, methane, nitrogen oxides, volatile organic compounds,
and persistent organic pollutants, the sources of which mainly include farmland fertilization, live-
stock breeding, pesticide use, agricultural residue burning, agricultural machinery, and agricultural
irrigation. Greenhouse gases emitted by agricultural activities can affect regional climate change,
while atmospheric particulates and persistent organic pollutants can even seriously harm the health
of surrounding residents. With the increasing threat of agricultural air pollution, more and more
relevant studies have been carried out, as well as some recommendations for reducing emissions. The
emissions of ammonia and greenhouse gases can be significantly reduced by adopting reasonable
fertilization methods, scientific soil management, and advanced manure treatment systems. Regard-
ing pesticide use and agricultural residues burning, emission reduction are more dependent on the
restriction and support of government regulations, such as banning certain pesticides, prohibiting
open burning of straw, and supporting the recycling and reuse of residues. This review, summarizing
the relevant research in the past decade, discusses the current situation, health effects, and emission
reduction measures of agricultural air pollutants from different sources, in order to provide some
help for follow-up research.

Keywords: agricultural activities; greenhouse gases; particulate matter; persistent organic pollutants;
health effects; emission reduction measures

1. Introduction

Economic development is often accompanied by the sacrifice of the environment. The
increasingly serious environmental problems, especially air pollution, have become the
focus of the world. The sources of air pollutants include fuel combustion [1,2], industrial
emissions [3,4], traffic exhaust [5,6], and agricultural emissions [7,8]. Among them, fuel
combustion and industrial emissions have been controlled to a certain extent through a
series of measures [9–11]. However, with the rapid development of modern agriculture,
the impact of pollutants emitted by agricultural activities on the atmosphere is gradually
non-negligible. Agricultural activities emit lots of greenhouse gases (GHGs), such as carbon
dioxide (CO2), methane (CH4) and nitrous oxide (N2O), which account for 10~12% of the
total GHGs emissions from human activities [12]. N2O can stay in the atmosphere for a long
time with a higher global warming potential than CH4, 298 times that of CO2. Nearly 40%
of global N2O emissions are caused by human activities, including farmland fertilization
and fuel burning, with nearly 60% coming from agricultural activities [13,14]. Agricultural
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activities are also the major source of ammonia (NH3) [15–18]. Farmland fertilization and
animal husbandry can produce vast quantities of NH3. It is estimated that 80% of NH3 in the
global troposphere comes from agricultural emissions [15]. The large amount of NH3 in the
atmosphere can react with acid gases to generate secondary aerosols with a high extinction
coefficient, which is one of the key factors causing haze pollution [16–18]. In the past few
decades, global NH3 emissions have more than doubled, mainly due to the increase of
agricultural emissions [19]. In contrast, the contribution of non-agricultural anthropogenic
sources is very low [20]. It is estimated that NH3 emissions will increase substantially in the
future [21]. In addition, pesticide use and crop residue burning can directly or indirectly
produce persistent organic pollutants (POPs), volatile organic compounds (VOCs) and
particulate matter (PM), thereby reducing the surrounding air quality and endangering
human health [9,22,23]. At present, many countries and regions around the world are
under the influence of agricultural air pollution [21,22]. Agricultural activities cause 55%
of man-made air pollution in Europe, and they are also responsible for nearly half in
eastern China, as well as eastern and western America [21]. In recent years, agricultural
air pollution has attracted more and more attention. In order to quantify the contribution
of agricultural activities to air pollution, clarify the characteristics and emission factors of
pollutants, and formulate effective control measures, a large number of studies have been
carried out. This review summarizing the relevant research in the past decade, discusses
the current situation, health effects, and emission reduction measures of agricultural air
pollutants from different sources, in order to provide some help for follow-up research.

