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Abstract: The widely used Global Historical Climatology Network (GHCN) monthly temperature
dataset is available in two formats—non-homogenized and homogenized. Since 2011, this homoge-
nized dataset has been updated almost daily by applying the “Pairwise Homogenization Algorithm”
(PHA) to the non-homogenized datasets. Previous studies found that the PHA can perform well
at correcting synthetic time series when certain artificial biases are introduced. However, its per-
formance with real world data has been less well studied. Therefore, the homogenized GHCN
datasets (Version 3 and 4) were downloaded almost daily over a 10-year period (2011–2021) yielding
3689 different updates to the datasets. The different breakpoints identified were analyzed for a set of
stations from 24 European countries for which station history metadata were available. A remarkable
inconsistency in the identified breakpoints (and hence adjustments applied) was revealed. Of the
adjustments applied for GHCN Version 4, 64% (61% for Version 3) were identified on less than 25% of
runs, while only 16% of the adjustments (21% for Version 3) were identified consistently for more than
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75% of the runs. The consistency of PHA adjustments improved when the breakpoints corresponded
to documented station history metadata events. However, only 19% of the breakpoints (18% for
Version 3) were associated with a documented event within 1 year, and 67% (69% for Version 3) were
not associated with any documented event. Therefore, while the PHA remains a useful tool in the
community’s homogenization toolbox, many of the PHA adjustments applied to the homogenized
GHCN dataset may have been spurious. Using station metadata to assess the reliability of PHA
adjustments might potentially help to identify some of these spurious adjustments.

Keywords: temperature homogenization; non-climatic biases; station metadata; climate change;
European temperature changes

1. Introduction

The National Oceanic and Atmospheric Administration (NOAA)’s National Centers
for Environmental Information (NCEI) provide one of the most widely used monthly land
surface temperature datasets, the Global Historical Climatology Network (GHCN) [1–4].
As can be seen from Table 1, it is either the primary (1◦) or a major secondary (2◦)
instrumental data source for each of the current global and hemispheric land surface
temperature estimates [3–19].

Table 1. Usage of the Global Historical Climatology Network (GHCN) dataset by current global
and hemispheric land surface temperature estimates. Each of the listed temperature time series uses
either the unhomogenized (“raw”) or homogenized GHCN dataset as either the primary (1◦) or a
secondary (2◦) data source. If additional homogenization steps are applied to these GHCN station
records before use, this is noted in the right-hand column.

Time Series GHCN (Raw) GHCN (Homogenized) Extra Homogenization

NOAA National Centers for
Environmental Information (NCEI),

“NOAAGlobalTemp” [3–6]
× 1◦ data source No

NASA Goddard Institute for Space
Studies (GISS), “GISTEMP” [7,8] × 1◦ data source Yes

Japan Meteorological Agency (JMA) [9] × 1◦ data source No

Climate Research Unit (CRU),
“CRUTEM” [10,11] × 1◦ source for U.S.; 2◦ source

for rest of world No

Chinese Meteorological
Administration (CMA),

“C-LSAT” [12–14]
2◦ source for global data 1◦ source for U.S. Yes, except for U.S.

component

Berkeley Earth, “BEST” [15–17] 2◦ data source × Yes

Connolly et al. (2021), “Rural-only
Northern Hemisphere” [18,19] 1◦ data source × Yes

The first version of the dataset (released in 1992 by NOAA’s National Climatic Data
Center—which became NCEI in 2015) did not attempt to correct for non-climatic biases in
the station records [1]. However, starting with Version 2 (released in 1997), NOAA have
provided two alternate variants of the dataset [2]. The first variant contains the original
(henceforth, “raw” or “unhomogenized”) temperature records without any attempt to
correct for non-climatic biases. For the other variant (henceforth, “homogenized”), all
station records are processed using an automated statistical homogenization program.

Since Version 2, the GHCN includes a separately processed dataset for the contiguous
United States (i.e., all states except Alaska and Hawai’i) called the United States Histori-
cal Climatology Network (USHCN) [20,21]. This is a high-density network of relatively
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long station records (~1200 stations, spanning the period 1895–present) for which NOAA
maintains detailed “station history metadata”, i.e., records describing details and dates of
any documented changes in the types of thermometer used, observation practices, station
location, etc. As we will discuss later, access to such station history metadata can potentially
be very useful for identifying and correcting for non-climatic biases in the station records.
However, for the rest of the GHCN stations, NOAA did not acquire any of this station
history metadata. Instead, the station metadata for the rest of the GHCN stations are limited
to “station environment metadata”, i.e., details on the most recent station location, e.g.,
current station name, latitude, longitude and elevation [2–4]. Given this extra information
for the contiguous U.S. component, NOAA processes and homogenizes the USHCN dataset
separately from the rest of the GHCN dataset and merges the two components later [2–4].

For Version 2 of the GHCN, NOAA applied very different homogenization techniques
to both components. The USHCN component was homogenized using the station history
metadata to correct for changes in “time of observation” (TOB) [22] and changes in instru-
mentation [23] using empirically-derived corrections. Non-climatic biases arising from
other documented changes were estimated using the relative homogeneity adjustment
algorithm of Karl & Williams (1987) [24]. A separate population-based correction for poten-
tial urbanization bias was also applied [25] along with some infilling of data gaps [20]. In
contrast, for the rest of the GHCN, NOAA applied the Easterling and Peterson (1995) [26]
relative homogeneity adjustment algorithm. This algorithm was designed to statistically
identify both the date and magnitude of any non-climatic jumps (“breakpoints”) in the
station record relative to a reference time series constructed from the average of five neigh-
boring stations [2,26]. As a result, it does not require or use any station metadata other than
latitude and longitude.

