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Abstract: Three Microwave Radiation Imagers (MWRI) were carried onboard the FengYun-3B/C/D
satellites and have collected more than 10 years of data since 2010. To create a robust climate quality
of data, MWRI level one data were reprocessed with new calibration. This study evaluates the
performance of retrieving global soil moisture from recalibrated MWRI data (RCD) and quantifies
the difference of retrieved soil moisture between operational calibration data (OCD) and RCD. Soil
Moisture Operational Products System (SMOPS) products from NOAA on four days of different
seasons were collocated with MWRI brightness temperatures, and then the collocated data were used
for training an algorithm through machine learning. The retrieved soil moisture products using OCD
and RCD were evaluated against the independent SMOPS products, in situ networks and SMAP
soil moisture product. It is shown that the algorithm from the random forest is suitable for FY-3D
recalibrated MWRI data, with a coefficient of determination (R2) of 0.7223, a mean bias of −0.0062
and an unbiased root mean square difference (ubRMSD) of 0.0476 m3 m−3 compared with SMOPS
products over the period from 12 July 2018 to 31 December 2019. The difference of retrieved soil
moisture using OCD and RCD is spatially heterogeneous. Both temporal and spatial coverage and
accuracy of the existing FY-3D operational soil moisture products are significantly improved.

Keywords: soil moisture; Microwave Radiation Imager; recalibration; machine learning; FengYun-3D

1. Introduction

Soil moisture (SM) plays an important role in the global water and energy cycle
between the atmosphere and Earth’s surface [1]. Knowledge of the spatiotemporal distribu-
tion of land SM can help us better understand surface runoff, terrestrial evapotranspiration,
rainfall infiltration, soil biochemical and nutrient cycling processes [2,3]. Furthermore, accu-
rate monitoring of SM at various spatiotemporal scales can benefit a variety of applications,
such as drought monitoring [4–6], rice mapping [7,8], flood warning and forecasting [9–11]
and irrigation management [12,13]. Despite its extensive applications, obtaining SM with
high temporal and spatial coverage and high precision is challenging.

With the rapid development of remote sensing technology, SM can be retrieved by a va-
riety of algorithms from the measurements made at visible to near infrared, thermal infrared
to microwave wavelengths [14–17]. However, microwave remote sensing, especially from
passive technology, is still the most effective method for obtaining SM information at re-
gional or global scales due to the relationship between the observed brightness temperature
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(TB).(TB) and soil dielectric constant [18–20]. According to the band setting, the currently
available satellite microwave radiometers are generally divided into two categories. One
contains a single L-band (1–2 GHz), such as Soil Moisture and Ocean Salinity (SMOS) and
Soil Moisture Active Passive (SMAP). The other contains multiple microwave bands (C-,
X-, Ku-, K-, Ka- and W-band) in dual polarization states, such as Advanced Microwave
Scanning Radiometer–Earth Observing System (AMSR-E), Advanced Microwave Scanning
Radiometer2 (AMSR2) and Wind Satellite (WindSat). Because of its better penetration
of vegetation and higher sensitivity to SM, the L-band is considered the best band for
retrieving SM [21]. In contrast, the high-frequency channels have low sensitivity to SM
even under a small fraction of vegetation coverage, leading to high SM retrieval errors.
At present, many algorithms have been proposed for L-band SM retrieval, including the
L-band microwave emission of biosphere model [22,23], the single channel algorithm at
horizontal or vertical polarization [24,25], the dual channel algorithm [26,27], and the land
parameter retrieval model [28]. Based on these algorithms, several global SM products
and datasets have been published, such as SMOS, SMAP, AMSR-E, AMSR2 Advanced
Scatterometer (ASCAT) and the European Space Agency Climate Change Initiative (ESA
CCI). These data have brought great benefits to agricultural and hydrological monitoring,
weather forecasting, and climate change research [29–31]. However, SM retrieval based on
a radiative transfer model using L-band requires a lot of auxiliary information, such as the
vegetation optical thickness, vegetation single scattering albedo, soil effective temperature,
and soil surface roughness, which limits the global application of these methods [32].

Although the inversion method based on physical models has been developed to
estimate SM from the multi-channel radiometers with C-band and/or X-band, greater
uncertainties can arise due to their low sensitivity to SM and effects of vegetation and
surface roughness [33]. The Chinese FengYun-3D (FY-3D) satellite, launched in November
2017, is equipped with a dual-polarization and multifrequency microwave radiometer
(MWRI) with frequencies ranging from 10.65 (X-band) to 89 (W-band) GHz. Because FY-3D
MWRI lacks the L- and C-bands, more interference factors need to be considered in retriev-
ing SM when the tau–omega radiative transfer model is used for inversion [34,35]. The
lowest frequency at X-band available from FY3-D MWRI provides the most SM information;
other higher frequencies contain more vegetation signal. Thus, a statistical model is being
developed for SM from MWRI.

