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Abstract: Air pollution is a global environmental issue, and there is an urgent need for sustainable
remediation techniques. Thus, phytoremediation has become a popular approach to air pollution
remediation. This paper reviewed 28 eco-friendly indigenous plants based on both the air pollution
tolerance index (APTI) and anticipated performance index (API), using tolerance level and perfor-
mance indices to evaluate the potential of most indigenous plant species for air pollution control.
The estimated APTI ranged from 4.79 (Syzygium malaccense) to 31.75 (Psidium guajava) among the
studied indigenous plants. One of the selected plants is tolerant, and seven (7) are intermediate to
air pollution with their APTI in the following order: Psidium guajava (31.75) > Swietenia mahogany
(28.08) > Mangifera indica L. (27.97) > Ficus infectoria L. (23.93) > Ficus religiosa L. (21.62) > Zizyphus
Oenoplia Mill (20.06) > Azadirachta indica A. Juss. (19.01) > Ficus benghalensis L. (18.65). Additionally,
the API value indicated that Mangifera indica L. ranges from best to good performer; Ficus religiosa L.
and Azadirachta indica A. Juss. from excellent to moderate performers; and Cassia fistula L. from poor
to very poor performer for air pollution remediation. The Pearson correlation shows that there is
a positive correlation between API and APTI (R2 = 0.63), and this implies that an increase in APTI
increases the API and vice versa. This paper shows that Mangifera indica L., Ficus religiosa L., and
Azadirachta indica A. Juss. have good potential for sustainable reduction in air pollution for long-term
management and green ecomanagement development.

Keywords: air pollution; API; APTI; indigenous plant; environmental pollution; sustainable
environmental–pollution nexus; green ecomanagement development

1. Introduction

Globally, clean air is essential for the environmental–public health nexus; however, the
deterioration of air quality due to the discharge of pollutants from numerous sources into
the environment is becoming a global health issue for climate and human health [1–3]. Air
is considered polluted when there is a high concentration of one or more contaminants in
the atmosphere [4]. Anthropogenic or natural pollutants found in the atmosphere comprise
gaseous pollutants, such as sulphur dioxide (SO2), carbon monoxide (CO), nitrogen oxides
(NOX), ozone (O3), lead (Pb), and particulate matter (PM2.5 and PM10); these are known as
the criteria pollutants [5–7]. The pollutant concentrations in the atmosphere vary depending
on the sources, distribution pattern, meteorological conditions, and the topographical
features of an environment [8]. These pollutants are no doubt proven to be dangerous
to the environment and human health, causing various diseases to humans, plants, and
animals [1]. Air pollution has been reported to alter the ecosystem and has negative effects
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on plants by reducing photosynthetic pigment, stomata conductance, net photosynthetic
rate, and grain protein contents [9]. The persistence of these pollutants in the environment
could pose problems in distant areas, while in some cases posing an additional problem
of transboundary pollution due to variation in meteorological factors, such as wind and
speed, which disperse these pollutants far and wide [10].

Both ambient and indoor air are contributing to a wide range of potentially life-
threatening health problems, and they have been reported to negatively affect the pop-
ulation in low-income countries. In addition, air pollution has been declared “the silent
killer” with about 7 million deaths every year as estimated by the World Health Organisa-
tion [11,12]. Likewise, over 95% of the world’s population was reported to be breathing
unhealthy air in 2016 [13]. This led to the death of 6.1 million people due to long-term ex-
posure to contaminated air for which India and China were found to be jointly responsible
for over 50% of global deaths attributed to PM2.5 [13]. Epidemiological studies have shown
that air pollution could cause several human health diseases, such as pulmonary, cardiac,
vascular, and neurological diseases [14,15], chronic respiratory symptoms, and diseases
among elderly people worldwide [16]. Further, a consistent increase in cardiac, respiratory
disease, lung cancer, and mortality in the world is attributed to exposure to air pollution
from different sources [17,18].

Atmospheric particulate matter (PM2.5) as one of the air pollutants is estimated to
cause 3.3 million premature deaths yearly, particularly in Asia, and poses a range of nega-
tive effects on human health [19]. Thus, bio-monitoring studies in the field of air pollution
science concerning urban ecosystem restoration are extremely relevant because, once the
pollutants are released into the atmosphere, they disperse and affect the environment
negatively. Therefore, the role of plants in air pollution abatement has been increasingly
recognised and reported by several researchers [20–25]. The application of plants for
reducing and absorbing pollutants from the atmosphere has been proposed as the only
ecomanagement approach (approach to lessen the harmful impact of human activity on
the environment) for air pollution [9,26,27]. This is an eco-friendly approach, as it is safe,
preserves the environment through energy efficiency and reduction of the contaminant in a
cheaper way, has no adverse effect on the environment, and uses a sustainable source of en-
ergy [23,28,29]. Based on the responses of plants towards air pollution, the analysis of some
biological parameters of each species helps in determining tolerance levels. The appropri-
ate plant species can be identified by evaluating certain biochemical and socio-economic
characteristics, which could be obtained from the two indices commonly known as the air
pollution tolerance index (APTI) and anticipated performance index (API), respectively.

