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Abstract: As an essential part of the hydrological cycle, precipitation is usually associated with
floods and droughts and is increasingly being paid attention to in the context of global warming.
Analyzing the change trends and correlation of temperature and extreme precipitation indicators can
effectively identify natural disasters. This study aimed to detect the correlation and change trends
of temperature and extreme precipitation indicators in Inner Mongolia from 1960 to 2019. Panel
vector autoregression (PVAR) models based on Stata software were used to detect the correlation
between temperature and extreme precipitation indicators at 35 climatological stations throughout
Inner Mongolia. The temperature and extreme precipitation indicator trends were analyzed using
the Mann–Kendall test and Sen’s slope method. The spatial distribution characteristics of the annual
precipitation and rainfall intensity were more significant in the southeast and more minor in the
northwest, while an increase in the annual wet days was noticeable to the northeast. The Granger
cause tests of the temperature and the extreme precipitation indicators showed a correlation between
each indicator and temperature at the significance level of 1%. The temperature positively correlated
with only the rainfall intensity while negatively correlating with the remaining indicators. There is
no doubt that trend analysis showed significant increasing trends in rainfall intensity at all stations,
which means increased risk in extreme precipitation events. By contrast, the annual precipitation
and annual wet days showed significant decreasing trends, which means that the precipitation is
concentrated, and it is easier to form extreme precipitation events. The study can provide a basis for
decision-making in water resources and drought/flood risk management in Inner Mongolia, China.

Keywords: extreme precipitation events; climate change; PVAR models; Mann–Kendall test

1. Introduction

Extreme precipitation is one of the most severe natural disasters, leading to enormous
economic losses worldwide [1]. In recent decades, extreme precipitation events have been
extensively researched worldwide, such as in China, India, North America, South America,
Africa, Europe, and Australia [2]. The magnitude and frequency of extreme precipitation
events are expected to increase in the near future, especially at sub-daily timescales, which
may lead to more natural disasters such as riverine floods, flash floods, and landslides [3,4].
Compared to a single extreme precipitation event, compound extremes related to floods
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and droughts may aggravate the influence on the environment and society [5]. Therefore, it
is necessary to thoroughly understand the magnitude, duration, and frequency of extreme
precipitation events for the effective design, planning, and management of these systems [6].

In order to address the challenges of extreme precipitation events, it is necessary to
implement ecologically sound and sustainable measures based on scientific information [7].
In detail, the nature and extent of the extreme precipitation-related indicators need to
be further studied [8]. This research is considered essential for developing management
policies and assessing the natural and social impacts of extreme precipitation events. In
addition, knowledge about extreme precipitation events is vital for everyday life, as it plays
an essential role in the management and the response of emergencies [9]. Recently, the
extreme precipitation events analysis at a particular area has paid considerable attention
mainly due to its influences for risk management and hazard assessment, especially related
to drought/flood disasters [10].

The simulation and projection of temperature and extreme precipitation events have
been extensively studied worldwide [11]. Changes in temperature and extreme precipita-
tion events have also been researched in China [12], in the Caribbean [13], in the Southern
Pacific [14], and in Africa [15]. Some scholars have researched extreme events of combi-
nations of precipitation and temperature over the past several years and found that the
number of extreme events increased rapidly on a global scale [16]. Extreme precipitation
events also affect precipitation patterns and water balance and accelerate desertification.
Therefore, it can profoundly impact ecosystems and human society [17]. The study shows
that analysis based on univariate events that are related to each other may underestimate
the risks of compound extremes [18]. These studies show that, with global climate change
and human activities, the risk of extreme precipitation events increases significantly in
future periods.

China is a country with vast land territory, which occupies a significant portion of the
world. The publication of many scholars shows that China’s climate is highly affected by
the East Asian summer monsoon [19]. Since conditions geographical and meteorological
are considerably complex and diverse in China, the changes of the extreme precipitation
events have been studied by researchers in recent years [20], identifying changes in regional
extreme precipitation events in order to support disaster prevention and policy develop-
ment in specific regions. Some researchers provide a valuable tool for calling attention to
the local government and contributing to global research by comparing China’s results
with those of other parts of the world [21]. In the past decades, the tendency to increase
extreme precipitation has been significant in the middle and lower reaches of the Yangtze
River, Western and Southwestern China, and some coastal areas of Southern China. In
contrast, the decreasing trend of extreme precipitation appears in the northern regions [22].
The extent to which the changes in the temperature and precipitation-related indices affects
the total amount of extreme precipitation events over China in the present climate has not
yet been assessed. Moreover, how will this influence change in the near future over China?
The present study addresses these questions by analyzing the observational and model
simulation data [23].

Some scholars have pointed out significant changes in indicators that have character-
ized the frequency and intensity of extreme precipitation events in the past 10 years [24].
The research on extreme precipitation events in China mainly aims at the whole coun-
try or large areas in the north. However, there is little research on extreme precipitation
events in Inner Mongolia. The terrain of Inner Mongolia is complex, spanning Northwest
China, North China, and Northeast China from east to west. The uncertainty and vari-
ability introduced by the complex terrain can be associated with the significant error in
precipitation estimates [25–27]. The annual precipitation in this area is small and uneven,
mainly concentrated in the summer, resulting in frequent droughts and floods, seriously
affecting the production of agriculture and animal husbandry and people’s lives [28]. Due
to global warming, the temperature of the whole region has increased significantly in
the past 60 years [29]. Some researchers have found no significant increase or decrease
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in the average summer precipitation and annual precipitation extreme events in Inner
Mongolia. However, after entering the 21st century, the extreme precipitation events from
July to August decreased significantly [30,31]. However, previous studies have focused on
extreme precipitation changes, and there are few studies on the response to climate change,
especially the relationship between extreme precipitation and temperature. Therefore, this
work further studies the temporal and spatial variations of extreme precipitation in Inner
Mongolia to understand better the impact of global climate change there.