2. Current Situation of Agricultural Air Pollution

Similar to earlier studies [24–26], recent studies have pointed out that the sources of
agricultural air pollutants were complex, including farmland fertilization [27–30], livestock
breeding [31–33], pesticide use [34–37], and agricultural residue burning [38–41]. However,
many recent studies found that agricultural machinery also brings a certain amount of air
pollution in the entire process of agricultural production [42–45]. What’s more, air pollution
from agricultural irrigation system cannot be ignored [14,46–48]. There are connections
and influences between different sources, which directly or indirectly cause serious harm
to the atmospheric environment. In this review, references were selected according to the
framework and keywords. As shown in Table 1, numerous studies have been carried out
on a global scale, especially in developing countries, through sampling analysis, satellite
observation and model simulation in recent years. The results show that agricultural
activities can emit PM, VOCs, POPs, GHGs, and other pollutants into the atmosphere
through various means. Except livestock breeding and agricultural irrigation, a great deal
of studies focused on developing countries, especially China, possibly due to China’s vast
territory, rapid development of modern agriculture and diverse agricultural production
modes. Agricultural emissions in China are somewhat similar to those in other developing
countries [34,41], and to the past research results in the United States and some developed
countries in Europe [25,29].
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Table 1. Main pollutants, methods and locations of studies on agricultural air pollution in recent years.

Sources Main Pollutants Methods Locations References

Farmland fertilization NH3
N2O

Air sampling
Rain sampling

Satellite observation
Model

China, Italy, India, Brazil [13,27–30,49]

Livestock breeding
NH3

GHGs
VOCs

Air sampling
Field observation

Model

Switzerland, Canada,
France, Japan, Mexico [31–33,50–52]

Pesticide use POPs
Passive air sampling

Soil sampling
Model

China, India, Pakistan,
Nepal, Chile, Argentina,

Australia, Italy
[34–37,53–57]

Agricultural residue
burning

PM
PAHs

Air sampling
Satellite observation

Model

China, Thailand, India,
Mexico, Africa [38–41,58–65]

Agricultural machinery NOx
PM

Satellite observation
Model China, Nepal [42–45,66,67]

Reservoirs and
agricultural irrigation GHGs

Water sampling
Sediment sampling

Air sampling
Model

China, America, Brazil [14,46–48,68]

2.1. Farmland Fertilization

Agricultural activities are an important source of nitrogen emissions [50]. The use
of nitrogen fertilizers in agriculture directly or indirectly emits large amounts of NH3
and N2O [28,30]. NH3 emissions vary with the type of fertilizer, depending on nitrogen
content, volatility and hydrolysis process [69]. For example, urea, which has a high
nitrogen content, emits a high concentration of NH3 and produces nitrous acid (HONO)
after fertilized, by contrast, ammonium bicarbonate fertilizer with a lower nitrogen content
but higher volatility can cause more emissions [70]. The high concentration of NH3 has
subsequent reactions in the atmosphere to generate secondary aerosols such as ammonium
sulfate and ammonium nitrate, which can be transported over long distances and cause
regional pollution [16–18]. In the late 20th century, global NH3 emissions doubled, 25% of
which came from nitrogen fertilizer application [21,27]. According to a report in France,
agricultural activities contributed 98% of NH3 emissions, of which the application of
nitrogen fertilizers accounted for 35%. In addition, organic fertilizers such as animal
manure also contributed [71]. In southern Italy, high levels of ammonium ions were
detected in rainwater, mainly due to the spreading of fertilizers on large areas of farmland
during the fertilization periods [28]. Although high NH3 emissions were observed in some
developed countries, the contribution of fertilization was small, possibly due to the highly
developed animal husbandry in these countries [25]. In China, a traditional agricultural
country, agricultural activities contribute 95% of NH3 emissions [29]. As shown in Figure 1,
the map of China shows the spatial distribution of NH3 emissions in China. The hot spots of
NH3 emissions mainly appeared in Central China, the Beijing-Tianjin-Hebei region, Jiangsu,
and Guangdong, mainly due to large area of arable land, developed planting industry,
and high fertilizer application rate in these regions. The maps of the Beijing-Tianjin-Hebei
region show the contribution of agricultural and synthetic fertilizer application sources
to NH3 emissions in the Beijing-Tianjin-Hebei region. The Beijing-Tianjin-Hebei region is
one of the regions with high NH3 emissions in China, and the use of synthetic fertilizers
contributed 42% of NH3 emissions in the Beijing-Tianjin-Hebei region [72]. Moreover, the
reasons for the high emissions are similar to other regions, so the Beijing-Tianjin-Hebei
region is representative to some extent. In the 1980s, the increase of NH3 emissions slowed
down in the United States and other developed countries, mainly because of the reduced
use of nitrogen fertilizers and improved fertilizer nitrogen utilization [25]. Soon afterwards,
the turning point was also found in China in the late 1990s, mainly owe to stop increasing
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the use of nitrogen fertilizers [29]. Besides, the application of nitrogen fertilizer also causes
the emission of N2O [12,13], and excessive application may increase the nitrogen load
in the surrounding environment through soil and runoff [14]. Bhatia et al. estimated
GHG emissions from agricultural soils in India in 2007 [49], and the results showed that
nitrogen fertilizer application contributed 69% of N2O emissions. Signor et al. carried
out an experiment in a sugarcane field in Brazil [13], and reported that N2O emissions
were dependent on the amount of nitrogen applied. Furthermore, ammonium nitrate
fertilizer enhanced faster N2O emissions than urea. Although many related studies have
been carried out mostly by model simulations or satellite observations, there is still no very
accurate method for measuring emissions from farmland fertilization, mainly due to the
volatility of fertilizers and the secondary chemical reaction of NH3.
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2.2. Livestock Production