Several studies have been conducted by researchers on either plant APTI or API for
air pollution reduction [9,26,27,30–32]; hence, there is a need to integrate these two indices
to ascertain the tolerance level for sustainable green ecomanagement development. This
review combines both APTI and API of reoccurring indigenous plants across the world to
explore and ascertain their tolerance level for sustainable eco-management. The study aim
was to identify the most common plants that exhibit good tolerance levels and API values
for air pollution reduction in any season, under any environmental condition, weather, and
climatic variation. Sustainable ecomanagement could lead to the promotion of planting
more indigenous plants that can enhance air quality through the uptake of pollutants [33].

2. Components and Impacts of Ambient Air Pollutants

Ambient air pollutants include gaseous pollutants and particulate matters that are
present in the atmosphere at normal temperature and pressure. Various anthropogenic
activities are responsible for releasing pollutants into the atmosphere; these include coal
power generation [34–36], domestic fuel burning [37,38], brick industries [39,40], mining
activities [41], and vehicular emission, among others [42]. Meanwhile, the impact of long-
time exposure of humans to air pollutants can cause several respiratory diseases, such
as chronic bronchitis and asthma, and cardiovascular, reproductive, and gastrointestinal
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problems [1,43]. The pollutant’s concentrations are measured in micrograms per cubic
meter (µg/m3) or parts per million (ppm) [6].

2.1. Particulate Matter (PM10 and PM2.5)

Particulate matter (PM) originates from primary emissions (e.g., soot from combustion
sources (such as construction sites, unpaved roads, fields, and smokestacks), sea salt,
and soil from wind-driven resuspension) and the formation of secondary particles in
the atmosphere [13]. Particulate matter (PM) is a term used for physical and chemical
substances that exist as discrete particles, either as liquid droplets or solids over a wide
range of sizes [44]. In terms of the mass concentration, PM may be characterised as particles
smaller than 2.5 µm in aerodynamic diameter (PM2.5) or less than 10 µm in aerodynamic
diameter (PM10), shown in Figure 1. Particulate matters (PM2.5) as air pollutants have both
short-term and long-term effects. Particulate matters (PMs) may cause adverse health effects
on humans, affect plant life and the ecosystem and become global environmental problems
if exposed to high concentrations [27,45]. Exposure to ambient fine particles has been linked
to an increase in adverse effects on human health because they can penetrate the respiratory
system if inhaled, deposit into deep regions of the lungs, and cause respiratory infection,
heart and lung diseases, lung cancer, premature death and mortality [16,46,47]. This is based
on their quantity and physical and chemical properties; some of these chemical parameters
include benzene, sulphates, chlorides, nitrate, and even some metals [1]. Continual contact
with air pollution affects the lungs of growing children and may worsen or complicate
medical conditions in the elderly [16].
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2.2. Ozone (O3)

Ozone (O3) is an important secondary pollutant that forms photochemically when
organic compounds react with nitrogen oxides (NOx) [48]. For instance, this occurs when
pollutants emitted by cars, refineries, chemical plants, power plants, industrial boilers, and
other sources chemically react in the presence of sunlight. Hence, the presence of heat
and sunlight is highly important for its formation, shown in Figure 2. Children and older
people with lung diseases, such as asthma, as well as people who exercise and work outside
under the sun, are at high risk of O3 exposure. Its effects include reduction in lung function,
increased respiratory symptoms, and possibly premature deaths [5,48]. Additionally, it
affects sensitive vegetation and ecosystems, including forests, parks, wildlife refuges, and
wilderness areas, among others.
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2.3. Carbon Monoxide (CO)

Carbon monoxide (CO) is a colourless, odourless, and tasteless gas that is slightly
lighter than air [49]. It is a by-product of combustion, present whenever fuel is burned in
a limited supply of air (oxygen). CO is formed by the incomplete combustion of natural
gas and any other material containing carbon, such as gasoline from vehicles, kerosene,
oil, propane, coal, and wood, among others. The health risks associated with CO vary
with its concentration and duration of exposure. Effects range from subtle cardiovascular
and neurobehavioural effects at low concentrations to unconsciousness and death after
prolonged exposure or after acute exposure to high concentrations of CO [50]. The United
States Environmental Protection Agency has estimated that as much as 95% of CO comes
from vehicle emissions. A high level of CO is harmful to human health because CO has
a great effect on oxygen delivery to the body’s organs (e.g., heart and brain) and tissues
(e.g., skin) [5]. Normally, CO will cause headaches and even visual impairment. At
comparatively high levels, CO can directly cause death, especially to people with heart
diseases [51].