This study aimed to detect the correlation and change trends of temperature and
extreme precipitation indicators in Inner Mongolia from 1960 to 2019. The research must
help understand the nature of climatic phenomena and assess the changes and impacts of
extreme precipitation events on the future climate. The remainder of this paper proceeds as
follows: Firstly, Section 2 provides a comprehensive description of the main characteristics
of the study area. Secondly, the materials and methods, the results of the investigation, and
a discussion are provided. Finally, Section 6 summarizes the conclusions obtained from
this research.

2. Study Area

Inner Mongolia is located within Eurasia, with a temperate continental climate,
across Northeast, North, and Northwest China between 97◦12′~126◦04′ east longitude
and 37◦24′~53◦23′ north latitude (Figure 1). It covers an area of about 1.183 million squares
kilometers, accounting for 12.3% of China’s land area, and is the third-largest province
in China. The topography slopes from northeast to southwest, showing a narrow shape,
and most of the whole region belongs to a high prototype geomorphological area. Inner
Mongolia is the province with the largest number of neighboring provinces in China, with
eight provinces bordering it (Heilongjiang, Jilin, Liaoning, Hebei, Shanxi, Shaanxi, Ningxia,
and Gansu Province).
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Figure 1. Study area and observed meterological stations. Figure 1. Study area and observed meterological stations.

The average elevation of Inner Mongolia is about 1000 m. The highest elevation of
Inner Mongolia is 3556 m at the Ho-lan Mountains. Inner Mongolia has a vast territory,
high latitude, large plateau area, far away from the sea, and mountains along the border,
and the climate is dominated by a temperate continental monsoon climate. Figure 2 shows
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the Köppen–Geiger climatic zones of Inner Mongolia. It has the characteristics of less and
uneven precipitation, strong wind, and drastic temperature changes.

Atmosphere 2022, 13, x FOR PEER REVIEW 4 of 16 
 

 

The average elevation of Inner Mongolia is about 1000 m. The highest elevation of 

Inner Mongolia is 3556 m at the Ho-lan Mountains. Inner Mongolia has a vast territory, 

high latitude, large plateau area, far away from the sea, and mountains along the border, 

and the climate is dominated by a temperate continental monsoon climate. Figure 2 shows 

the Köppen–Geiger climatic zones of Inner Mongolia. It has the characteristics of less and 

uneven precipitation, strong wind, and drastic temperature changes. 

 

Figure 2. The Köppen–Geiger climatic zones of the study area. 

The annual average precipitation in Inner Mongolia is between 219 and approxi-

mately 452 mm (Figure 3a). The precipitation from May to September, June to September, 

July to August, and monthly maximum precipitation generally account for about 70%, 

60%, 30–80%, and 20–60% of the annual precipitation, respectively. The distribution of 

precipitation during the year is hugely uneven (Figure 3b). Inner Mongolia has abundant 

sunshine and light energy resources, and the annual sunshine hours in most areas are 

more than 2700 h. The average number of gale days in the year is about 10–40 days, and 

70% occur in the spring. 

Figure 2. The Köppen–Geiger climatic zones of the study area.

The annual average precipitation in Inner Mongolia is between 219 and approximately
452 mm (Figure 3a). The precipitation from May to September, June to September, July
to August, and monthly maximum precipitation generally account for about 70%, 60%,
30–80%, and 20–60% of the annual precipitation, respectively. The distribution of precipita-
tion during the year is hugely uneven (Figure 3b). Inner Mongolia has abundant sunshine
and light energy resources, and the annual sunshine hours in most areas are more than
2700 h. The average number of gale days in the year is about 10–40 days, and 70% occur in
the spring.
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3. Materials and Methods
3.1. Materials

In this research, the daily total precipitation and temperature data during 1960–2019 of
44 stations in Inner Mongolia were extracted from the Daily Terrestrial Climatological Dataset in
China (V3.0) released by the National Meteorological Information Center (http://data.cma.cn/,
accessed on 16 September 2021). In order to ensure the quality of the data, it was checked
and controlled before releasing. Based on the available meteorological records, stations
with the records starting from 1960 and the percentage of missing values being less than
5% were selected. Finally, data from 44 stations were selected as survey samples, of which
35 stations collected data from 1960 to 2019 and 9 stations collected data from 1960 to 2017.

3.2. Method
3.2.1. Extreme Climate Indices

In order to effectively reflect the change in climate, the Expert Team on Climate
Change Detection and Indices (ETCCDI) recommended 27 indices based on precipitation
and temperature data [32]. Based on the analysis of previous research [33–35], this study
selected the annual average temperature and 3 extreme climate indices (PRCPTOT, SDII,
and Wet Days) for analysis (Table 1). The program is developed based on the Fortran
language to calculate these extreme precipitation indicators.

Table 1. Extreme climate indices.

Indices Definitions Units

Temperature Annual average temperature ◦C
PRCPTOT Annual total precipitation in wet days mm
Wet Days Annual count of days when rainfall ≥ 1 mm day

SDII Annual total precipitation divided by the
number of wet days in the year mm/day

3.2.2. PVAR Models

Time series vector autoregression (VAR) models first appeared in econometrics as
a substitute [36,37]. With the introduction of VAR models in panel data settings, panel
vector autoregression (PVAR) models have been more and more used in the applied study
across fields [38]. The PVAR model regards the study variables as endogenous variables, a
function of the lag values of all endogenous variables, to obtain more data characteristics.
It is represented by the following equations:

Yit = αi0 + ∑p
j=1 αijYi,t−j + γi + θt + εit (1)

where Yit represents the endogenous variable of the i station in the t year; j represents a lag
value; and γi, θt, and εit are unit effects, time effects, and idiosyncratic errors, respectively.

The settings of the PVAR models with which the cross-sectional units share the same
underlying data-generating process contrasts with the VAR models. In the PVAR models,
the parameters are estimated as distributions. In the VAR models, the parameters are
specific to the unit being studied.