Among agricultural activities, livestock breeding is considered to be one of the largest
sources of GHG emissions [52,73]. Livestock breeding practices in different regions are
adapted to local conditions. For example, livestock breeding in Japan is usually intensive,
which leads to a large amount of pollutants in a narrow area. However, China has a vast
land, and livestock breeding generally adopts a combination of free-range and captive
breeding, which emits less pollutants per unit area [50]. Beef production is always ac-
companied by the generation of GHGs, as shown in Figure 2. During cattle feeding, vast
quantities of CH4 and N2O are released into the atmosphere through enteric fermentation
and manure, which is regarded as the major source of GHGs accounting for more than
90% of the total emissions [32]. The amount of GHGs emitted from enteric fermentation
and manure depends on the cattle feed and manure processing system to a great degree.
Cattle feed is generally hay, corn, and wheat. Fertilizers and crops also produce GHGs
during the growing process of feed ingredients [74]. Cattle manure is also often used as
fertilizer, which can produce CH4 and N2O under the action of microbes [75]. Moreover,
the transport of beef and feed inevitably emits a certain amount GHGs. Lesschen et al.
assessed the GHG emissions of different livestock in Europe [31], and confirmed that cattle
produced the most GHGs, more than twice as much as pigs. Animal husbandry is also an
important source of NH3, accounting for about 40% of global emissions [33]. Livestock
wastes such as manure and compost are major sources of NH3 emissions [50]. Ye et al.
established an emission inventory of agricultural ammonia for 2015 in the Beijing-Tianjin-
Hebei region by using the WRF-CMAQ model [72], and indicated that livestock breeding
was the largest source of NH3 emissions, accounting for 58% of the total emissions. Among
all animals, cattle contributed more. In addition, livestock breeding is also one of the
sources of atmospheric particulate matter. NH3, NOx and VOCs produced by livestock
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activities are all important precursors for the formation of secondary particulate matter [51].
Kammer et al. observed dairy farms and sheep pens at the same time [33], and reported
that both buildings emitted a large amount of NH3, NOx, and VOCs, mainly from the
excretion and respiration of livestock. High concentrations of oxygenated compounds and
hydrocarbons, such as ethanol and methanol, were detected in both dairy farms and sheep
pens. Acetaldehyde was one of the most abundant VOCs in dairy farms, while nitrogenous
compounds such as trimethyl were more significant in sheep pens.
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Figure 2. GHG emissions during beef production in Saskatchewan, Canada [32].