Machine-learning techniques were used for SM retrieval at different scales based on
passive microwave observations [36–44]. The method first establishes relationships between
the input data (TB and/or ancillary data) and target SM using a variety of algorithms. The
reference SM comes from physical model simulations, ground measurements, satellite
products, and European Centre for Medium-Range Weather Forecasts model predictions.
Al-Yaari et al. [36] constructed a physically-based regression equation using SMOS level
three SM and horizontal and vertical TB observations to derive global SM with SMAP
level three TBs with the correlation coefficient (R) between 0.51 and 0.84. Santi et al. [37]
estimated SM with both satellite-observed and simulated C-band TB based on an artificial
neural network algorithm with the statistical parameters of determination of coefficient
(R2) of 0.82, root mean square error (RMSD) of 0.035 m−3 m−3 and bias of 0.09 m−3 m−3.
However, most of these studies are only based on a single band or two bands such as L-
and C-bands or a combination of C-band and X-band. The potential of using the observed
TBs in all channels of spaceborne microwave radiometer to estimate SM has not been
fully explored.

To deeply mine the historical data resources of multiple series of domestic satellites
such as meteorology, land and ocean and build a long-term climate observation plan
from the FengYun satellite series, the level 0 observation data of various sensors have been
recalibrated with the support of the National Key Research and Development Plan program.
The MWRI has been launched on board FY-3 B/C/D satellites, and it is now very conducive
to the establishment of a long-term SM dataset. Due to the uncertainty in characterizing
receiver nonlinearity, antenna gains and emission during its in-orbit operation, the current
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FY-3D MWRI operational calibration data (OCD) need to be recalibrated to ensure the
stability of long-term data. Recalibrated data (RCD) have been improved mainly in four
aspects: thermal mirror emissivity, antenna back lobe, heat source efficiency and receiver
nonlinearity [45]. Therefore, it is necessary to evaluate the accuracy difference of SM
retrieval based on these two data sources before constructing a long-term global SM dataset.

The objective of this study is to retrieve global SM with the FY-3D recalibrated MWRI
data based on a machine-learning algorithm and to evaluate the accuracy difference of
SM inversion using FY-3D MWRI OCD and RCD. The paper is structured as follows: In
Section 2, the details of our method and the preprocessing of data are introduced. The
retrieved soil moistures are analyzed and validated in Section 3. The final conclusion is
given in Section 4.

2. Materials and Methods
2.1. FY-3D MWRI Data

FY-3D MWRI measures TBs at five frequencies of 10.65 (X-band), 18.7 (Ku band),
23.8 (K band), 36.5 (Ka band) and 89.0 (W band) GHz with both vertical and horizontal
polarization. The antenna scans conically at a fixed viewing angle of 53.4 degrees across a
1400 km swath. The spatial resolution at the surface varies from approximately 70 km at
10.65 Ghz to 10 km at 89 GHz. FY-3D operates in a sun-synchronous polar orbit with the
ascending node at 14:00 p.m. and descending node at 2:00 a.m. local solar time. Since the
FY-3D MWRI level two SM product (FY-3D L2) was available starting from 12 July 2018, the
MWRI level one OCD and RCD provided by the National Satellite Meteorological Center
at CMA from 12 July 2018, to 31 December 2019, were used for SM retrieval. The fields
of level one data used in this study include TBs of 10 channels, latitude, longitude, land
cover type obtained from the International Geosphere–Biosphere Programme classification
scheme, surface elevation (digital elevation model, DEM) and quality control information.

Other auxiliary variables include microwave polarization difference index (MPDI)
and soil porosity. The MPDI is defined as the ratio of the difference between vertically and
horizontally polarized TBs to their sum [46,47]. As an indicator of vegetation, MPDI was
selected because it is more sensitive to the total water content of the vegetation per unit
area and independent of the surface temperature [48]. Soil porosity, as one of the most
important physical attributes, refers to the fraction of the total soil volume that is taken
up by the pore space [49], and its size determines how well liquids, gases and heat can be
stored and transmitted within the soil matrix. A greater porosity often indicates greater
storage and transmission ability. Soil porosity obtained from ESA CCI ancillary data which
are derived by applying soil water characteristic equations of Saxton and Rawls (2006) [50]
to texture data of the Harmonized World Soil Database v1. was used in this study.

Data cleaning needs to be performed for MWRI level one data before entering the
random forest model. First, the fractional coverage of land within MWRI field of view
(FOV) were defined by land–sea mask data. The observed TBs affected by radio frequency
interference (RFI) were then removed by using the spectral difference method [51]. The
FOVs with abnormal TB and surface types of forest, closed shrublands, water body, urban
and built up, snow and ice and permanent wetlands were also removed. Finally, the
properties from the MWRI level one were resampled to 0.25-degree grids for matching
the dependent variable using the nearest neighbor search algorithm. To evaluate the
performance of the random forest algorithm for SM estimation, the FY-3D MWRI level two
operational SM product was used for comparison.