The unit root test has become routine to process panel data. The method of unit root
testing mainly includes the LLC unit root test [39], IPS unit root test [40], Breitung unit
root test [41], and Fisher unit root test [42]. The LLC unit root test is used to test the null
hypothesis of a common unit root in the panel against the alternative of stationarity when
cross-sectional units are independent on each other [43]. The IPS unit root test combines
the evidence on the unit root hypothesis from the n unit root tests performed on the n
cross-section units [44]. The Breitung unit root test compared the robust Dickey–Fuller
t-statistics under contemporaneously correlated errors with the GLS t-statistics based on
the transformed model [41]. The Fisher unit root test is the inverse chi-square test and is
most widely used in meta-analyses [42].

http://data.cma.cn/
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In addition, the PVAR models require selecting the optimal lag order. For this purpose,
we relied on the moment and model selection criteria (MMSC) for the generalized method
of moments (GMM) models [45]: the Bayesian information criterion (MBIC), the Akaike
information criterion (MAIC), and the Hannan–Quinn information criterion (MQIC) [46].

3.2.3. Spatial Interpolation

The Kriging algorithm is a robust statistical interpolation method for diverse applica-
tions such as geochemistry, health sciences, and pollution modeling [47]. Therefore, this
study used the kriging algorithm for spatial interpolation.

There are several types of the Kriging algorithm. The most common method is
Ordinary Kriging, which assumes that the data have no constant mean over an area mean
(no trend). In comparison, Universal Kriging does assume that the data have an overriding
trend and that it can be modeled [47].

Although only Kriging interpolation was used in this study, previous studies have
found no significant differences between the simplest Kriging method and the most complex
geostatistics, with satisfactory general results [48,49].

3.2.4. Mann–Kendall (MK) Test and Sen’s Trend Estimator

The MK test is a nonparametric test mainly used to analyze long-term trends of
temperature, precipitation, and runoff [50,51]. Compared with parametric statistics, its
advantage is less sensitive to outliers and does not need normality or linearity assumptions.
Under the assumption that the time series xn has no trend, the statistical S test is given
as follows:

S = ∑n−1
i = 1 ∑n

j = i+1 sgn
(
xj − xi

)
(2)

where n is the number of sample points, xi and xj are the data values in the time series i
and j (j > i), and sgn(xj − xi) is given as follows:

sgn
(
xj − xi

)
=


+1, xj − xi > 0

0, xj − xi = 0
−1, xj − xi < 0

(3)

The variance value of S is as follows:

Var(S) =
n(n− 1)(2n + 5)−∑n

i=1 ti(ti − 1)(2ti + 5)
18

(4)

The normal approximation Z test is written as follows:

Z =


S−1√
Var(S)

i f S > 0

0 i f S = 0
S+1√
Var(S)

i f S < 0
(5)

Note that the significance of a trend is evaluated using the standardized test statistic
(Z) value. This study tests for either an upward or downward trend at the α = 0.05 level of
significance (Z1−α/2 = 1.96), and positive and negative Z values indicate increasing and
decreasing trends. H0 is rejected if |Z| > Z1−α/2; otherwise, there is no significant data
trend. Sen’s estimator is a robust linear regression method that detects the magnitude of
these increasing and decreasing trends of sample points [52].

4. Results

It can be shown that the spatial distribution of the mean PRCPTOT in Inner Mongolia
during the period from 1960 to 2019 was obtained using Kriging interpolation based on Ar-
cGIS software (ESRI, Redlands, CA, USA) (Figure 4). The spatial distribution characteristic
of the mean PRCPTOT of the stations in Inner Mongolia exhibits an increasing trend from
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northwest to southeast, and there is a significant gap between the maximum and minimum.
The minimum of the mean PRCPTOT is observed at Ejinaqi Station as 35 mm, while the
maximum is 509 mm at Xiaoergou Station. The spatial difference of the mean PRCPTOT in
Inner Mongolia is affected by climate, latitude, geography, and geomorphology. There is a
significant difference in the mean PRCPTOT between the southern and northern foothills of
the Yin Mountains. The humid air in the south is blocked by the Yin Mountains, resulting
in less rainfall north of the Yin Mountains.
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The spatial distribution of the mean wet days in Inner Mongolia during the period
from 1960 to 2019 is exhibited in Figure 5. The minimum of the mean wet days is also
observed at Ejinaqi Station as 18 days, while the maximum is 153 days at Aershan Station.
Unlike the spatial distribution characteristic of the mean PRCPTOT, the maximum of the
mean wet days is concentrated in the northeast of Inner Mongolia. The mean wet days in
Southeastern Inner Mongolia is at a low level, but the mean PRCPTOT is at a high level,
which leads to a higher mean SDII more prone to extreme precipitation events.

The spatial distribution of the mean SDII in Inner Mongolia during the period from
1960 to 2019 is exhibited in Figure 6. The minimum of the mean SDII is also observed at
Ejinaqi Station as 1.93 mm/day, while the maximum is 5.99 mm/day at Zhalute Station.
The variation trend of the spatial distribution of the mean SDII is consistent with that of the
spatial distribution of the mean PRCPTOT, and the maximum of SDII in Southeastern Inner
Mongolia proves the previous inference. Similarly, there is a significant difference in the
mean SDII between the southern and northern foothills of the Yin Mountains. Under the
influence of the monsoon, the moist air reaching the southern foothill of the Yin Mountains
is lifted by the terrain during air movement. With the increase of altitude, the water vapor
cools to form precipitation, making the precipitation at the southern foothill of the Yin
Mountains higher than the northern foothill of the Yin Mountains.
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In order to understand the essential characteristics of the study data, descriptive
statistics (Table 2) provide the standard deviation; minimum, maximum, and mean for
temperature; and other extreme precipitation indicators. Overall represents that all the
statistical data of 2100 observations are used for calculation. Between represents that the
results are calculated based on the statistical data of 35 stations regardless of time. Within
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represents that the results are calculated using the statistical data of 60 years regardless
of stations.

Table 2. Descriptive statistics of the study variables.