2.4. Sulphur Dioxide (SO2)

Sulphur dioxide (SO2) is an acidic, colourless, and poisonous gas that may remain in
the atmosphere for periods of up to several weeks. It can be detected by taste and odour in
a concentration that ranges between 0.38–1.15 ppm and above 3 ppm, with an irritating
odour. It is estimated that 65 million tonnes of SO2 per year enter the atmosphere because
of human activities, primarily from the combustion of fossil fuels. Other possible sources
include fuel-based industry, vehicle emissions, smelting of mineral ores, and refinery. Of
these, energy-producing companies using coal are by far the greatest contributor. In the
United States, it is estimated that almost 65% of SO2 emissions are from coal-fired power
stations [52]. The adverse effects on human health are coughing, asthma, and chronic
bronchitis [53]. Effects of a high concentration of SO2 in the environment include damage
to plant foliage, harming trees and decreasing their growth. It also contributes to acid rain,
which can harm sensitive ecosystems.
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2.5. Nitrogen Dioxide (NO2)

Nitrogen dioxide is a suffocating, brownish gas: one of a family of highly reactive
gases, the nitrogen oxides (NOx). They are formed when fuel is burned at high temperatures.
Nitrogen dioxide is also an irritant to humans and corrosive to metals. Scientists in the
United States have observed the adverse effects of photochemical contaminants on human
health, especially in urban areas [6]. However, the US EPA only regulates NO2 because it
is the most prevalent form of NOx in the atmosphere that is generated by anthropogenic
activities. Nitrogen oxides also play a significant role in the aesthetic impact, due to
their ability to cause yellow-brown discolouration on buildings and vehicles. Nitric oxide
is a gaseous air pollutant that is a precursor to nitrogen oxides, which react to form
photochemical smog. For decades, it has been known for its adverse effects on humans and
vegetation. Exposure to NOx can affect the sensory perception function of humans, causing
lung infection and respiratory problems.

3. Phytoremediation, an Eco-Friendly Management Method in Reducing Air Pollution

In the quest for an alternative eco-friendly approach, the impact of air pollutants on the
biochemical, physiological, and morphological parameters of plants are being explored as a
vital part of air pollution science [54]. Plants have been labelled as the lungs of cities, acting
as natural biofilters in reducing air pollution through active absorption and accumulation
mechanisms [55]. In urban environments, trees have been found to be suitable bio-monitors
and bio-indicators of air pollution [56]. They play an important role in improving air
quality by taking up gases and particles, depending on the plant’s tolerance or sensitivity
level [57–59]. Today, phytoremediation is now being considered as an alternative eco-
friendly technology for removing pollutants from contaminated water, soils, and air, using
plants [60,61].

Studies on the elemental composition and distribution of dust particles adsorbed on
leaves and their tissues have been reported by some researchers [9,62,63]. Roadside deposi-
tion studies across the world have demonstrated that significant quantities of pollutants
are deposited on plants in China [64] and India [63], which has drawn attention to gaseous
pollutants, PM, and heavy metal accumulation in plants at high concentrations. Due to
the ability of plants to absorb air pollutants without any adverse effect to them, several
reports have proposed treating air pollutants by various plant parts as the new sustainable
environmental health method [65–67], using various phytoremediation techniques [68].

However, the response and tolerance of plants to air pollutants vary with different
behaviour patterns and tolerance. The air pollution tolerance index is employed in the
world to develop appropriate environmental indicators and mitigation strategies to assess
the sensitivity, response, and tolerance of plants to air pollutants, using only biochemical
parameters [9,26]. Furthermore, for the reduction of air pollution using greenbelt develop-
ment in an area, the anticipated performance index (API) needs to be considered with the
help of many socio-economic characteristics of the plant [69]. The API is an improvement
over the APTI, which has been used as an indicator to assess the capability of predominant
species in the clean-up of atmospheric pollutants.

Phytoremediation Techniques

The following technique can be used for the removal of environmental pollutants. The
phytoremediation techniques include rhizofiltration, phytodegradation, phytostimulation,
phytovolatisation, phytoextraction, and phytostabilisation, shown in Figure 3 [59,68–71].
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• Phytoextraction This is the accumulation or uptake of pollutants by the plant as they
absorb water from soil and the environment, which are stored in the plant leaves,
roots and shoots but are not broken down. This technology is most often applied
to metal-contaminated soil and may be toxic to organisms, even at relatively low
concentrations [72]. According to Kapourchal et al. [73], there was a high concentration
of lead (Pb) in the soil due to continuous exposure to vehicle exhaust air pollution, and
the lead was extracted from the contaminated soil using the phytoextraction method.

• Rhizofiltration Rhizofiltration is used basically in filtering contaminated groundwater.
This is the process in which plant roots are used to take up and store contaminants
(toxic substances or excess nutrients) from surface water or groundwater [72]. After
the plants reach the contaminants’ saturation limit, they are harvested similarly to
the phytoextraction method [71]. The successive implementation of this remediation
technique requires a better understanding of the plant–water interactions that control
the extraction of a targeted metal from polluted water resources.