In 2009, NOAA developed Version 2 of the USHCN [21] which replaced the previous
explicit corrections for changes in instrumentation and urbanization bias as well as the
Karl & Williams (1987) homogenization algorithm with the new Pairwise Homogeneity
Adjustment (PHA) algorithm described by Menne & Williams (2009) [27]. This PHA
algorithm was designed to identify non-climatic breakpoints that were either documented
(i.e., associated with a known station history metadata event) or undocumented. The
algorithm requires less strict statistical thresholds for potential breakpoints occurring
shortly before or after a documented metadata event. Menne & Williams (2009) showed
that the algorithm fared quite well when applied to synthetic time series where artificial
biases had been intentionally added [27]. Menne et al. (2009) later argued that the PHA
coincidentally also indirectly removed much of the urbanization biases in station records—
citing the PHA results for one station (Reno, Nevada, USA) as an example [21]. Therefore,
for USHCN version 2, the previous explicit corrections for urbanization bias and changes
in instrumentation were dropped. Instead, it was argued that the PHA adjustments for
both documented and undocumented events should be adequate for correcting all of
these non-climatic biases [21], although the TOB adjustments were kept as-is, on the basis
of Vose et al. (2003)’s analysis [28]. Later, Menne et al. (2010) [29] argued that the PHA
adjustments were also indirectly capable of identifying and removing non-climatic biases
arising from degradations over time in the quality of the exposure of many USHCN
stations [30–33] that had been revealed to be widespread and systemic by the voluntary
citizen science “Surfacestations” project [33].

Therefore, when NOAA introduced Version 3 of the GHCN in 2011, they decided
to switch to also using the PHA for homogenizing the non-USHCN component [3]. This
decision was repeated for the current Version 4 that was introduced as a “beta” version in
2015, and formally launched in 2018 [4].

NOAA still has not collected station history metadata for analyzing any of the GHCN
stations (other than the USHCN component). Therefore, the PHA is applied to the non-
USHCN component of the GHCN in “undocumented events only” mode. However, several
“benchmarking” evaluations have found that the PHA performs quite well at correcting
synthetic time series “blind” when certain artificial biases are introduced [34–36], i.e., when
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run in “undocumented events only” mode. Moreover, as mentioned above, Menne et al.
have argued that the PHA is indirectly quite successful at correcting for long-term non-
climatic biases from urbanization [29] and reductions in the quality of station exposure [29].
Hausfather et al. (2013) support this claim [37].

On the other hand, Soon et al. argue that much of the apparent “removal” of ur-
banization biases and poor station exposure biases via homogenization is a statistical
artefact of the homogenization process which leads to the “blending” of non-climatic
biases [18,19,38,39]. That is, if several of the reference neighboring stations are affected by
gradual multidecadal biases such as urbanization bias then, when the sign and magnitude
of a given breakpoint is being calculated by the homogenization algorithm, some of these
biases may inadvertently be added to the homogenized record. This “aliasing” of biases
has now been demonstrated as a systemic statistical artefact of standard homogenization
algorithms by several studies [32,38,40].

As a result, the more breakpoints are adjusted for each record, the more the trends of
that record will tend to converge towards the trends of its neighbors. Initially, this might
appear desirable since the trends of the homogenized records will be more homogeneous
(arguably one of the main goals of “homogenization”), and therefore some have objected
to this criticism [41]. However, if multiple neighbors are systemically affected by similar
long-term non-climatic biases, then the homogenized trends will tend to converge towards
the averages of the station network (including systemic biases), rather than towards the
true climatic trends of the region.

Soon et al. (2018) suggest that one way to minimize this blending problem of ho-
mogenization would be to ensure that the neighbor network used for the homogenization
process is not systemically biased relative to the target stations, e.g., rural stations should
be homogenized using a mostly rural station network [38]. Indeed, they note that Ren et al.
have effectively carried this out for their homogenization of Chinese records for the post-
1960 period [42,43]. However, this is a non-trivial challenge for future research, which is
beyond the scope of this paper.

At any rate, in Soon et al. (2015), three of us noted an additional concern over
the PHA adjustments applied by NOAA to the GHCN dataset [18]. While evaluating
rural temperature trends for Ireland, Soon et al. (2015) noted several oddities with the
homogenized GHCN record (then Version 3) for the longest rural Irish record in the dataset,
i.e., Valentia Observatory [18]:

1. There was a concerning lack of consistency in the breakpoints and adjustments applied
by NOAA to the record between each of the five different updates of the GHCN dataset
the authors had downloaded (October 2011, January 2012, January 2013, July 2014 and
January 2015);

2. None of the breakpoints identified by NOAA’s PHA for any of those updates corre-
sponded to any of the four documented events in the station history metadata which
the Valentia Observatory observers provided;

3. The PHA homogenization failed to identify, in any of those updates, non-climatic
biases associated with the major station move in 1892 or the second station move in
2001 for which parallel measurements showed a −0.3 ◦C cooling bias.

Independently, another one of us (P.O’N.) had been regularly downloading and archiv-
ing the updates of the datasets for research purposes from NOAA’s website since May
2011—initially roughly fortnightly, but later updated to roughly weekly (March 2012) and
eventually (March 2014) daily using an automated script. By early 2015, he had also begun
noticing the remarkable lack of consistency in PHA adjustments between different updates
of the GHCN dataset. Therefore, he continued archiving NOAA’s roughly daily updates
to the dataset. This extensive archive of NOAA’s updates to the GHCN dataset is the
main basis for the analysis in this paper. This comprises 1877 updates of Version 3 and
1812 updates of Version 4.

Meanwhile, Soon et al. (2015) had fortuitously been able to directly ground-truth
the various adjustments to the Valentia Observatory record because the station observers
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had provided access to both the station history metadata and accompanying parallel
measurements for two of the more recent events [18]. However, at the time, access to
publicly archived station history metadata for other stations was extremely limited.

Still, over the last decade or so, particularly in Europe, there has been an increasing
realization of the importance of not only tracking down and digitizing early historical
weather records [44–53], but also identifying and digitizing the relevant station history
metadata associated with temperature records [46–58]. Therefore, for quite a few of the
GHCN stations, relevant history metadata are now available.