Variable Mean Std. Dev. Min Max Observations

Temperature overall 3.4853 3.3381 −6.71 10.34 N = 2100
between 3.2463 −4.3323 8.1197 n = 35
within 0.9489 0.8457 5.97 T = 60

PRCPTOT overall 325.3502 127.5773 39.7 1111.5 N = 2100
between 93.5182 137.0217 509.175 n = 35
within 88.1824 34.7202 932.9202 T = 60

Wet Days overall 77.5557 25.1283 21 205 N = 2100
between 22.9522 36.0333 153.75 n = 35
within 10.9286 36.8057 128.8057 T = 60

SDII overall 4.2781 1.4414 1.28 11.54 N = 2100
between 1.0011 2.8538 5.9875 n = 35
within 1.0506 0.9766 11.0829 T = 60

The concepts of “spurious regression” and “spurious correlation” could appear be-
tween independent unit root variables. Therefore, for panel data, we should first carry
out a unit root test for each variable in the panel—that is, the stationarity test of variables.
The method of the unit root test mainly included the LLC unit root test, IPS unit root
test, Breitung unit root test, and Fisher unit root test. In order to ensure the reliability
of the conclusions, this study comprehensively used the above four methods to test the
stationarity of the temperature and other extreme precipitation indicators and then judged
the stationarity of the variables (Table 3). The research showed that all variables were
stationary sequences at the significance level of 5%, and all sequences contained drift terms
and trend terms.

Table 3. Unit root test.

Variables LLC IPS Breitung Fisher-ADF

Temperature −30.9737 *** −28.0859 *** −1.4916 ** 168.3305 ***
PRCPTOT −44.4018 *** −41.2530 *** −4.5287 *** 355.0586 ***
Wet Days −37.9387 *** −36.7455 *** −3.9278 *** 249.3556 ***

SDII −43.9659 *** −40.5206 *** −3.9635 *** 306.1874 ***
Note: ** and *** represent the significance levels of 5% and 1%, respectively.

The optimal lag order is selected by the MBIC, MAIC, and MQIC. In the study, the
optimal lag order of the model is selected to be 5 using Stata software. According to the test
of the eigenvalue stability condition of the model, it was found that all eigenvalues of the
PVAR models were inside the unit circle, indicating that the PVAR models had a high degree
of stability. The paper researched the Granger cause equation between temperature and
other extreme precipitation indicators. The results showed that all H0 were rejected besides
the fact that SDII is not a Granger cause Equation variable (Table 4). Therefore, the research
shows Granger reasons between temperature and other extreme precipitation indicators.
That is, the temperature will exert influence on the extreme precipitation indicators.

According to the correlation matrix of all the study variables (Table 5), the temperature
had a positive correlation with only SDII and a negative correlation with the remaining
variables. It was also found from the correlation matrix that all study variables were
correlated at the significance level of 1%. It represented a highly negative correlation of the
correlation coefficient of the temperature and wet days over 0.7.
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Table 4. Panel VAR Granger causality Wald test.

Null Hypothesis (H0) F-Statistics p-Value Conclusion

Temperature is not a Granger cause equation variable 20.375 0.001 Rejection
PRCPTOT is not a Granger cause equation variable 17.540 0.004 Rejection

Temperature is not a Granger cause equation variable 41.208 0.000 Rejection
Wet Days are not Granger cause equation variables 20.713 0.001 Rejection

Temperature is not a Granger cause equation variable 45.216 0.000 Rejection
SDII is not a Granger cause equation variable 7.737 0.171 Acceptance

Table 5. Correlation matrix.

Variables Temperature PRCPTOT Wet Days SDII

Temperature 1
PRCPTOT −0.183 *** 1
Wet Days −0.720 *** 0.552 *** 1

SDII 0.401 *** 0.689 *** −0.178 *** 1
Note: *** represent the significance levels of 1%.

The study shows the MK trend test distributions of all variables from 1960 to 2019
(Table 6). The temperatures at all stations showed significant increasing trends, and there
is no doubt that the climate is gradually warming. We were surprised to find that the
PRCPTOT of almost all stations exhibited no significant trend, and only Manzhouli was
detected to have a decreasing trend. According to the above correlation matrix results, it is
inferred that the PRCPTOT in Inner Mongolia may show a downward trend in the future.
The wet days of most stations also exhibited no significant trend, and only the wet days
of one out of five stations were detected to have a decreasing trend. Interestingly, most of
these stations were located in the eastern part of Inner Mongolia. The SDII of seven stations
detected a significant increasing trend, but two stations exhibited a decreasing trend, which
was worthy of further study, and the rest stations showed no significant trends. In a word,
the SDII of some stations were detected to have increasing trends, and it can be indicated
that the extreme precipitation events are increasingly severe.

Table 6. Z Value and slope estimates.

Station
Temperature PRCPTOT Wet Days SDII

Z Sen Z Sen Z Sen Z Sen

Eerguna −2.268 0.039 −0.836 −0.485 −0.166 0 −0.249 −0.001
Tulihe 4.981 0.033 −0.434 −0.222 −5.166 −0.556 2.398 0.011

Manzhouli 3.89 0.028 −2.289 −1.162 0.357 0.036 −2.041 −0.016
Hailaer 4.719 0.039 −0.242 −0.123 −1.486 −0.147 1.792 0.01

Xiaoergou 6.339 0.048 1.512 1.112 −4.369 −0.458 3.852 0.031
Xinbaerhuyouqi 5.134 0.037 −1.237 −0.811 0.549 0.041 −1.677 −0.015
Xinbaerhuzuoqi 5.102 0.038 0.383 0.154 0.823 0.063 0.268 0.002

Zhalantun 5.236 0.035 1.549 1.497 0.855 0.069 0.561 0.006
Aershan 5.096 0.032 0.542 0.407 −4.216 −0.457 2.283 0.011
Suolun 5.185 0.03 0.166 0.148 −0.708 −0.063 0.542 0.004

Dongwuzhumuqinqi 5.899 0.044 0.006 0.003 0 0 0.325 0.002
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Table 6. Cont.