• Phytodegradation Phytodegradation (also called phytotransformation) is the process
of breaking down harmful pollutants in plant tissues, using their enzymes after
taking up and storing them for a period [72,74]. The remediation technique utilises
plants and associated rhizosphere microorganisms to remove, contain or transform
toxic substances or excess nutrients in soils, sediments, and groundwater, among
others [74]. The transformation of organic contaminants into more water-soluble
molecules enables plants to diminish the toxicity of air pollutants. This is assisted by
endocytic bacteria that colonise the plant inner tissues without causing any side effects
on their host (plant) [59,75]. Persistent organic pollutants (POPs) can be abated with
phytoremediation techniques as reported by Erakhrumen and Agbontalor [76].

• Phytostimulation Phytostimulation (also known as rhizodegradation) is the technique
where the plants release certain substances through their roots into the soil or ground-
water. The released substances increase the microorganisms’ ability to break down
and destroy contaminants at a faster rate [77]. This process is critical for the applied
technology of rhizoremediation that combines phytoremediation and bioaugmentation
and is effective for the removal of organic contaminants in soils [59].

• Phytovolatisation This is the technique where pollutants are uptaken by the plants
from the soil, and then converted into a volatile form and then released into the
atmosphere [68,72]. This means that the contaminants present in the water taken up
by the plant pass through the plant or are modified by the plant and are released to the
atmosphere (evaporates or vaporises). In the case of air pollution, phytovolatilisation
occurs when pollutants are diffused into the phyllosphere of plants, where the toxicity
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of pollutants may be lowered before being transformed into a volatile component in
the atmosphere [78].

• Phytostabilisation Phytostabilisation is defined as the immobilisation of contaminants
in the soil through accumulation and absorption by roots, adsorption onto roots, or pre-
cipitation within the root zone of plants. This is used in the treatment of soil, sediments,
and sludges [77]. Particulate matters as well as carbon dioxide (CO2) are absorbed
by plants through their foliage and shoots and accumulate in the phyllosphere, then
phytostabilise and immobilise in the wax layers of the plants [59,71].

4. Air pollution Indices
4.1. Air Pollution Tolerance Index (APTI)

The air pollution tolerance index is an inherent quality of plants to encounter air
pollution stress, which is presently of prime concern, particularly in industrial and non-
industrial areas. The ability of a plant to maximally absorb pollutants from the air without
a negative impact on the plant is determined using APTI. It is a function of biochemical
parameters, which include the relative water content (RWC in %), the total chlorophyll
of the leaf (TC in mg/g), the pH of the leaf extract (pH), and the ascorbic acid content of
the plant (AA in mg/g). The effect of the pollutants only on the biochemical parameters
is known by the APTI. This expresses the capacity of a plant to combat air contamination.
APTI can be calculated using Equation (1) [79].

APTI =
[AA(TC + pH) + RWC]

10
(1)

Ascorbic acid can be estimated by 2,6-dichlorophenol (indophenol dye) using the
method suggested by Agarwal [80], whereas the total chlorophyll concentration can be
obtained using the spectrophotometric method [81]. The relative water content of leaf
material can be estimated by taking the initial weight and dry weight of the leaf material.
Four biochemical parameters (AA, TC, pH, and RWC) in plant leaves can be used to
determine the sensitivity, response, and tolerance of a plant to air pollutants. The tolerant
plant species can be used as an indicator of air quality and provides lasting solutions to the
menace caused by air pollutants to humans [9]. The classification of APTI results of different
plants into different tolerance levels is given in Table 1. Plants with higher index values are
known to be tolerant to air pollution, while lower index plants are less tolerant [27]. Hence,
species with low index values are more sensitive to air pollution and act as biological
indicators of air pollution as well as tools for monitoring environmental pollution.

Table 1. The tolerance level of plants for APTI.

Range of APTI Tolerance Level

30–100 Tolerance
17–29 Intermediate
1–16 Sensitive
<1 Very sensitive

Sources: [31].

4.2. Anticipated Performance Index (API)

The most suitable plant species for ecomanagement can also be determined by calculat-
ing API. API is particularly useful in the selection of plants species that can perform a dual
purpose of improving the air quality by cleaning up atmospheric pollutants and supporting
the recreational benefit [33,82]. Additionally, a study showed that an anticipated perfor-
mance index (API) is significant for ecomanagement to fight against air pollution, which is
reflected by some biological and socioeconomic characteristics of the plants; therefore, API
is more effective for this purpose [69]. The API of different plant species were calculated
by combining the APTI value, and some biological and socio-economic characters, which
include plant habit, laminar structure, canopy structure, types of plant, and economic value,
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as shown in Table 2. Table 3 shows the classification of plant species according to their API
score. Various plant parameters, such as leaf size and canopy structure, also help the plant’s
capacity for pollution reduction. Different plant species have different characteristics. The
API score (%) is further calculated using Equation (2) [69].

API =
No of (+)obtained

16
× 100 (2)

Table 2. Gradation of plant species based on APTI and other biological and socio-economic characters.