Some of these station history metadata have been published in the scientific literature,
e.g., [52,54,58–65], while others are archived by various organizations such as national
meteorological services, e.g., [51,66–68]. However, much of the collected station metadata
are part of ongoing digitizing projects, e.g., [46–50,55–57,69–71], and are not yet publicly
archived. In addition, analyzing and interpreting the relevance of historical metadata for
evaluating homogenization adjustments can be somewhat subjective. Therefore, for this
collaborative study, the first four listed co-authors sought the assistance of the remaining
co-authors in compiling and analyzing the station history metadata from as many GHCN
stations as possible for the European region. At the time of writing, we have compiled
relevant station history metadata for more than 800 European GHCN stations, and these
stations will be the basis for this analysis.

In this paper, we will use this unique combination of the extensive archive of more than
1800 iterations each of Version 3 and 4 of the GHCN datasets along with our compilation
of station history metadata to quantify and evaluate the PHA adjustments that have been
applied by NOAA to the GHCN dataset since 2011 [3,4]. We appreciate that the PHA [27]
has performed quite well over the years in various studies, including benchmarking
tests [27,34–36]. However, these earlier assessments of the PHA were generally “one-off”
assessments, i.e., they did not evaluate the consistency of the breakpoints and adjustments
applied with repeated runs of the algorithm.

Nominally, our analysis in this study is confined to Europe, since this is the region
for which we have compiled the relevant station history metadata. However, this region
comprises many of the longest and most complete station records in the GHCN dataset,
and we therefore think the results from this case study are of relevance to all users of
the GHCN dataset. We also expect our findings will be of interest to the temperature
homogenization community.

The main aims of this study are:

1. To describe how the PHA adjustments applied to the stations in the widely-used
GHCN datasets vary between updates, using this subset of European stations as a
detailed case study for the entire global dataset.

2. To evaluate how closely related (or otherwise) the breakpoints identified by the PHA
process are to documented station history metadata events.

3. To discuss the implications these findings have for the scientific community’s goals of
accurately estimating regional climatic temperature trends.

4. To make recommendations for steps the temperature homogenization community can
take to resolve some of the identified problems, moving forward.

2. Materials and Methods
2.1. Timeline of How Our Archive of GHCN Datasets Was Compiled

NOAA NCEI update the GHCN-monthly datasets and rerun the PHA homogenization
program approximately daily and upload it to their website (currently https://www.ncei.noaa.
gov/products/land-based-station/global-historical-climatology-network-monthly [accessed
on 24 December 2021]).

As discussed above, each time the PHA program is run, the homogenized GHCN
dataset generated is different from the previous iteration. Initially, we might expect the
adjustments applied to each station record to remain fairly consistent from run to run.

https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-monthly
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-monthly
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For instance, we might expect the adjustments to vary occasionally as each of the
still-active stations’ records are updated with the latest month’s data. Also, as the dataset
is updated, the “40 out of 100 nearest neighbors” used by the PHA for homogenizing an
individual station could change from run to run [27]. However, as we will discuss in detail
later, the adjustments applied to each station record will often change quite dramatically
between runs as NOAA updates the dataset and re-runs their homogenization program.
Each run will often identify new breakpoints throughout the entire record and often will
drop breakpoints which had been identified on previous runs.

As a result, the homogenized temperatures for any given station in, e.g., the mid-19th
century might be very different in Tuesday’s dataset than they were in Monday’s dataset,
for instance. For other stations, the homogenized records might remain essentially the
same every time the homogenization program is run over the years.

Fortunately, as mentioned in the introduction, one of us (P.O’N.) began regularly
downloading and archiving the latest versions of the GHCN datasets from NOAA’s website
in 2011—initially roughly fortnightly, but daily since March 2014. Table 2 shows the number
of different iterations of the datasets in his archive that were downloaded for each year.
The timeline of how frequently the datasets have been downloaded is described below:

• May 2011: P.O’N. began downloading and archiving the dataset (then version 3) from
NOAA’s website roughly fortnightly.

• March 2012: The download rate was increased to roughly weekly.
• March 2014: An automated script was set up to download the dataset daily. However,

NOAA’s updates appear to have been only approximately every 24 hours. Therefore,
on some days, the datasets downloaded were identical to the preceding day. We have
removed these identical copies from our analysis. Furthermore, on some days, the
download was not carried out due to P.O’N’s computer being offline for maintenance
or travel. Hence, the annual totals for each dataset in Table 2 are less than 365 for
all years.

• October 2015: NOAA launched the “beta” version 4. Therefore, P.O’N. began down-
loading and archiving both version 3 and 4 daily.

• October 2018: NOAA launched the official version 4. For the purposes of this analysis,
we have treated the “beta” and official version 4 datasets as equivalent, but for ref-
erence we have listed the numbers of “beta” datasets downloaded in the right-hand
column of Table 2.

• August 2019: NOAA discontinued version 3.
• July to August 2021: P.O’N. processed the data for each of the stations in this analysis in

several stages over the period from 7 July–20 August 2021. However, he still continues
to download and archive the dataset daily at the time of writing.

2.2. Station History Metadata Available

Figure 1 shows the locations of all the European GHCN stations for which we compiled
station history metadata (filled red circles) as well as the remaining stations for which we
had not yet identified station history metadata at the time of writing. Table 3 lists the total
station counts for each country. Details on the sources for these station history metadata
are provided in the Supplementary Materials.
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Table 2. Numbers of distinct GHCN datasets downloaded from NOAA’s website for each year.
Version 4 was originally introduced as a “beta” version in October 2015 until the official version was
released in October 2018. Version 3 was discontinued in August 2019. For this study, we consider all
distinct datasets up to July/August 2021 (some stations were analyzed up to July and others up to
August). This comprises 1877 for version 3 (covering the period 2011–2019) and 1812 for version 4
(covering the period 2015–2021).