Station
Temperature PRCPTOT Wet Days SDII

Z Sen Z Sen Z Sen Z Sen

Erlianhaote 5.638 0.048 0.434 0.149 −1.365 −0.092 0.721 0.005
Narenbaolige 5.791 0.047 −0.14 −0.097 −0.88 −0.077 0.306 0.001

Mandula 5.708 0.037 1.014 0.392 −0.804 −0.053 1.843 0.011
Abagaqi 5.938 0.049 −0.517 −0.2 −0.191 0 −0.364 −0.002

Wulatezhongqi 6.971 0.048 0.899 0.433 −0.842 −0.052 1.677 0.013
Damaoqi 6.333 0.044 0.874 0.457 −1.677 −0.111 2.341 0.011

Siziwangqi 5.772 0.039 1.371 0.861 0.319 0 1.69 0.009
Huade 6.327 0.041 0.051 0.031 −0.472 −0.045 0.057 0.001
Baotou 6.027 0.038 0.414 0.29 −0.568 −0.036 1.582 0.016
Hohhot 6.244 0.043 0.491 0.594 0.121 0 0.829 0.008
Jining 6.039 0.036 0.134 0.052 −1.544 −0.127 1.25 0.01
Linhe 6.448 0.048 0.204 0.088 0.887 0.056 −0.369 −0.003

Eketuoqi 5.466 0.031 0.427 0.269 0.019 0 0.593 0.007
Dongsheng 7.111 0.051 0.019 0.025 −0.976 −0.078 1.142 0.012

Xiwuzhumuqinqi 5.019 0.033 −0.299 −0.203 0.561 0.061 −1.033 −0.006
Zhalute 6.225 0.039 −0.319 −0.254 −0.95 −0.078 0.083 0.001

Balinzuoqi 6.697 0.047 0.427 0.218 −1.837 −0.105 1.199 0.012
Xilinhaote 5.676 0.041 −0.338 −0.239 0.549 0.054 −0.918 −0.006

Linxi 4.745 0.024 −0.899 −0.607 −0.599 −0.052 −0.816 −0.006
Kailu 5.785 0.035 −0.338 −0.213 0.013 0 −0.159 −0.002

Tongliao 6.269 0.041 −0.274 −0.163 −2.003 −0.152 0.281 0.003
Duolun 6.123 0.04 0.587 0.334 −1.416 −0.143 1.62 0.01

Wengniuteqi 4.618 0.025 −0.364 −0.304 −1.461 −0.11 0.268 0.002
Chifeng 4.095 0.02 0.395 0.238 −1.703 −0.125 1.767 0.014

5. Discussion

The spatial distribution of the extreme precipitation indicators (PRCPTOT, Wet Days,
and SDII) in Inner Mongolia tends to be maximum in the southeast and minimum in the
northwest. The results are consistent with the research in Inner Mongolia publicized by
other scholars [53].

The research used panel data and a time–series data analysis technique to test the
general theory by examining the correlation between the temperature and three extreme
precipitation-related indicators in the past. The previous research suggests that extreme
precipitation events have become increasingly severe with global warming [54,55]. There-
fore, we detect causality for temperature and extreme precipitation indicators PRCPTOT,
Wet Days, and SDII. Our findings suggest that the decreasing trend in PRCPTOT and
wet days is accompanied by increases in the temperature. In contrast, the other type of
relationship exhibited an increasing trend in SDII with increasing temperature. A station
with the first relationship between PRCPTOT and temperature means an increased risk
of drought or/and flood disaster events at the station. In addition, the station of the first
relationship between PRCPTOT and temperature occurred in Northeastern Inner Mongolia.
The climate characteristics of Inner Mongolia are very dry, and the annual precipitation is
relatively small. Therefore, there is a greater risk of drought for the stations that showed the
first type of relationship between PRCPTOT and temperature in the dry season. Due to the
small wet days, the more concentrated the rainfall, the more flood disasters are caused. The
second relationship between SDII and temperature means that flood disasters are becoming
more and more frequent. Therefore, flood prevention should be paid attention to at some
stations, such as Tulihe, Xiaoergou, and Chifeng.

Regarding temperature and extreme precipitation-related indicators from 1960 to 2019,
PRCPTOT and wet days were mainly observed in decreasing trends across Inner Mongolia.
Some scholars showed that the increasing trends of PRCPTOT aggravate the hazard of
flooding, because a large amount of precipitation indicates an incidence of torrential rain.
On the contrary, the decreasing trend of PRCPTOT indicates that more dry periods could
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be detected [56]. However, SDII has shown a significant increasing trend in some stations
in Inner Mongolia, such as Tulihe, Xiaoergou, and Aershan, which indicates that we should
pay attention to the growing number of extreme precipitation events. At the same time, the
present study shows that the decline rate of PRCPTOT in most stations was not as fast as
that of wet days, which proves once again that extreme precipitation events are becoming
more and more frequent. For temperature, all stations observed significant increasing
trends in line with the current global warming situation. Some scholars suggested that
changes in extreme climate events in most parts of the world are amplified at the tails,
such as increases in extremely high temperatures, decreases in extremely low temperatures,
and increases in extreme precipitation events [10]. In summary, the extreme precipitation
events in Inner Mongolia have exhibited increasing trends, but precipitation is detected in
decreasing trends.

The reduction of precipitation will significantly affect the ecosystem, the hydrological
cycle, and the water supply of society. In detail, changes in precipitation will cause changes
in runoff and groundwater to affect the hydrological cycle, which, in turn, affects the water
supply and ecological environment. For agriculture, one of the most critical industries in
China, the reduction of precipitation leads to a lack of soil moisture, greatly influencing
crops. As far as hydropower projects are concerned, the influence of runoff change is very
critical. In addition, the changes in extreme precipitation events are particularly significant
for managing water resources, the formulation of flood control policies, the reduction of soil
erosion, and the acquisition of natural water resources [57,58]. Ultimately, the changes of
extreme precipitation events will significantly influence the ecosystem and human society
of the whole of Inner Mongolia.

6. Conclusions

The research analyzes the correlation and temporal–spatial variation characteristics
of temperature and extreme precipitation indicators at various stations in Inner Mongolia
from 1960 to 2019. The following conclusions can be drawn from this study.

(1) The PRCPTOT and SDII researched in this work exhibited spatial distribution char-
acteristics of more significant in the southeast and more minor in the northwest. In
terms of the spatial distribution characteristics of wet days, the larger values are
concentrated in Northeastern Inner Mongolia.