Grading Characters Pattern of Assessment Grade Allotted

Tolerance APTI 9.0–12.0 +
12.1–15.0 ++
15.1–18.0 +++
18.1–21.0 ++++
21.1–24.0 +++++
24.1–27.0 ++++++
27.1–30.0 +++++++
30.1–33.0 ++++++++
33.1–36.0 +++++++++

Biological and
socio-economic Plant habit

Small
Medium

Large

−
+

++
Canopy structure Sparse/Irregular/globular −

Spreading crown/open/semi dense +
Spreading dense ++

Type of plant Deciduous
Evergreen

−
+

Laminar structure Size Small _
Medium +

Large ++
Texture Smooth _

Coriaceous +
Hardiness Delineate −

Hardy +
Economic value Less than three uses −

Three or four uses +
Five or more uses ++

Maximum grades that can be scored by a plant = 16; Sources: [69,83].

Table 3. Plant species classification using anticipated performance index species.

Grade Score (%) Assessment Category

0 Up to 30 Not recommended
1 31–40 Very poor
2 41–50 Poor
3 51–60 Moderate
4 61–70 Good
5 71–80 Very good
6 81–90 Excellent
7 91–100 Best

5. Assessment of Air Pollution Using APTI and API

The assimilation or reduction capacities of 28 different plant species were reviewed
from published articles, and their tolerance levels were estimated based on the four bio-
chemical values, socio-economic parameters, APTI values and API values for air pollutants
as found in the literature. Most of the selected articles (literature) were from Nigeria and
India, with two major distinct seasons, which are wet (rainy) and dry seasons. They are
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both tropical regions that experience temperatures below 10 ◦C and temperatures that
tend to exceed 40◦C, which are varied depending on the season of the year [84]. The rainy
season in Nigeria ranges between April and October, with generally lower temperatures,
which is the same period of the rainy season (monsoon) in India. Like Nigeria, South India
typically receives a lot of rainfall. The dry season starts from November to March. The dry
season in Nigeria is accompanied by a dust-laden air mass from the Sahara Desert, locally
known as harmattan. The harmattan, from the northeast, is hot and dry and carries reddish
dust from the desert, causing high temperatures during the day and cool nights [84,85].
This similarly occurs in other places around the world with similar climatic conditions.

Table 4 refers to the results of the ascorbic acid content (AA), total chlorophyll content
(TC), pH of the leaf extract (pH), and relative water content (RWC), which give collective
information on the investigated samples’ biochemical parameters for APTI. The mean
concentration of ascorbic acid (AA) in plants ranged from 29.50 mg/g (Swietenia mahogany)
to 0.38 mg/g (Syzygium malaccense), while RWC for the plants ranged from 98.1% for
Araucaria heterophylla to a lower value of 45.8% for Syzygium malaccense. Plant survival under
stress conditions depends on the RWC. Exposure to air pollution when the transpiration
rates are higher may lead to desiccation; hence, the higher the water content within the
plant body, the better it is equipped to combat and maintain its physiological balance under
stress conditions as well as its drought tolerance capacity. Hence, maintenance of the plant
RWC is an important parameter in air pollution management because this could affect the
relative tolerance of plants towards air pollutants [27]. On the other hand, ascorbic acid is
an antioxidant that influences the resistance of plants to adverse environmental conditions,
including air pollution [86]. A high concentration of ascorbic acid favours the defence
mechanism of a plant in an environment. A lower concentration may be attributed to the
consumption of ascorbic acid during the removal of cytotoxic free radicals generated in
chain reactions after the penetration of oxidative pollutants into foliar tissues [9,87].

Furthermore, the highest value of the total chlorophyll contents of the selected plants
reviewed in this article was found in Ficus infectoria L. (TC = 12.20 mg/g), while the lowest
value was reported for Mangifera indica L. (TC = 0.34 mg/g). For the pH value, also found
to affect the plant tolerance level, Ficus benghalensis L. had the highest pH of 8.14, while
Syzygium malaccense was reported to have a pH of 2.88, which is considered low among the
plants reviewed. A higher pH is known to improve the tolerance level of plants against
air pollution [27,30]. The chlorophyll content of plants varies from species to species,
depending on biotic and abiotic conditions, the pollution level, and the age of the leaf.
The chlorophyll content of a plant greatly signifies its photosynthetic activity as well as
the growth and development of its biomass. The total chlorophyll concentration depends
on the pollution status and levels of pollutants in an area. A lower chlorophyll content
could be because certain pollutants reduce the total chlorophyll content in plants [88,89]
as reported by [27]. Agrawal et al. [90] also reported a reduction in chlorophyll content
of different crop plants due to exposure to O3, SO2, and NO2. Pheophytin formation by
the acidification of chlorophyll SO2 has been reported. Other studies have also shown the
impact of air pollution on the chlorophyll content [91], ascorbic acid content, relative water
content, and leaf extract pH [92].

Table 4. Biochemical parameters along with APTI values of the plants from the literature.