Year GHCN Version 3 GHCN Version 4 Version 4 (“Beta”)

2011 6 - -
2012 39 - -
2013 34 - -
2014 283 - -
2015 316 71 (71)
2016 342 303 (303)
2017 346 322 (322)
2018 315 314 (256)
2019 196 287 -
2020 - 310 -
2021 - 205 -

Total distinct datasets 1877 1812 (952)
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dataset. (a) Version 3 of the GHCN dataset; (b) Version 4 of the GHCN dataset.
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Table 3. Numbers of Global Historical Climatology Network (GHCN) stations for each country
analyzed for this study. The stations analyzed were those for which we have obtained station
history metadata.

GHCN v3 GHCN v4

Country With
Metadata

No
Metadata Analyzed With

Metadata
No

Metadata Analyzed

Austria 11 2 85% 53 11 83%

Belgium 1 0 100% 1 19 5%

Bulgaria 11 0 100% 32 2 94%

Croatia 13 0 100% 19 2 90%

Czech Republic 4 11 27% 23 18 56%

Denmark 4 6 40% 16 13 55%

Estonia 2 3 40% 3 20 13%

Finland 2 16 11% 3 329 1%

France 23 20 53% 106 18 85%

Germany 23 57 29% 77 697 10%

Greece 15 0 100% 40 0 100%

Hungary 7 1 88% 26 1 96%

Ireland 15 0 100% 30 1 97%

Italy 5 95 5% 5 200 2%

The Netherlands 2 0 100% 37 15 71%

Norway 19 14 58% 127 275 32%

Poland 52 9 85% 60 10 86%

Russia
(“European”) 1 65 2% 2 272 1%

Slovakia 8 0 100% 20 0 100%

Spain 1 34 3% 2 135 1%

Sweden 3 16 16% 5 645 1%

Switzerland 10 1 91% 37 7 84%

Ukraine 25 2 93% 119 3 98%

United Kingdom 2 56 3% 4 182 2%

24 countries 259 408 39% 847 2875 23%

2.3. Case Study of Cheb, Czech Republic as an Example of Our Analysis Framework

As a case study, Figures 2 and 3 show a detailed example of how we analyzed each
station. The results are for one station record—the Version 4 record for Cheb, Czech
Republic (GHCN Version 4 station ID = “EZM00011406”).

Figure 2a plots the net adjustment applied to the homogenized record (as a linear trend
in ◦C/century) for each day’s version of the GHCN dataset. It can be seen that this metric
changes quite erratically from day to day. This is a surprising result to us. We might have
expected some occasional variations in the exact adjustments applied to a given station
over the years, e.g., due to changes in the stations used as neighbors and monthly updates
to the most recent temperature values. However, we would have still expected that the
homogenization adjustments calculated by the PHA for any given station should remain
fairly similar every time the algorithm is re-run.
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the distribution of homogenization adjustments applied — binned according to the net adjustment 
to the record. 

Figure 2. Breakdown of the 1770 homogenizations applied by NOAA to the Cheb (EZM00011406),
Czech Republic, Version 4 station over the period of analysis for this study, i.e., 2015–2021. Out of
these 1770 homogenizations, 269 distinct sets of adjustments were applied on various different dates;
(a) shows the net effect (in ◦C/century) of the homogenization adjustments applied to the station
record on each day’s run of the homogenization algorithm; (b) shows how often each of the distinct
sets of homogenization adjustments were applied to the station record by NOAA; (c) shows the
distribution of homogenization adjustments applied—binned according to the net adjustment to
the record.
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sets of adjustments were applied on different dates. Three documented events are associated with 
this station according to the historical metadata: (i) a change in instrumentation in January 1955; (ii) 
a station move in January 1961 and (iii) a station move and change in instrumentation from manual 
to automated weather station in January 2001. These dates are indicated with vertical dashed (blue) 
lines. (a) shows the unhomogenized station record; (b) shows all of the breakpoints identified by 
NOAA during any homogenization, along with how often the breakpoints were identified; (c) 
shows the most frequent of the 269 distinct sets of adjustments applied by NOAA — applied in 6.0% 
of the iterations;); (d) shows the next most frequent — applied to 1.6% of the iterations; (e)-(i) show 
the six next most frequent — each applied to 1.5% of the iterations. 

Figure 2(a) plots the net adjustment applied to the homogenized record (as a linear 
trend in °C/century) for each day’s version of the GHCN dataset. It can be seen that this 
metric changes quite erratically from day to day. This is a surprising result to us. We might 
have expected some occasional variations in the exact adjustments applied to a given sta-
tion over the years, e.g., due to changes in the stations used as neighbors and monthly 
updates to the most recent temperature values. However, we would have still expected 
that the homogenization adjustments calculated by the PHA for any given station should 
remain fairly similar every time the algorithm is re-run. 

Every time the PHA is run, the program calculates a series of breakpoints for each 
station record along with the magnitudes of the adjustments applied to the station record 
from that breakpoint to the end of the record. However, each time the PHA is re-run, the 
breakpoints and adjustments applied to each station record can change. On the other 

Figure 3. The Cheb (EZM00011406), Czech Republic, station as a case study of the types of homoge-
nization adjustments applied to the Global Historical Climatology Network (GHCN) stations. These
are the results for the Version 4 station which was homogenized 1770 times by NOAA over the
period of analysis for this study, i.e., 2015–2021. Out of these 1770 homogenizations, 269 distinct
sets of adjustments were applied on different dates. Three documented events are associated with
this station according to the historical metadata: (i) a change in instrumentation in January 1955;
(ii) a station move in January 1961 and (iii) a station move and change in instrumentation from manual
to automated weather station in January 2001. These dates are indicated with vertical dashed (blue)
lines. (a) shows the unhomogenized station record; (b) shows all of the breakpoints identified by
NOAA during any homogenization, along with how often the breakpoints were identified; (c) shows
the most frequent of the 269 distinct sets of adjustments applied by NOAA—applied in 6.0% of the
iterations;); (d) shows the next most frequent—applied to 1.6% of the iterations; (e–i) show the six
next most frequent—each applied to 1.5% of the iterations.