(2) The Granger cause tests of the temperature and extreme precipitation indicators
showed a correlation between each indicator and temperature at the significance level
of 1%. The temperature had a positive correlation with only SDII, while the negative
correlation with the remaining indicators and temperature was highly negatively
correlated with wet days.

(3) Regarding development trends of temperature and extreme precipitation indicators,
there are mainly two types of relationships in Inner Mongolia. The first relation-
ship (with the increase in temperature and the decrease in PRCPTOT and wet days)
means an increase in drought disasters. The other type of relationship (an increase
in SDII, along with an increase in temperature) means an increased risk in flood
disaster events.

Author Contributions: Conceptualization, W.Z. and P.L.; Data curation, W.Z. and X.Z.; Formal
analysis, W.Z.; Funding acquisition, P.L.; Investigation, W.Z.; Methodology, W.Z.; Resources, P.L.;
Software, S.W.; Supervision, P.L., J.L., M.Z., B.H. and D.N.; Validation, W.Z. and Z.C.; Visualization,
W.Z.; Writing—original draft, W.Z.; and Writing—review and editing, W.Z. All authors have read
and agreed to the published version of the manuscript.



Atmosphere 2022, 13, 612 13 of 15

Funding: This study was supported by National Key R&D Program of China (2018YFE0103800);
the Fundamental Research Funds for the Central Universities, CHD (300102299302, 300102299102,
and 300102299104); International Collaborative Research of Disaster Prevention Research Institute of
Kyoto University (2019W-02); One Hundred Talent Plan of Shaanxi Province; excellent projects for
science and technology activities of overseas staff in Shaanxi Province (2018038); Special funds of
education and teaching reform for the Central Universities of China (310629172112); the GDAS Project
of Science and Technology Development (2020GDASYL-20200102013, 2020GDASYL-20200301003,
2020GDASYL-20200402003, and 2019GDASYL-0102002); experimental research on water conservancy
science and a technology promotion project of the Water Conservancy Bureau of Gansu Province
(2019-08, 2020-46, and 2021-71); Guangdong Foundation for the Program of Science and Technol-
ogy Research (Grant No.2019B121205006); and the National Natural Science Foundation of China
(51869023 and 41930865).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The precipitation and temperature data were collected from Daily
Terrestrial Climatological Dataset in China (V3.0) released by the National Meteorological Information
Center (http://data.cma.cn/, accessed on 16 September 2021).

Acknowledgments: We appreciate the reviewers for providing valuable comments.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the study
design, data collection, and analysis; decision to publish; or preparation of the manuscript.

References
1. Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Florke, M.; Hanasaki, N.; Wisser, D. Global water resources affected by human

interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [CrossRef] [PubMed]
2. Wei, L.H.; Gu, X.H.; Kong, D.D.; Liu, J.Y. A long-term perspective of hydroclimatological impacts of tropical cyclones on regional

heavy precipitation over eastern monsoon China. Atmos. Res. 2021, 264, 105862. [CrossRef]
3. Blanchet, J.; Ceresetti, D.; Molinié, G.; Creutin, J.-D. A regional GEV scale-invariant framework for Intensity–Duration–Frequency

analysis. J. Hydrol. 2016, 540, 82–95. [CrossRef]
4. Ghanmi, H.; Bargaoui, Z.; Mallet, C. Estimation of intensity-duration-frequency relationships according to the property of scale

invariance and regionalization analysis in a Mediterranean coastal area. J. Hydrol. 2016, 541, 38–49. [CrossRef]
5. AghaKouchak, A.; Cheng, L.Y.; Mazdiyasni, O.; Farahmand, A. Global warming and changes in risk of concurrent climate

extremes: Insights from the 2014 California drought. Geophys. Res. Lett. 2014, 41, 8847–8852. [CrossRef]
6. Pöschmann, J.M.; Kim, D.; Kronenberg, R.; Bernhofer, C. An analysis of temporal scaling behaviour of extreme rainfall in Germany

based on radar precipitation QPE data. Nat. Hazards Earth Syst. Sci. 2021, 21, 1195–1207. [CrossRef]
7. Nigussie, T.A.; Altunkaynak, A. Impacts of climate change on the trends of extreme rainfall indices and values of maximum

precipitation at Olimpiyat Station, Istanbul, Turkey. Theor. Appl. Climatol. 2019, 135, 1501–1515. [CrossRef]
8. Moberg, A.; Jones, P.D. Trends in indices for extremes in daily temperature and precipitation in central and western Europe,

1901–1999. Int. J. Climatol. A J. R. Meteorol. Soc. 2005, 25, 1149–1171. [CrossRef]
9. Santos, C.A.C.D. Recent changes in temperature and precipitation extremes in an ecological reserve in Federal District, Brazil.

Rev. Bras. Meteorol. 2014, 29, 13–20. [CrossRef]
10. Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling,

and impacts. Science 2000, 289, 2068–2074. [CrossRef]
11. Aihaiti, A.; Jiang, Z.H.; Zhu, L.H.; Li, W.; You, Q.L. Risk changes of compound temperature and precipitation extremes in China

under 1.5 degrees C and 2 degrees C global warming. Atmos. Res. 2021, 64, 105838. [CrossRef]
12. Luo, P.; Mu, Y.; Wang, S.; Zhu, W.; Mishra, B.K.; Huo, A.; Zhou, M.; Lyu, J.; Hu, M.; Duan, W. Exploring sustainable solutions for

the water environment in Chinese and Southeast Asian cities. Ambio 2022, 51, 1199–1218. [CrossRef] [PubMed]
13. Luo, P.; Xu, C.; Kang, S.; Huo, A.; Lyu, J.; Zhou, M.; Nover, D. Heavy metals in water and surface sediments of the Fenghe River

Basin, China: Assessment and source analysis. Water Sci. Technol. 2021, 84, 3072–3090. [CrossRef] [PubMed]
14. Zha, X.; Luo, P.; Zhu, W.; Wang, S.; Lyu, J.; Zhou, M.; Huo, A.; Wang, Z. A bibliometric analysis of the research on Sponge City:

Current situation and future development direction. Ecohydrology 2021, 14, e2328. [CrossRef]
15. Easterling, D.R.; Alexander, L.V.; Mokssit, A.; Detemmerman, V. CCI/CLIVAR workshop to develop priority climate indices. Bull.