2.3. Pesticide Use

Pesticides are an important source of persistent organic pollutants, and most of the
substances in the internationally recognized POPs list are pesticides [76,77]. After pesticides
are sprayed, they either remain in the atmosphere in gaseous form, or are dissolved in
water vapor, or adsorbed on solid particles. The pesticides decompose into various difficult-
to-degrade toxic substances in the atmosphere, which can migrate for a long distance and
cause regional pollution [78]. As shown in Figure 3, POPs in the atmosphere can subside
to land and aquatic ecosystems, accumulate in crops and animals, and be exposed to
human through the food chain, then causing adverse health effects [55,79]. Compared with
developed countries, higher concentrations of POPs are generally observed in developing
countries [35]. Although many pesticides have been banned, they are still widely used in
many areas to kill pests and deal with infectious diseases [37]. Syed et al. evaluated the
presence of organochlorine pesticides (OCPs) in the atmosphere of Punjab, Pakistan [34].
The concentration of DDTs in the atmosphere of the study area was much lower than
that in the coastal areas of the United States, and comparable to that in the southern
United States and the Taihu Lake Basin of China. Pegoraro et al. analyzed the atmospheric
POPs in different areas of Cordoba, Argentina, and observed higher concentrations of
endosulfan and heptachlor in agricultural areas [37]. Nasir et al. conducted sampling and
analysis in industrial and agricultural areas of Pakistan [35], and the results showed that
the concentrations of endosulfan, DDTs, lindane, PCBs, and heptachlor in agricultural areas
were higher than those in industrial areas, mainly due to their continuous use in agriculture.
Because of the long-distance migration and non-degradability of POPs, agricultural waste
would enter the Arabian Sea through rivers, which may cause regional or even global
pollution. Pesticide deposits in the ocean can also volatilize and reenter the atmosphere to
cause secondary pollution. Similarly, crop residues such as straws in farmland can also
cause secondary pollution of pesticides. Straw returning can not only reduce the pollution
of straw burning, but also help maintain soil fertility. According to the surveys, 70% of corn
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stalks are put back into farmland in northern China [80], while 70% of rice stalks are left in
farmland in Japan [81]. Due to the persistence and bioaccumulation of POPs, pollutants
can migrate into the atmosphere and soil through the surface of crops, and pesticides in the
soil can also enter the atmosphere again through volatilization. Wang et al. predicted the
fate of endosulfan in the atmosphere with the EUSES model [36], and the study indicated
that 54.7–70.3% of endosulfan entered the atmosphere by indirect means, such as crop
surface volatilization and straw returning.
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2.4. Agricultural Residue Burning