Every time the PHA is run, the program calculates a series of breakpoints for each
station record along with the magnitudes of the adjustments applied to the station record
from that breakpoint to the end of the record. However, each time the PHA is re-run, the
breakpoints and adjustments applied to each station record can change. On the other hand,
the PHA will often recalculate the same breakpoints and adjustments that it identified
on a previous run. Figure 2b plots a histogram of the “distinct sets of homogenization
adjustments” that occurred for the Cheb record over the 1770 runs we analyzed. Over the
1770 runs (2015–2021), 34% of the sets of adjustments to Cheb were repeated more than
20 times, but 7% of the sets of adjustments only occurred once during the entire period.

Figure 2c presents the information conveyed in Figure 2a in histogram form, i.e., it
shows the distribution of the different net homogenization adjustments applied to the Cheb
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record by NOAA over the 1770 runs. In this case, the average net adjustment for Cheb was
relatively similar, with 59% of the net adjustments falling in the range of −0.8 ◦C/century
to −0.5 ◦C/century. As will be discussed below, the breakpoints identified for this station
were relatively consistent. However, even for this relatively consistent example, the net
adjustments were often several tenths of a degree higher or lower.

Figure 3 provides more details on the exact adjustments applied to this station record.
Three documented station history events are associated with our metadata for this station.
The dates of these three events are indicated by vertical (blue) dashed lines in each of the
panels except Figure 3b, and details on the events are provided in the figure caption.

Figure 3a shows the original unhomogenized station record. Figure 3b identifies
any dates for which the PHA identified a breakpoint during any of the 1770 runs. In
this case, the PHA collectively identified 18 different breakpoints, but not consistently so.
Two of the breakpoints were identified for 100% of the runs: a cooling bias of −0.45 ◦C
(σ = ±0.03 ◦C) in April 1955 (which coincided with one of the documented metadata events,
i.e., a change in instrumentation) and a warming bias of +0.34 ◦C (σ = ±0.05 ◦C) in May 2010
(undocumented event). In addition, 77.2% of the runs identified a warming bias of +0.14 ◦C
to +0.22 ◦C (undocumented event) on one of three similar dates (November 2012, June 2013
or August 2013). On the other hand, 7 of the 18 breakpoints were identified on less than 5%
of the runs.

For this paper, we define five categories of “breakpoints” based on how frequently the
PHA identifies the date as a breakpoint:

1. “Very consistent”: the breakpoint was identified for >95% of the PHA runs;
2. “Consistent”: the breakpoint was identified >75%, but ≤95% of the runs;
3. “Inconsistent”: the breakpoint was identified for >25%, but ≤75% of the runs;
4. “Intermittent”: the breakpoint was identified >5%, but ≤25% of the runs;
5. “Very intermittent”: the breakpoint was identified for ≤5% of the runs;

For Cheb, the 18 breakpoints comprise: 2 “very consistent”; 5 “inconsistent”; 4 “in-
termittent”; and 7 “very intermittent”. Given that two of the breakpoints were “very
consistent” (indeed, they occurred in 100% of the runs), the adjustments for this station are
quite similar between different runs. However, as discussed above, there is quite a lot of
variability in the exact set of adjustments applied in each run. In Figure 3c–i, we plot the 7
most frequently applied sets of adjustments. The adjustments of Figure 3c were applied
to 107 of the 1770 runs (6.0%), Figure 3d was applied 28 times (1.6%) and the other five
sets were applied 27 times each (1.5%). Therefore, they collectively describe 15.1% of the
adjustments applied to the Cheb record. While the shapes of the adjustments are broadly
similar, and all of the iterations include the two breakpoints mentioned above (one of
which corresponds to a documented event), as mentioned before, there is still considerable
variability in the overall net adjustments to the record.

The above discussion was just for one of the GHCN Version 4 stations, but should give
a concrete feeling for the type of information revealed by the analysis. In the next section,
we will summarize the results from all of the analyzed stations, i.e., 847 Version 4 and 249
Version 3 stations.

3. Results

Figure 4 shows the numbers of distinct sets of adjustments associated with each of
the records in Version 3 (green) and Version 4 (blue). For Version 4, we can see that the
majority of stations (68%) had more than 25 distinct sets of adjustments over the period
of record (2015–2021, with 1812 distinct iterations of the dataset analyzed), and 14% of
the stations (including Cheb described above, with 269) had more than 200 distinct sets
of adjustments applied. For Version 3, the results are a bit more encouraging in that only
44% of the records had more than 25 distinct sets of adjustments and 12% had more than
200 distinct sets. Nonetheless, for both versions, there is clearly a major inconsistency in
the homogenization adjustments that NOAA has applied to the GHCN station records
over time.
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In Figures 5–7, we assess the consistency of all homogenization adjustments applied
to all of the European stations we analyzed for each Version. As explained in Tables 2 and 3,
for Version 3, this comprises 1877 PHA iterations applied to 259 stations (from 24 countries).
For Version 4, this comprises 1812 applied to 847 stations (again from 24 countries)
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ulations involving the introduction of artificial breakpoints to synthetic data have sug-
gested that the PHA algorithm performs well at identifying many of these breakpoints 
without the use of “metadata” [27,34,35]. Another justification is that several studies (in-
volving NOAA co-authors) of the USHCN dataset have argued that the PHA performs 
well at identifying both documented and undocumented events [21,27,29,37]. 