Am. Meteorol. Soc. 2003, 84, 1403–1407. [CrossRef]
16. Hao, Z.; AghaKouchak, A.; Phillips, T.J. Changes in concurrent monthly precipitation and temperature extremes. Environ. Res.

Lett. 2013, 8, 034014. [CrossRef]
17. Folland, C.K.; Rayner, N.A.; Brown, S.; Smith, T.; Shen, S.; Parker, D.; Nicholls, N. Global temperature change and its uncertainties

since 1861. Geophys. Res. Lett. 2001, 28, 2621–2624. [CrossRef]

http://data.cma.cn/
http://doi.org/10.1073/pnas.1222475110
http://www.ncbi.nlm.nih.gov/pubmed/24344275
http://doi.org/10.1016/j.atmosres.2021.105862
http://doi.org/10.1016/j.jhydrol.2016.06.007
http://doi.org/10.1016/j.jhydrol.2016.07.002
http://doi.org/10.1002/2014GL062308
http://doi.org/10.5194/nhess-21-1195-2021
http://doi.org/10.1007/s00704-018-2449-x
http://doi.org/10.1002/joc.1163
http://doi.org/10.1590/S0102-77862014000100002
http://doi.org/10.1126/science.289.5487.2068
http://doi.org/10.1016/j.atmosres.2021.105838
http://doi.org/10.1007/s13280-021-01654-3
http://www.ncbi.nlm.nih.gov/pubmed/34751934
http://doi.org/10.2166/wst.2021.335
http://www.ncbi.nlm.nih.gov/pubmed/34850713
http://doi.org/10.1002/eco.2328
http://doi.org/10.1175/bams-84-10-1403
http://doi.org/10.1088/1748-9326/8/3/034014
http://doi.org/10.1029/2001GL012877


Atmosphere 2022, 13, 612 14 of 15

18. Zscheischler, J.; Orth, R.; Seneviratne, S.I. Bivariate return periods of temperature and precipitation explain a large fraction of
European crop yields. Biogeosciences 2017, 14, 3309–3320. [CrossRef]

19. Yihui, D.; Chan, J.C. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [CrossRef]
20. You, Q.L.; Kang, S.C.; Aguilar, E.; Pepin, N.; Flugel, W.A.; Yan, Y.P.; Huang, J. Changes in daily climate extremes in China and

their connection to the large scale atmospheric circulation during 1961–2003. Clim. Dyn. 2011, 36, 2399–2417. [CrossRef]
21. Wang, S.; Gong, D. Enhancement of the warming trend in China. Geophys. Res. Lett. 2000, 27, 2581–2584. [CrossRef]
22. Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J.

Clim. 2005, 18, 1096–1108. [CrossRef]
23. Almazroui, M.; Saeed, S. Contribution of extreme daily precipitation to total rainfall over the Arabian Peninsula. Atmos. Res.

2020, 231, 104672. [CrossRef]
24. Tong, S.; Li, X.; Zhang, J.; Bao, Y.; Bao, Y.; Na, L.; Si, A. Spatial and temporal variability in extreme temperature and precipitation

events in Inner Mongolia (China) during 1960–2017. Sci. Total Environ. 2019, 649, 75–89. [CrossRef] [PubMed]
25. Khan, R.S.; Bhuiyan, M.A.E. Artificial intelligence-based techniques for rainfall estimation integrating multisource precipitation

datasets. Atmosphere 2021, 12, 1239. [CrossRef]
26. Derin, Y.; Yilmaz, K.K. Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeorol.

2014, 15, 1498–1516. [CrossRef]
27. Mei, Y.; Nikolopoulos, E.I.; Anagnostou, E.N.; Borga, M. Evaluating satellite precipitation error propagation in runoff simulations

of mountainous basins. J. Hydrometeorol. 2016, 17, 1407–1423. [CrossRef]
28. Aihua, M.; Dapeng, Y.; Jingbo, Z. Spatiotemporal variation and effect of extreme precipitation in Inner Mongolia in recent 60 years.

Arid Zone Res. 2020, 37, 74–85. [CrossRef]
29. Peng, Y.; Long, S.; Ma, J.; Song, J.; Liu, Z. Temporal-spatial variability in correlations of drought and flood during recent 500 years

in Inner Mongolia, China. Sci. Total Environ. 2018, 633, 484–491. [CrossRef]
30. Li, Y.; Xin-Gang, D.; Yu, Z. Extreme precipitation events in Inner Mongolia in 1961–2008. Adv. Clim. Change Res. 2010, 6, 411.
31. Wei, X.; Wang, N.; Luo, P.; Yang, J.; Zhang, J.; Lin, K. Spatiotemporal assessment of land marketization and its driving forces for

sustainable urban–rural development in Shaanxi province in China. Sustainability 2021, 13, 7755. [CrossRef]
32. Wang, Q.; Zhang, M.J.; Wang, S.J.; Ma, Q.; Sun, M.P. Changes in temperature extremes in the Yangtze River Basin, 1962–2011. J.

Geogr. Sci. 2014, 24, 59–75. [CrossRef]
33. Costa, A.C.; Soares, A. Trends in extreme precipitation indices derived from a daily rainfall database for the South of Portugal.

Int. J. Climatol. A J. R. Meteorol. Soc. 2009, 29, 1956–1975. [CrossRef]
34. Tramblay, Y.; El Adlouni, S.; Servat, E. Trends and variability in extreme precipitation indices over Maghreb countries. Nat.

Hazards Earth Syst. Sci. 2013, 13, 3235–3248. [CrossRef]
35. Bhatti, A.S.; Wang, G.; Ullah, W.; Ullah, S.; Fiifi Tawia Hagan, D.; Kwesi Nooni, I.; Ullah, I. Trend in extreme precipitation indices

based on long term in situ precipitation records over Pakistan. Water 2020, 12, 797. [CrossRef]
36. Fahimnia, B.; Sarkis, J.; Davarzani, H. Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ.