S/No Plants Species TC (mg/g) pH RWC (%) AA (mg/g) APTI References

1 Psidium guajava 2.19 6.36 77.69 28.90 31.75

Study A [93]
2 Swietenia mahogany 1.52 5.86 70.73 29.50 28.08

3 Mangifera indica L. 2.13 6.33 84.66 24.50 27.97

4 Alstonia scholaris (L.) R.Br. 1.49 5.94 79.76 13.20 16.72

5 Ficus religiosa L. 2.17 6.30 73.64 9.06 15.11
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Table 4. Cont.

S/No Plants Species TC (mg/g) pH RWC (%) AA (mg/g) APTI References

6 Ficus hispida 1.60 6.58 69.96 8.04 13.26

7 Ficus benghalensis L. 6.54 5.93 55.65 6.65 18.65

Study B [94]

8 Polyalthia longifolia Sonn. 5.78 6.89 60.25 6.42 15.65

9 Ficus religiosa L. 9.87 6.98 60.54 6.98 14.42

10 Cassia fistula L. 4.44 5.43 54.24 6.07 13.65

11 Azadirachta indica A. Juss. 3.87 6.2 54.21 6.79 12.98

12 Alstonia scholaris (L.) R.Br. 3.81 6.05 50.42 5.26 9.01

13 Nerium odorum Sonnad. 3.52 6.54 53.54 4.08 8.65

14 Mangifera indica L. 1.73 5.54 96.04 12.98 19.03

Study C [69]

15 Manikara zapota (L). P. Royen. 2.25 5.69 85.62 6.54 13.76

16 Swietenia macrophylla King. 3.33 6.27 86.07 2.17 10.67

17 Polyalthia longifolia Sonn. 3.38 6.43 92.55 1.16 10.39

18 Ficus religiosa L. 1.75 7.17 87.25 1.54 10.10

19 Azadirachta indica A. Juss. 1.79 6.11 77.5 2.19 9.48

20 Tamarindus indica L. 1.53 3.22 77.62 1.46 8.45

21 Ficus infectoria L. 12.20 7.80 81.30 7.90 23.93

Study D [83]

22 Ficus religiosa L. 11.26 6.90 76.42 7.70 21.62

23 Zizyphus Oenoplia Mill. 8.98 7.60 72.00 7.76 20.06

24 Mangifera indica L. 9.78 5.76 91.18 6.78 19.65

25 Azadirachta indica A. Juss. 6.80 6.20 76.00 8.78 19.01

26 Cassia fistula L. 3.87 5.80 74.48 4.84 12.13

27 Nerium odorum Sonnad. 1.86 6.70 71.00 1.76 8.60

28 Acacia auriculiformis 0.47 7.01 92.8 1.87 10.7

Study E [95]

29 Chrysophyllum albidum 0.51 6.10 89.6 2.23 10.4

30 Araucaria heterophylla 0.43 6.71 98.1 0.58 10.2

31 Mangifera indica L. 0.34 6.14 68.8 1.77 8.03

32 Elaeis guineensis Jacq. 0.61 7.32 70.6 1.06 7.90

33 Syzygium malaccense 0.45 3.55 45.8 0.54 4.79

34 Saraca indica 1.80 6.31 84.32 6.49 13.71

Study F [96]

35 Azadirachta indica A. Juss. 1.89 6.29 83.67 5.71 12.98

36 Shorea robusta 2.58 6.57 72.31 5.65 12.64

37 Ficus religiosa 2.17 6.45 75.35 5.99 12.61

38 Eucalyptus sp. 1.85 6.22 79.00 5.83 12.61

39 Tectona grandis L.f. 2.54 6.63 70.36 5.83 12.43

40 Mangifera indica L. 4.16 5.28 92.18 3.24 12.27

Study G [30]

41 Moringa pterygosperma 2.36 5.42 84.70 4.76 12.17

42 Cassia fistula L. 3.88 5.72 72.68 3.76 10.87

43 Acacia auriculiformis 1.72 5.55 82.56 3.48 10.78

44 Ficus religiosa L. 1.78 5.62 80.72 3.46 10.63

45 Ficus benghalensis L. 1.68 8.14 82.26 2.32 10.50

46 Ficus infectoria L. 1.61 7.82 86.16 1.45 9.98
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Table 4. Cont.

S/No Plants Species TC (mg/g) pH RWC (%) AA (mg/g) APTI References

47 Terminalia catappa 1.09 4.51 88.90 5.16 12.0

Study H [97]
48 Mangifera indica L. 1.05 4.41 94.50 2.15 10.60

49 Carica papaya 0.62 6.50 72.10 3.60 9.77

50 Syzygium malaccense 1.09 2.88 90.80 0.38 9.23

AA: ascorbic acid content, TC: total chlorophyll content, pH: pH of leaf extract, and RWC: relative water content.