The burning of crop residues is a common agricultural practice, especially in develop-
ing countries, because it is a simple and economical method of removing residues [82,83].
However, this practice involves an inefficient combustion process. The open incomplete
burning of crop residues releases large amounts of particulate matter and organic pollu-
tants into the atmosphere, which adversely affect the regional atmospheric environment
and climate change, and harm the health of surrounding residents [58,84,85]. Chang et al.
assessed the open biomass burning in tropical Asia [62], and clarified that agricultural
residue burning was the second largest source of pollutants after forest fires. Moreover,
satellite observations may miss small fires, so agricultural burning may be underestimated.
Agapol et al. used remote sensing technology to observe the PM2.5 emissions from the
open burning of rice residues in Thailand [40], and found peaks in the central and northern
regions. The burning of corn residues was the main source of PM2.5. In the source analysis
of PAHs in northern Thailand [39], Siwatt et al. pointed out that agricultural residue burn-
ing contributed 22.5% of the total emissions, second only to road mobile sources, and the
major emission was benzopyrene. Niveta et al. indicated that the atmospheric pollutants
produced by the burning of crop residues in different regions of India varied greatly, mainly
depending on the type of crop and combustion efficiency [65]. In general, agricultural
residue burning emits more high-molecular-weight PAHs, of which 4~6 ring PAHs account
for more than 95% [38]. China is also a large agricultural country with open straw burning
accounting for more than 44% of the total straw burning in Asia [41]. Agricultural residues
are often used for kitchen firewood or heating, so crop residue burning is an important
source of carbonaceous aerosols in China [86]. In the past 30 years, black carbon emissions
from farmland combustion in China have increased by 25 times [64], with open burning of
crop residues in Shandong being the largest contributor [63]. Similar to the result of the
Indian study [38,65], there were significant differences in emissions from different types
of biomass burning in different regions of China [87]. Crop straw burning was the main
source in Northeast Plain and North China Plain, while household firewood burning was
the key emission source in Sichuan Basin. In terms of crop types, corn, rice and wheat
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straw burning provided the highest emissions, accounting for 80% of the total emissions
from straw burning [41]. Based on emission data for the past decade, although the total an-
thropogenic PM2.5 emissions showed a slight downward trend [88,89], the PM2.5 emissions
from biomass burning increased slowly (Figure 4a), which means that biomass burning
was providing an increasing contribution. What’s more, high emissions from agricultural
burning in China were shifting from Sichuan Plain to North China Plain and Northeast
Plain (Figure 4b), as a result of large farmland areas and abundant agricultural activities in
these regions. Besides, it was also associated with large-scale changes in land use [90].
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2.5. Agricultural Machinery

With the development of modern agriculture, the application of agricultural machinery
is more and more extensive. Agricultural mechanization promotes agricultural economy,
but also brings environmental pollution [43,91]. Agricultural machinery is a typical non-
road mobile source, with diesel as the main fuel, which emits NOx, hydrocarbons, sulfur
dioxide (SO2), CO2, carbon monoxide (CO) and atmospheric particulate matter [44,50,67].
Wang et al. established an emission inventory of non-road sources in China [66] and pointed
out that agricultural machinery was the primary emission source, and the level of pollutants
was related to the quality of fuel. Guo et al. estimated the emissions from non-road
mobile sources for 2015 in the Beijing-Tianjin-Hebei region of China [44]. The emissions
of agricultural machinery were higher than those of construction machinery, accounting
for 60% to 71% of the total emissions. Zhang et al. estimated the emissions of agricultural
machinery in the Yangtze River Delta region of China through satellite observations [45],
and observed the largest emissions in central and northern Anhui and Jiangsu. Figure 5
shows the ratio of agricultural machinery emissions to road vehicle emissions during
busy season. The red and orange parts indicate that agricultural machinery emissions are
higher than road vehicle emissions, while the green parts are the opposite. During the
busy season of agricultural activities, the pollutant emissions from agricultural machinery
were comparable to or even higher than those from road vehicles. Nevertheless, it is
a challenge to accurately distinguish between agricultural vehicles and road vehicles.
Lang et al. developed a higher-resolution emission inventory of agricultural machinery in
China [42]. There were high emissions in northeast, northern and central regions of China,
which mainly occurred in late April, mid-June, and early October. Pollutant levels were
significantly correlated with the area of cultivated land and grain production. Compared
with road mobile sources, agricultural machinery emitted 72% of PM10, 83% of PM2.5, 36%
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of hydrocarbons, and 35% of NOx, respectively, indicating that the air pollutants emitted by
agricultural machinery cannot be ignored. Several studies [42–44,92] consistently suggested
that tractors and agricultural vehicles contributed the most to pollutants emissions. In
China, tractors accounted for more than half of the total emissions from agricultural
machinery, while agricultural vehicles contributed 82% of hydrocarbon emissions. In
addition, planting machinery also had considerable emissions, which was also the focus
of emission control. Although agricultural mechanization is very developed in many
countries around the world, there are few related studies in other countries and regions, so
more research on air pollutants from agricultural machinery can be carried out in the future.
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2.6. Reservoirs and Agricultural Irrigation