2015, 162, 101–114. [CrossRef]
37. Sims, C.A. Macroeconomics and reality. Econom. J. Econom. Soc. 1980, 48, 1–48. [CrossRef]
38. Abrigo, M.R.; Love, I. Estimation of panel vector autoregression in Stata. Stata J. 2016, 16, 778–804. [CrossRef]
39. Levin, A.; Lin, C.-F.; Chu, C.-S.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 2002, 108, 1–24.

[CrossRef]
40. Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [CrossRef]
41. Breitung, J.; Das, S. Panel unit root tests under cross-sectional dependence. Stat. Neerl. 2005, 59, 414–433. [CrossRef]
42. Choi, I. Unit root tests for panel data. J. Int. Money Financ. 2001, 20, 249–272. [CrossRef]
43. Westerlund, J. A note on the use of the LLC panel unit root test. Empir. Econ. 2009, 37, 517–531. [CrossRef]
44. Maddala, G.S.; Wu, S. A comparative study of unit root tests with panel data and a new simple test. Oxf. Bull. Econ. Stat. 1999, 61,

631–652. [CrossRef]
45. Andrews, D.W.; Lu, B. Consistent model and moment selection procedures for GMM estimation with application to dynamic

panel data models. J. Econom. 2001, 101, 123–164. [CrossRef]
46. Sassi, S.; Gasmi, A. The Dynamic Relationship Between Corruption—Inflation: Evidence from Panel Vector Autoregression. Jpn.

Econ. Rev. 2017, 68, 458–469. [CrossRef]
47. Childs, C. Interpolating surfaces in ArcGIS spatial analyst. ArcUser 2004, 3235, 32–35.
48. Meng, Q.; Liu, Z.; Borders, B.E. Assessment of regression kriging for spatial interpolation–comparisons of seven GIS interpolation

methods. Cartogr. Geogr. Inf. Sci. 2013, 40, 28–39. [CrossRef]
49. Siska, P.P.; Hung, I.-K. Assessment of kriging accuracy in the GIS environment. In Proceedings of the 21st Annual ESRI

International Conference, San Diego, CA, USA, 9–13 July 2001.
50. Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [CrossRef]
51. Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [CrossRef]
52. Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [CrossRef]
53. Xie, S.; Liu, Y.; Yao, F. Spatial Downscaling of TRMM Precipitation Using an Optimal Regression Model with NDVI in Inner

Mongolia, China. Water Resour. 2020, 47, 1054–1064. [CrossRef]

http://doi.org/10.5194/bg-14-3309-2017
http://doi.org/10.1007/s00703-005-0125-z
http://doi.org/10.1007/s00382-009-0735-0
http://doi.org/10.1029/1999GL010825
http://doi.org/10.1175/JCLI-3318.1
http://doi.org/10.1016/j.atmosres.2019.104672
http://doi.org/10.1016/j.scitotenv.2018.08.262
http://www.ncbi.nlm.nih.gov/pubmed/30172136
http://doi.org/10.3390/atmos12101239
http://doi.org/10.1175/JHM-D-13-0191.1
http://doi.org/10.1175/JHM-D-15-0081.1
http://doi.org/10.13866/j.azr.2020.01.09
http://doi.org/10.1016/j.scitotenv.2018.03.200
http://doi.org/10.3390/su13147755
http://doi.org/10.1007/s11442-014-1073-7
http://doi.org/10.1002/joc.1834
http://doi.org/10.5194/nhess-13-3235-2013
http://doi.org/10.3390/w12030797
http://doi.org/10.1016/j.ijpe.2015.01.003
http://doi.org/10.2307/1912017
http://doi.org/10.1177/1536867X1601600314
http://doi.org/10.1016/S0304-4076(01)00098-7
http://doi.org/10.1016/S0304-4076(03)00092-7
http://doi.org/10.1111/j.1467-9574.2005.00299.x
http://doi.org/10.1016/S0261-5606(00)00048-6
http://doi.org/10.1007/s00181-008-0244-8
http://doi.org/10.1111/1468-0084.0610s1631
http://doi.org/10.1016/S0304-4076(00)00077-4
http://doi.org/10.1111/jere.12134
http://doi.org/10.1080/15230406.2013.762138
http://doi.org/10.1093/biomet/30.1-2.81
http://doi.org/10.2307/1907187
http://doi.org/10.1080/01621459.1968.10480934
http://doi.org/10.1134/S0097807820060123


Atmosphere 2022, 13, 612 15 of 15

54. Mukherjee, S.; Aadhar, S.; Stone, D.; Mishra, V. Increase in extreme precipitation events under anthropogenic warming in India.
Weather Clim. Extrem. 2018, 20, 45–53. [CrossRef]

55. Higgins, R.; Schemm, J.E.; Shi, W.; Leetmaa, A. Extreme precipitation events in the western United States related to tropical
forcing. J. Clim. 2000, 13, 793–820. [CrossRef]

56. Li, W.; Jiang, Z.; Zhang, X.; Li, L. On the emergence of anthropogenic signal in extreme precipitation change over China. Geophys.
Res. Lett. 2018, 45, 9179–9185. [CrossRef]

57. Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.; Mortimore, M.; Batterbury, S.P.; Herrick, J.E. Global desertification: Building
a science for dryland development. Science 2007, 316, 847–851. [CrossRef]

58. Wei, X.; Yang, J.; Luo, P.; Lin, L.; Lin, K.; Guan, J. Assessment of the variation and influencing factors of vegetation NPP and
carbon sink capacity under different natural conditions. Ecol. Indic. 2022, 138, 108834. [CrossRef]

http://doi.org/10.1016/j.wace.2018.03.005
http://doi.org/10.1175/1520-0442(2000)013&lt;0793:EPEITW&gt;2.0.CO;2
http://doi.org/10.1029/2018GL079133
http://doi.org/10.1126/science.1131634
http://doi.org/10.1016/j.ecolind.2022.108834

	Introduction 
	Study Area 
	Materials and Methods 
	Materials 
	Method 
	Extreme Climate Indices 
	PVAR Models 
	Spatial Interpolation 
	Mann–Kendall (MK) Test and Sen’s Trend Estimator 


	Results 
	Discussion 
	Conclusions 
	References