Nonetheless, in recent years, there has been a renewed interest in tracking down and 
digitizing station history metadata for many countries and individual stations in the 
recognition that this can help identify genuine non-climatic breakpoints, e.g., [46–58]. Un-
fortunately, the levels of detail and comprehensiveness of the station history metadata 
currently available vary substantially between countries. Some of this might be a legacy 
of different practices between different national meteorological services; e.g., Mamara et 
al. have noted that the station history metadata potentially available in the archives of the 
Hellenic National Meteorological Service (HNMS) are quite limited for Greece compared 
to some other countries [55,72]. However, they emphasize the importance of prioritizing 
the gathering and digitization of this information where available: “These cases demon-
strate the necessity that the various meteorological services gather and digitize detailed 
metadata.” [72]. 

Figure 5. Breakdown of how consistent the PHA adjustments applied to the European Global
Historical Climatology Network (GHCN) stations are when considered over all iterations analyzed.
“Very consistent” adjustments were repeatedly identified by the PHA for >95% of the iterations;
“Consistent” was ≤95%, but >75%; “Inconsistent” was ≤75%, but >25%; “Intermittent” was ≤25%,
but >5%; “Very intermittent” was ≤5%. (a) Version 3 of the GHCN dataset; (b) Version 4 of the
GHCN dataset.
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Only 3% of the PHA breakpoints for either version corresponded exactly (to the near-
est month) to documented events. However, in quite a few cases only the year of an event 
was recorded. Furthermore, given that the PHA was being run by NOAA without any 
station history metadata and was relying purely on statistical techniques, it is understand-
able if a breakpoint is not identified accurately to the nearest month. Nonetheless, even if 
we consider those breakpoints identified by the PHA within 12 months of the documented 
event, the matches are disappointedly low: only 18% for Version 3 and 19% for Version 4.  

For reference, we also show those breakpoints that loosely “match” to documented 
events in that the dates were within 2 years or 3 years. However, we caution that to give 
the “best case outcome” for the PHA, we considered a match to have occurred if any doc-
umented event coincided with the breakpoint. As a result, if two breakpoints were iden-
tified within 2 or 3 years of a given metadata event, both breakpoints might be double-
counted in these categories as being “associated with” the same event even if one break-
point occurred before the event and the other occurred after the event.  

Therefore, some of the apparent “matches” within 2 or 3 years are probably spurious. 
Regardless, 69% of the PHA breakpoints for Version 3 stations and 67% of those for Ver-
sion 4 stations had no match to any event at all within 3 years.  

In Figure 7, we cross-reference the results of Figures 5 and 6. That is, we compare 
how the consistency of a given breakpoint compares to whether it matches with docu-
mented station history events. If the consistency is better for breakpoints associated with 
documented events, this might offer some optimism that the PHA’s consistency could be 
improved using station history metadata. Disappointingly, for the Version 3 stations, 
there does not seem to be a clear improvement in the consistency of breakpoints based on 

Figure 6. Breakdown of how often the PHA adjustments for a station corresponded to a documented
event in the station history metadata. “Exact match” refers to breakpoints that occurred for the same
month as a documented event, whereas “No match” indicates that there was no documented event
within 3 years of the breakpoint. Note that if the date of a documented event was only known to the
nearest year, the date was approximated to June of that year, i.e., month 6. (a) Version 3 of the GHCN
dataset; (b) Version 4 of the GHCN dataset.
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Firstly, in Figure 5, we assess the consistency of the PHA adjustments without reference
to any station history metadata. Using the same categories for the consistency of breakpoints
as in Section 2.3, we see that the majority of PHA adjustments were applied less than or
equal to 25% of the time. For Version 3, 38% of adjustments were “very intermittent” (i.e.,
applied ≤5% of the time) and 23% were “intermittent” (i.e., 5–25% of the time)—Figure 5a.
For Version 4, 32% were “very intermittent” and 32% were “intermittent—Figure 5b.

Only a minority of the PHA adjustments were consistently applied to the station
records. For Version 3, only 14% of adjustments were “very consistent” (i.e., applied >95%
of the time) and only 21% were “consistent” (i.e., 75–95% of the time)—see Figure 5a. For
Version 4, only 9% were “very consistent” and only 16% were “consistent”—see Figure 5b.

As discussed in the introduction, aside from the U.S. component of the dataset (not
analyzed here), the PHA is applied by NOAA to the GHCN in the absence of any station
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history metadata [3,4]. NOAA’s primary justification for this is that, when the station
records for the GHCN were initially being compiled, the available station history metadata
were very limited [2–4], except for the U.S. component (USHCN), which is based on data
housed by NOAA [21,22,24,25]. A secondary justification is that some benchmarking
simulations involving the introduction of artificial breakpoints to synthetic data have
suggested that the PHA algorithm performs well at identifying many of these breakpoints
without the use of “metadata” [27,34,35]. Another justification is that several studies
(involving NOAA co-authors) of the USHCN dataset have argued that the PHA performs
well at identifying both documented and undocumented events [21,27,29,37].

Nonetheless, in recent years, there has been a renewed interest in tracking down
and digitizing station history metadata for many countries and individual stations in
the recognition that this can help identify genuine non-climatic breakpoints, e.g., [46–58].
Unfortunately, the levels of detail and comprehensiveness of the station history meta-
data currently available vary substantially between countries. Some of this might be a
legacy of different practices between different national meteorological services; e.g., Ma-
mara et al. have noted that the station history metadata potentially available in the archives
of the Hellenic National Meteorological Service (HNMS) are quite limited for Greece
compared to some other countries [55,72]. However, they emphasize the importance of
prioritizing the gathering and digitization of this information where available: “These
cases demonstrate the necessity that the various meteorological services gather and digitize
detailed metadata” [72].

At any rate, for this paper, we have compiled together, from multiple sources, station
history metadata for 847 of the Version 4 stations and 259 of the Version 3 stations in Europe.
In Figure 6, we compare how often the various breakpoints identified by NOAA for these
station records coincide with any of the documented events in the corresponding metadata.