The construction of reservoirs has solved the problem of drinking water and farmland
irrigation in rural areas, which is of great significance to agricultural development [93–95].
Oxygen-containing sediments with abundant microorganisms in aquatic ecosystems can
produce CO2 through respiration, and also CH4 under hypoxic conditions. In the presence
of dissolved oxygen, CH4 can be oxidized to CO2 by microorganisms. Hofmann suggested
that shallow-water zones were the high emission source of CH4 [46]. Because CH4 had
a short residence time with a low oxidation efficiency in shallow waters of lakes and
reservoirs, it would not be oxidized into CO2 and directly discharged into the atmosphere.
Beaulieu et al. performed sampling and observation in the Harsha Lake Reservoir of the
United States [47] and found higher CH4 emissions in the upper reaches of the reservoir,
mainly due to more sediments in the upper reaches. Moreover, the results showed that the
CH4 emissions of reservoirs were much higher than that of open waters, indicating that
reservoirs were not a negligible CH4 emission source. In addition, nitrogen fertilizer applied
to farmland can enter the agricultural irrigation watersheds through leaching and runoff,
resulting in an increase of the nitrogen load in the aquatic environment, and the release of
N2O into the atmosphere by nitrification and denitrification [14,48]. Cao et al. found in
the experiment of vegetable greenhouses that excessive fertilization and irrigation were
the main causes of N2O emissions, and that N2O emissions were significantly correlated
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with soil water content [48]. Wu et al. carried out floating chamber observations in
agricultural irrigation watersheds of southeastern China [14], and confirmed that the
high N2O emissions occurred mostly during crop growth, accompanied by agricultural
irrigation, drainage or heavy rainfall, which may be influenced by agricultural practices
and a monsoon climate. In general, N2O fluxes are higher at night than daytime [68,96].
Agricultural activities in the daytime usually introduce plenty of sewage and nitrogenous
nutrients into the water, creating an environment with low oxygen and rich nitrate nitrogen,
which promotes denitrification and N2O production. Wu et al. also calculated the N2O
emissions with a model [14]. The calculated diel variation was approximate to the result of
the floating chamber observation, but the seasonal variation data were significantly lower
than the observation data, probably due to the uncertainty of emission factors.

3. Health Effects of Agricultural Air Pollutants

Agricultural activities emit a great deal of air pollutants via multiple pathways, which
reduces the surrounding air quality, affects regional climate change, and most importantly,
threatens the health of surrounding residents. Globally in 2010, agricultural activities
resulted in 20% of premature deaths relevant with air pollution [22]. In some countries of
Europe and East Asia, this proportion was even close to 50%. For example, agricultural air
pollution accounted for 43%, 52%, 45%, and 38% of premature deaths in Russia, Ukraine,
Germany and Japan, respectively [22]. Agricultural activities are inseparable from the use
of pesticides. POPs are brought into the atmosphere after pesticides spraying, transferred
through sedimentation and food chains, and finally ingested by human beings via mouth,
nose and skin, which causes harmful effects on the human health. Niu et al. explained that
the intake of contaminated food was the primary route for people to be affected by pesticides,
which may pose a greater threat to human health over time [97]. Wang et al. disclosed that
exposure to POPs unbalanced the human immune system and adversely influenced human
development [56]. Cortes et al. performed a risk assessment of pesticide inhalation exposure
in central Chile [54] and revealed that children aged 1–6 were most sensitive, implying the
genetic toxicity of pesticides. In addition, long-term exposure to pesticides could increase the
probability of malformation, cognitive impairment and cancer in the offspring of agricultural
workers, as well as increase workers’ anxiety and harm their mental health [98]. Agricultural
residue burning produces a mass of particulate matter and noxious gases, of which organic
components are the most toxic. Niu et al. ascertained that PAHs from incomplete combustion
could obviously cause cell damage and inflammation [99]. Tong et al. established a high
negative correlation between cell viability and organic components in particulate matter
by a series of experiments [100]. Melki et al. explained that exposure to particulate matter
would lead to genetic mutations, extremely owing to organic components [101]. The results
of many cytotoxicity experiments [102–104] also showed that exposure to atmospheric
particles would result in reduced cell viability, oxidative stress and DNA damage, among
which organic components, especially PAHs, played a key role. Farmland fertilization
and animal husbandry produce vast quantities of nitrogen-containing gases, which can
form secondary atmospheric particles such as ammonium aerosols and nitrate aerosols
in the atmosphere. These particles are highly hydrophilic, in which ammonium ions,
sulfate ions and nitrate ions constitute 50% to 80% of the water-soluble components. Most
water-soluble ions themselves have no toxicity, however, they can flow through the human
body with the blood after entering and bring about adverse health effects. Lin et al.
conducted a study on the relationship between particulate matter and stroke mortality in
Guangzhou [105], and determined that ammoniums, nitrates, and sulfates in particulate
matter were significantly correlated with stroke mortality. Qiao et al. identified that sulfates
and ammoniums played important roles when exposure to particulate matter affected the
weight of newborns [106]. NOx and VOCs emitted by agricultural activities are precursors
of tropospheric photochemical reactions, which can generate ozone and more harmful
secondary organic aerosols [23], thus increasing the incidence of respiratory diseases [107].
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Nitric oxide and nitrous oxide can also destroy the stratospheric ozone layer, potentially
contributing to diseases such as skin cancer and cataract [108].