The APTI mean value for the plants as found in the literature ranged from 31.75
(Psidium guajava) to 4.79 (Syzygium malaccense) as summarised in Table 4 and Figure 4. Out
of 28 species reviewed for pollution assimilation, 8 species showed APTI values ranging
from 31.75 to 18.65, which fall within the tolerance and intermediate ranges of 17 to 100
(Table 2), where some are found more than once. The plants showed in the order of tolerance
(% difference in APTI) as Psidium guajava (31.75) > Swietenia mahogany (28.08) > Mangifera
indica L. (27.97) > Ficus infectoria L. (23.93) > Ficus religiosa L. (21.62) > Zizyphus Oenoplia
Mill (20.06) > Azadirachta indica A. Juss. (19.01) > Ficus benghalensis L. (18.65). Other
20 plant species have APTI values between 16.72 and 4.79, which are considered sensitive
(Table 2). In addition, the ability of other plant species apart from the abovementioned
was previously reviewed and reported by other researchers [32,97–100]. The APTI of the
same plant or different plants varies from place to place based on different air pollution
levels, seasons, climatic variation, and other environmental factors, such as temperature
and humidity [25,101,102].
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The socio-economic parameter and APTI of the 28 plant species reviewed for pollution
assimilation were subjected to a grading scale to determine the anticipated performance of
plant species [60]. Swietenia mahogany, Mangifera indica L., Ficus infectoria L., Psidium guajava,
Ficus benghalensis L., Ficus religiosa L., Saraca indica, Azadirachta indica A. Juss. and Eucalyptus
sp. scored high, above 80%, which is the range from excellent to best (Table 5). Interestingly,
a few of these species were studied by different researchers across the globe for having
better API [24,25,32,103]. However, Figure 4 shows that Mangifera indica L., Ficus religiosa
L., Azadirachta indica A. Juss. and Cassia fistula L. were the most common plant studied
by at least three studies (studies A–H). This shows that they are the most common plants
that have the capability of remediating air pollutants. Mangifera indica L., Ficus religiosa
L., and Azadirachta indica A. Juss. are intermediate in tolerance level and have high API
scores, which implies that they are good plants for the phytoremediation of polluted air.
Out of these three plants, Mangifera Indica L. has the highest API value, and this is similar
to the work carried out by [25]. In addition, there is a greater API value for the species with
higher APTI [83]. Therefore, plant species that have high API values are recommended for
green ecomanagement development, according to Tsega and Deviprasad [103].
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Table 5. Evaluation of plant species based on APTI and some biological and socio-economic parameters.

S/No Plant Species APTI TH CS TT
Laminar

EI H
Grade Allotted

API Assessment References
LS LT Total

Plus
%

Score

1 Psidium guajava ++++++++ + - - + + ++ + 14 88 Excellent

Study A
[93]

2 Swietenia mahogany +++++++ ++ ++ + - + ++ + 16 100 Best

3 Mangifera indica L. +++++++ ++ + + + + ++ + 16 100 Best

4 Alstonia scholaris (L.) R.Br. +++ + ++ + + + + - 10 63 Good

5 Ficus religiosa L. +++ ++ ++ + + + ++ + 13 81 Excellent

6 Ficus hispida ++ + - - + + + - 6 38 Very poor

7 Ficus benghalensis L. ++++ ++ ++ + ++ + + + 14 88 Excellent

Study B
[94]

8 Polyalthia longifolia Sonn. +++ + + + ++ - + + 10 63 Good

9 Ficus religiosa L. ++ ++ ++ + ++ + + + 12 75 Very good

10 Cassia fistula L. ++ + + - + - + + 7 44 Poor

11 Azadirachta indica A. Juss. ++ ++ ++ - - - ++ + 9 56 Moderate

12 Alstonia scholaris (L.) R.Br. + + + + - - + + 6 38 Very poor

13 Nerium odorum Sonnad. - + + - + + - - 4 25 Not
recommended

14 Mangifera indica L. ++++ ++ + + ++ + ++ + 14 88 Excellent

Study C
[69]

15 Manikara zapota (L). P. Royen ++ ++ ++ + - + ++ + 11 69 Good

16 Swietenia macrophylla King. + ++ + - + + ++ + 9 56 Moderate

17 Polyalthia longifolia Sonn. + + + + + - + + 7 44 Poor

18 Ficus religiosa L. + ++ + + ++ + + + 10 63 Good

19 Azadirachta indica A. Juss. + ++ ++ - - - ++ + 8 50 Poor

20 Tamarindus indica L. - + + + - - + + 5 31 Very poor
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Table 5. Cont.

S/No Plant Species APTI TH CS TT
Laminar

EI H
Grade Allotted

API Assessment References
LS LT Total

Plus
%

Score

21 Ficus infectoria L. +++++ ++ + + ++ + ++ + 15 94 Best

Study
D [83]

22 Zizyphus Oenoplia Mill. +++++ + + - - + + - 9 56 Moderate

23 Ficus religiosa L. +++++ ++ + + ++ + + + 14 88 Excellent

24 Mangifera indica L. ++++ ++ ++ + + + ++ + 14 88 Excellent

25 Azadirachta indica A. Juss ++++ ++ ++ - - - ++ + 11 69 Good

27 Cassia fistula L. ++ + + - + - + + 7 44 Poor

26 Nerium odorum Sonnad. - + + - + + - - 4 25 Not
recommended

27 Cassia fistula L. ++ + + - + - + + 7 44 Poor

28 Acacia auriculiformis + + + + - - ++ + 7 44 Poor

Study E
[95]