Only 3% of the PHA breakpoints for either version corresponded exactly (to the nearest
month) to documented events. However, in quite a few cases only the year of an event was
recorded. Furthermore, given that the PHA was being run by NOAA without any station
history metadata and was relying purely on statistical techniques, it is understandable if
a breakpoint is not identified accurately to the nearest month. Nonetheless, even if we
consider those breakpoints identified by the PHA within 12 months of the documented
event, the matches are disappointedly low: only 18% for Version 3 and 19% for Version 4.

For reference, we also show those breakpoints that loosely “match” to documented
events in that the dates were within 2 years or 3 years. However, we caution that to
give the “best case outcome” for the PHA, we considered a match to have occurred if
any documented event coincided with the breakpoint. As a result, if two breakpoints
were identified within 2 or 3 years of a given metadata event, both breakpoints might be
double-counted in these categories as being “associated with” the same event even if one
breakpoint occurred before the event and the other occurred after the event.

Therefore, some of the apparent “matches” within 2 or 3 years are probably spurious.
Regardless, 69% of the PHA breakpoints for Version 3 stations and 67% of those for Version 4
stations had no match to any event at all within 3 years.

In Figure 7, we cross-reference the results of Figures 5 and 6. That is, we compare how
the consistency of a given breakpoint compares to whether it matches with documented sta-
tion history events. If the consistency is better for breakpoints associated with documented
events, this might offer some optimism that the PHA’s consistency could be improved using
station history metadata. Disappointingly, for the Version 3 stations, there does not seem to
be a clear improvement in the consistency of breakpoints based on whether they coincided
with documented events. However, the results are more encouraging for Version 4, in that
39% of the very consistent breakpoints (occurring >95% of the time) had “a match” within
3 years and 28% within 1 year, whereas for the very inconsistent breakpoints (occurring
≤5% of the time) only 28% had “a match” within 3 years and only 14% had a match within
1 year. Given that the sample size was larger for Version 4 (847 stations vs. 259 in Version 3),
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this suggests that the consistency of the PHA adjustments to the GHCN might be partially
improved if station history metadata were used.

A Case Study of the Ukrainian Results

The above discussion describes the combined results across all 24 analyzed countries.
However, the exact results vary slightly from country to country. Therefore, as a case study,
let us now briefly discuss the breakdown of results for one of the 24 countries —Ukraine.

In both considered versions of the GHCN dataset (Versions 3 and 4), there are multiple
stations for Ukraine, one of the largest countries in Europe. Version 3 only contained
25 stations, but this has been increased to 119 for the most recent version 4. Despite the
significant increase in stations in Version 4, we should note that there is still a significant
portion of unused Ukrainian temperature data (especially, historical), which could increase
the representativeness of the regional climate of Eastern Europe in the GHCN [56,57].

In order to evaluate the regional peculiarities of the GHCN homogenization algorithm
(its detecting and adjustment parts), metadata of Ukrainian stations were collected from
their historical descriptions [73,74]. For the Ukrainian metadata, this consists mainly of
dates of station relocations and other non-climatic events which were clearly documented
in the stations’ histories.

As discussed above, the results of the homogenization procedure for a particular
station can vary significantly from day to day (i.e., from one homogenization run to
another). These variations can appear as different sets of detected break points (different
timing, different number), different adjustment factors, or both. It is not completely clear
why this wide range of variations exists.

At any rate, for Version 3 of the dataset, the total number of break points detected
in all homogenization runs is 47, while for Version 4, this quantity is considerably larger,
totaling 592 (Table 4). This is physically explainable because in the latest version of GHCN,
the higher station density has probably increased the average correlation between the
time series, allowing the PHA to detect more breaks. In both versions, the majority of
the detected breaks (76.6% in Version 3 and 67.4% in Version 4) can be reported as “inter-
mittent” or “very intermittent”. They occur in less than 25% of the homogenization runs.
“Inconsistent” breaks, occurring between 25 and 75% of the performed homogenizations,
constitute 10.6% and 19.3% of the total detected breaks in Version 3 and 4, respectively.
Only approximately 13% of the detected shifts can be considered as “consistent” or “very
consistent” in both versions of the GHCN dataset, i.e., persistently occurring in more than
75% of the homogenization runs (Table 4).

Table 4. Break points detected in Ukrainian station series in all analyzed homogenization runs of the
GHCN v3 and v4 datasets.

GHCN Version
Number of
Ukrainian

Station Series

Detected Break Points

“Intermittent”, i.e.,
<25% of

Homogenization Runs

“Inconsistent”, i.e.,
25–75% of

Homogenization Runs

“Consistent”, i.e., >75% of
Homogenization Runs Total

v3 25 36 (76.6% of total) 5 (10.6% of total) 6 (12.8% of total) 47 (100%)
v4 119 399 (67.4% of total) 114 (19.3% of total) 79 (13.3% of total) 592 (100%)

An important question here is how many of the detected breaks can be confirmed by
the collected metadata. In our analysis, we assumed that a break point is confirmed by
some historical event when a time shift between them is not more than 1 year. The results
of the comparison analysis are presented in Table 5. As can be seen from the table, only a
small number of detected shifts (around 5–6% in both versions of GHCN) are associated
with documented metadata events.
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Table 5. Number of break points detected in Ukrainian station series of the GHCN v3 and v4 datasets,
which can be confirmed by the metadata.

GHCN Version

Break Points Confirmed by Metadata

“Intermittent”, i.e.,
<25% of

Homogenization Runs

“Inconsistent”, i.e.,
25–75% of

Homogenization Runs

“Consistent”, i.e.,
>75% of

Homogenization Runs
Total

v3 2 (5.6% of detected) 0 (0% of detected) 1 (16.7% of detected) 3 (6.4% of detected)
v4 17 (4.3% of detected) 6 (5.3% of detected) 7 (8.9% of detected) 30 (5.1% of detected)

It is worth noting that, in other studies involving two of us (Oleg and Olesya S.), the
Ukrainian monthly air temperature data (collections of 178 time series of mean, maximum
and minimum temperature) has been homogenized for the period of 1946–2015 [56,57]
with the HOMER software [75]. In this independent analysis, for all three datasets, the
percentage of detected break points, which can be confirmed by historical events, was
more than 30%. However, these results are difficult to directly compare with the PHA
homogenization procedure in GHCN, because HOMER was run in a semi-automatic mode
where final decisions regarding detected breaks were made by an expert.