4. Emission Reduction Measures

In addition to environmental pollution and health hazards, agricultural emissions also
impose a certain economic burden. In order to meet the emission requirements of the Kyoto
Protocol, agricultural income of Spain for 2020 was expected to fall by 5.9% because of the
contracted agricultural activities [109]. In China, health damage cost caused by nitrogen
emissions for 2008 was more than 20 billion dollars, about 0.5% of gross domestic product,
and the cost by agricultural emissions accounted for more than 50% of the total cost [29].
Therefore, it is necessary to propose and implement emission reduction measures (Table 2)
for sustainable development as soon as possible. The authors propose these mitigation
measures based on references, relevant government policies, and their own understanding.
Most of the proposals are supported by references or case studies.

Table 2. Summary of emission reduction methods.

Sources Abatement Options Description

Agricultural residue burning Government regulations Extending the no-burning period
Recycling of residues Processing into feed, ethanol and fuel

Pesticide use Government regulations Prohibition or restriction specific pesticides
Producing better alternatives

Farmland fertilization
Scientific fertilization

Using low-emission fertilizers
Fertilization in small doses and multiple times

Deep fertilization

Farmland management Adjusting the pH of soil
Adding microorganisms

Livestock breeding Manure management Advanced manure treatment systems
Feed management Low-fiber feed and additives