29 Chrysophyllum albidum + ++ + + + - ++ + 9 56 Moderate

30 Araucaria heterophylla + ++ + + + - + + 8 50 Poor

31 Mangifera indica L. - ++ ++ + + ++ ++ + 11 69 Good

32 Elaeis guineensis Jacq. - ++ + + + - ++ + 8 50 Poor

33 Syzygium malaccense - ++ ++ + + ++ ++ + 11 69 Good

34 Saraca indica ++ ++ ++ + ++ + ++ + 13 81 Excellent

Study F
[96]

35 Azadirachta indica A. Juss. ++ ++ ++ + ++ + ++ + 13 81 Excellent

36 Shorea robusta ++ ++ ++ - ++ + ++ + 12 75 Very good

37 Ficus religiosa L. ++ ++ ++ + ++ + ++ + 13 81 Excellent

38 Eucalyptus sp. ++ ++ ++ + ++ + ++ + 13 81 Excellent

39 Tectona grandis L.f. ++ ++ ++ - ++ + ++ + 12 75 Very good
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Table 5. Cont.

S/No Plant Species APTI TH CS TT
Laminar

EI H
Grade Allotted

API Assessment References
LS LT Total

Plus
%

Score

40 Mangifera indica L. ++ ++ + + ++ + ++ + 12 75 Very good

Study
G [30]

41 Moringa pterygosperma ++ + - - + - + + 6 38 Very poor

42 Cassia fistula L. + + + - + - + + 6 38 Very poor

43 Acacia auriculiformis + ++ - + + + - + 7 44 Poor

44 Ficus religiosa L. + ++ + - ++ + + + 9 56 Moderate

45 Ficus benghalensis L. + ++ + + ++ + ++ + 11 69 Good

46 Ficus infectoria L. + ++ + + ++ + ++ + 11 69 Good

47 Terminalia catappa + ++ ++ + - - ++ + 9 56 Moderate

Study H
[97]

48 Mangifera indica L. + ++ ++ + ++ + ++ + 12 75 Very good

49 Carica papaya + ++ + + + - ++ + 9 56 Moderate

50 Syzygium malaccense + ++ ++ + ++ + ++ + 12 75 Very good

(APTI)—air pollution tolerance index, (TH)—plant habit, (CS)—canopy structure, (TT)—type of plant, (LS)—lamina size, (LT)—texture, (HI)—hardiness, and (EI)—economic importance.
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6. Correlation Matrix Analysis

Table 6 shows the Pearson correlation among calculated parameters, such as APTI,
API, TC, pH, RWC, and AA. Generally, according to the correlation matrix, there is either a
weak or strong correlation among the calculated parameters, except for RWC, which shows
a negative correlation. There is a positive correlation among API, APTI, and AA, and a
positive correlation between TC and APTI. This implies that an increase in any of the above
parameters will lead to an increase in the others (Table 6). Thus, each of the parameters
played a crucial role in the computation of the tolerance and performance level. On the
contrary, some plants in the study (Saraca indica, Azadirachta indica A. Juss., Ficus religiosa
L., and Eucalyptus sp.) have low APTI and show excellent API. This could be because
of good socio-economic factors, which could enhance the phytoremediation capability of
these plants.

Table 6. Pearson correlation matrix for the calculated parameters.

Variables TC pH RWC AA APTI API

TC 1.00
pH 0.30 ** 1.00

RWC −0.20 −0.03 1.00
AA 0.11 0.09 −0.06 1.00

APTI 0.46 ** 0.22 0.07 0.89 * 1.00
API 0.22 0.13 0.20 0.53 * 0.63 * 1.00

** Correlation is significant at the 0.01 level (2-tailed); * Correlation is significant at the 0.05 level (2-tailed).
AA—ascorbic acid content, TC—total chlorophyll content, pH—pH of leaf extract, RWC—relative water content,
APTI—air pollution tolerance index, and API—anticipated performance index.

7. Conclusions

Air pollution control is more challenging, compared with water and soil remediation;
however, with phytoremediation, which involves plants and their microbiomes, good air
quality can be obtained. Phytoremediation is proven to abate the effects of various air
pollutants and environmental disturbance towards achieving sustainable eco-management.
This study provides APTI and API as useful insights for selecting tolerant and sensitive
species for future planning and ecomanagement, where plants are continuously exposed to
air pollutants. The correlation analysis confirms that there is a positive correlation between
API and APTI (R2 = 0.63), which implies that an increase in APTI will lead to an increase in
API of the plant and vice versa. This review shows that Mangifera indica L., Ficus religiosa L.,
and Azadirachta indica A. Juss. plants exhibit good tolerance levels against air pollution in
different areas with different seasons and environments. Therefore, plants with high APTI
levels and API value have good potential for green ecomanagement development and the
attainment of a sustainable population–pollution interaction for the long-term management
of air pollution in tropical regions of the world.
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