4. Discussion

After comparing the different homogenization adjustments applied by NOAA to their
widely used Global Historical Climatology Network (GHCN) monthly temperature dataset,
we found a disconcerting inconsistency between the updates to the dataset from day to day.
Availing of a substantial archive compiled by regularly downloading the datasets from
NOAA’s website over the period 2011–2019 for version 3 and 2015-present for version 4,
we assembled 1877 distinct iterations of the version 3 dataset and 1812 of the version 4
dataset which NOAA has published over the past decade.

From our large sample of station records from 24 European countries, we found that
only 16% of the breakpoints and adjustments applied to the GHCN version 4 station records
were repeatedly applied more than 75% of the time; 64% of the adjustments were applied
to records less than 25% of the time, with 32% being applied less than 5% of the time. The
results were arguably slightly better for version 3, with 21% being applied more than 75%
of the time and 61% being applied less than 25% of the time. However, for version 3, 38%
of the adjustments were applied less than 5% of the time.

This remarkable inconsistency in the results from NOAA’s application of the Pairwise
Homogenization Algorithm (PHA) [27] to the GHCN since 2011 [3,4] is quite surprising
since the PHA has performed quite well over the years against various benchmarking
tests [27,34–36]. However, we note that those earlier assessments of the PHA were generally
“one-off” assessments, i.e., they did not evaluate the consistency of the breakpoints and
adjustments applied with repeated runs of the algorithm. Therefore this inconsistency of
the PHA adjustments between consecutive runs would have been inadvertently overlooked
by those earlier tests.

We stress that in this paper, we are definitely not criticizing the overall temperature
homogenization project. We also stress that the efforts of Menne & Williams (2009) in de-
veloping the PHA [27] to try and correct for both undocumented and documented non-
climatic biases were commendable. Long-term temperature records are well-known to be
frequently contaminated by various non-climatic biases arising from station moves [24,61,75],
changes in instrumentation [23,61], siting quality [18,19,29,31–33], times of observation [22,28],
urbanization [18,19,25,37–39,42], etc. Therefore, if we are interested in using these records to
study regional, hemispheric or global temperature trends, it is important to accurately account
for these biases. Indeed, many of us are actively engaged in developing and/or improving the
reliability of the available temperature records for Europe [18,19,35,44–46,49,56–59,69–71,75–79]
and elsewhere [18,19,38,39] through various homogenization techniques and/or the collec-
tion of more data.
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Rather, we believe these findings should be used as motivation for improving our
approaches to homogenizing the available temperature records. Meanwhile, the results
raise serious concerns over the reliability of the homogenized versions of the GHCN dataset,
and more broadly over the PHA techniques, which do not appear to have been appreciated
until now. As shown in Table 1, the homogenized GHCN datasets have been widely used
by the community for studying global temperature trends. We note that PHA has also
been used for homogenizing some other climatic datasets [80–85], although our analysis
here is specifically on the PHA adjustments that have been applied to the GHCN datasets
since 2011 [3,4].

Another major concern is how few of the adjustments are associated with documented
station history metadata events—only 19% of Version 4 and 18% of Version 3 breakpoints
occur within 1 year of a documented event. We agree that metadata information can
sometimes be erroneous and that many events leading to non-climatic breakpoints will go
undocumented [26,27,55,56,72,86–89].

So, we would expect a fraction of the breakpoints to be undocumented. However,
particularly when these breakpoints are inconsistent from run to run, it raises the question,
how do we know if an undocumented breakpoint that occurs for one run but not another
is genuine? We are reminded of this observation by the 20th century statistician and
economist, Schumacher:

“A man who uses an imaginary map, thinking that it is a true one, is likely to be worse
off than someone with no map at all.”—Ernst P. Schumacher, “Small is Beautiful” (1973) [90].

With that in mind, we believe that future efforts to homogenize temperature datasets
should involve a greater use of station history metadata. We appreciate that in recent
years, with the commendable compilation of very large climate datasets, there has been an
understandable appeal of using automated statistical homogenization techniques which
do not require metadata. However, given the findings from this analysis and the above
“imaginary map” problem, we suggest that, as a community, we should begin treating these
“blind” homogenization results with a bit more skepticism. With that in mind, we welcome
efforts to allow the use of metadata in various homogenization packages, e.g., [75,91,92],
including PHA [27].

While we encourage more investigation of the various homogenization techniques
via “benchmarking” experiments using synthetic data [27,34–36], we believe these findings
highlight the importance of also benchmarking techniques against real-world data [93]. The
collection and digitizing of station history metadata for as many stations as possible should be
encouraged. In many cases, this could potentially be combined with the various commendable
efforts to track down and digitize early instrumental thermometer records [44,46–49,53].

Finally, in this study, we have not focused on the impacts of homogenization on long-
term trends. However, we note that various studies have demonstrated that the application
of homogenization to a series of temperature records can inadvertently lead to the “aliasing”
or “blending” of some non-climatic biases if multiple neighbors are systemically affected by
similar long-term non-climatic biases, such as urbanization biases or siting biases [32,38,40].
As mentioned in the introduction, Soon et al. (2018) have suggested that one way to
minimize this blending problem would be to ensure that the neighbor network used for
the homogenization process is not systemically biased relative to the target stations, e.g.,
rural stations should be homogenized using a mostly rural station network [38].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13020285/s1. Supplementary file: Metadata inventory:
Countries and stations (in the GHCN datasets) with station history metadata in this workbook and
the worksheets they are on.
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