Agricultural machinery Lower-emission options
Using high-quality fuels

Lower-emission machinery
Modifying engines

Reservoirs
Sediment management Reinforcing the embankment

Cleaning the sediments
Water management Adjusting the size of the reservoir

Agricultural residue burning is relatively easier to be controlled by government laws
and regulations, for instance, extending the no-burning period and recycling of residues.
According to estimates [60], removing farmland burning of the Shandong Peninsula region
could reduce 40% of organic carbon emissions of the Bohai Rim region in summer, mainly
through the recycling and utilization of residues. For example, besides providing nutrients
by returned to the field, corn stalks also have many commercial values, such as feed
processing, ethanol preparation, and usage as fuel for power plants [41]. Yet government
support and scientific guidance are required in the early stage. As mentioned above,
agricultural residues may contain pesticide residues, which may cause secondary pollution
if they are directly put back into farmland, so screening is required. In addition, the use of
corn stalks to produce ethanol requires mature technology and certain cost, so it requires
scientific guidance, as well as support of government policies and subsidies. Similarly, the
use of pesticides can also be controlled by government laws. The Stockholm Convention
recognized certain pesticides as POPs and required their prohibition or restriction. In
China, 89 pesticides are banned or restricted according to the Regulations on Pesticide
Management, and users must strictly follow the requirements to use pesticides, otherwise
they will be punished. At the same time, the government can order pesticide manufacturers
to produce new pesticides with lower doses and higher efficacy, and educate pesticide
users to prevent them from using more dangerous alternatives without permission.
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Farmland fertilization produces large amounts of NH3 and N2O. The control of
fertilization and farmland management can achieve positive effects on emission reduction.
Firstly, give priority to the use of low-emission fertilizers, as organic fertilizers usually have
much lower emissions than synthetic fertilizers [13]. It is more scientific to apply fertilizers
in small doses and multiple times, which can improve fertilizer efficiency and generate
lower emissions compared with large-dosage fertilization in one go [12]. Fertilizers should
be buried deep in the soil to increase the residence time of the fertilizer in the soil and
improve the effect of fertilization [110]. In addition, we can manage farmland soil by
adjusting the pH of soil, adding microorganisms and other methods, and utilize soil to
consume pollutants generated by fertilizers. Livestock breeding is also an important
source of NH3, N2O, and CH4 emissions. A study in northern China [111] indicated that
improved livestock manure treatment systems could decrease NH3 emissions by 40%,
thereby reducing the emissions of nitrogen-containing aerosols. Livestock manure can
be intensively composted, buried deep, or stored in solids. Intensive compost produces
the most GHGs, while solid storage emits the least [32]. Livestock manure can also be
utilized in biogas digesters to take advantage of the discharged CH4, which can both reduce
pollutant emissions and produce energy. GHGs emitted by livestock principally come from
enteric fermentation and manure, so feed management also matters aside from manure
management. The use of low-fiber feed and additives can effectively reduce the GHGs
produced enteric fermentation and manure [32], but this measure increases the cost and
may have adverse health effects on cattle.

For agricultural machinery, pollutant emissions can be reduced by using high-quality
and environmentally friendly fuels, but this means higher costs. In addition, users can
also choose lower-emission machinery or modified engines. The emission reduction
measures for reservoirs can be formulated according to the mechanism of GHGs generation.
Reinforcing the embankment to prevent sediments from flowing into the water area and
regularly cleaning the sediments in the water can reduce the generation of GHGs. By
adjusting the size of the reservoir to reduce the surface area and increase the depth of the
water area, the GHGs emission can be reduced as well. However, these measures require a
lot of manpower and cost, so better mitigation measures are needed in the future.

5. Outlooks

This review summarizing the research progress in the past decade, discusses the
current situation, health hazards and emission reduction measures of agricultural air
pollutants from different sources. With the growing world population, the demand for
food will further increase. Agricultural activities will constantly emit more air pollutants
in the absence of better mitigation measures. Therefore, it is necessary to carry out more
studies on agricultural air pollution. Current studies are mostly focused on the sources
and identification of agricultural pollutants, but still relatively weak in the environmental
and health effects. In terms of research methods, sampling analysis and model simulation
are the most common. Sampling analysis is often adopted in the study of emissions
from agricultural residue burning and pesticide use. In particular, passive air sampling
is commonly used for the collection of POPs, mainly because this method is simple and
economical. The research on emissions from animal husbandry is often performed through
field observation or model simulation. As an emerging method, model is also widely used
for other research. However, due to the complex reaction mechanisms and synergistic
effects of multiple factors in actual emissions, there are gaps between the results of model
simulation and actual observation, which need to be quantified by a large amount of
research data and narrowed via optimizing models. For field observation experiments,
multiple observations at multiple sites can be performed to determine the uncertainties
of pollutant emissions. In addition, there is still some work that can be carried out in
the future. For example, the better feed formula to reduce GHGs emissions from the
livestock production can be studied. Emission inventories of agricultural machinery can
be established in other regions than China with developed agricultural mechanization.
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Besides, cohort studies of rural farmers and other residents can be conducted. The exposure
data obtained by portable samplers can be combined with daily health data to analyze the
health effects of agricultural air pollutants.
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