2.2. NOAA Multi-Sensor Soil Moisture Products

NOAA Soil Moisture Operational Products System (SMOPS) products were used as the
training target dataset in the machine-learning model due to its high accuracy and temporal
resolution as well as high spatial coverage [52]. SMOPS provides a seamless SM map
over global land from six satellites, including Global Precipitation Measurement (GPM),
SMAP, Global Change Observation Mission 1st-Water (GCOM-W1), SMOS, Meteorological
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Operational A (Metop-A), and Metop-B. The global SM maps were generated in daily
intervals with the most recent 24 h of SM from multiple retrieval algorithms and mapped
with a cylindrical projection on a 0.25 × 0.25 degree grid. For each grid point of the map,
the output includes SM values as a percentage (vol/vol) of the surface (top 1–5 cm) soil
layer with associated quality information and metadata. The daily product is available in
netCDF file format.

2.3. Validation Data

Three kinds of SM data were used for verification, including the independent SMOPS
SM products, SM observed by China soil moisture automatic station and SMAP SM product.
SM from both automatic stations and SMAP were resampled to 0.25-degree grids using
the same method as above before validation. The daily mean in situ SM observations at
10-cm depth from 1924 stations were used to validate the estimated SM over the same time
period of MWRI level one. SM values outside the range of 0–0.5 m−3·m−3 were removed.
To enhance the representativeness of station observation SM as much as possible, gridding
was only carried out for the grids with the number of SM observation values greater than
three. The SMAP SM product used for validation was SMAP Enhanced L3 Radiometer
Global Daily 9 km EASE-Grid Soil Moisture V004. The time period of all validation data
covers from 21 July 2018 to 31 December 2019.

2.4. Random Forest Model Construction

The random forest (RF) algorithm was used to model the relationship between TBs,
auxiliary variables and target SM due to its popularity and flexibility [53]. When establish-
ing each tree, the RF algorithm randomly and bootstrapping-samples the rows and columns
of the training datasets, which makes it not as easy to overfit as the decision tree algorithm.
We used the “RandomForest” package developed with R language to construct the RF
model. In RF regression, three main hyperparameters need to be optimized during training:
ntree (the number of trees), node size (the minimal size of the leaf node) and mtry (the
number of features sampled). According to our optimization result, the values of these three
parameters were set as 500, 1, and 1/3 of the total number of the variables, respectively.

To reduce overfitting, it is very important to select a representative training dataset
to estimate SM. According to the analysis of [54], more random days cannot significantly
improve the estimation accuracy of SM. Therefore, MWRI observations, SMOPS and
auxiliary data from four random days (31 January, 30 April, 31 July, and 31 October 2018)
were used as training datasets to represent seasonal changes in SM as much as possible in
this study. The detailed flowchart for the RF model construction and validation is shown in
Figure 1.

2.5. Evaluation Indicators

To quantitatively evaluate the SM estimated based on OCD and RCD, several statistical
metrics were adopted, including the correlation coefficient (R), mean difference (Bias),
coefficient of determination (R2) and unbiased root mean square difference (ubRMSD). The
formulas for these indicators are as follows:

R =
∑n

i = 1
[(

Ei − E
)(

Ri − R
)]√

∑n
i = 1

[(
Ei − E

)2(Ri − R
)2
] (1)

Bias =
1
n ∑n

i = 1(Ei − Ri) (2)

R2 =
∑n

i = 1
(
Ei − R

)2

∑n
i = 1

(
Ri − R

)2 (3)
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ubRMSD =

√
∑n

i = 1
[(

Ri − R
)
−
(
Ei − E

)]2
n

(4)

where n is the number of samples and Ri and Ei are the ith reference and estimated SM,
respectively. R and E are the average of the reference and estimated SM, respectively.

Figure 1. Flowchart for the RF model construction and validation.

3. Results and Discussion
3.1. Characteristics of Training Dataset from OCD and RCD

The training dataset was obtained through collocating daily SMOPS and MWRI level
one data and soil porosity. Due to the scan pattern offset, the total number of training
samples was different between OCD and RCD. Therefore, we resampled the data in space
to match the sample size of the two datasets. Finally, 601,974 samples were obtained as a
training dataset. The distribution of independent variables in the training datasets is shown
in Figure 1. The difference in TBs changes with frequencies. The TBs of all the channels
have abnormal values, especially in the low value area. MPDI at all frequencies have the
characteristics of unimodal distribution. MPDI at 10 and 18 GHz from OCD are larger than
that from RCD, while the difference in MPDI at 23 GHz is small. Abnormal values from
MPDI also occur, especially in the high value area. To draw with soil porosity in the same
axes, the value of DEM divided by 10,000 is displayed. Due to the preprocess of gridding,
the distribution of DEM between OCD and RCD has negligible differences. The statistical
distribution of soil porosity between OCD and RCD is almost the same (Figure 2).
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Figure 2. Distribution of TBs of all channels, MPDI, DEM and soil porosity in training datasets
from OCD and RCD. Digit in x label denotes frequency, H and V denote horizontal and vertical
polarization, respectively.

The correlation coefficients between independent variables in OCD and RCD are
shown in Figure 3. TBs between different frequencies have a high positive correlation
coefficient with the highest R of 0.98 between 23V and 36V and the lowest R of 0.55
between 10H and 89V for RCD. The correlation coefficient decreases with the increase
of frequency interval. The correlation coefficients between vertical polarization TBs are
greater than that between horizontal polarization TBs. TBs of different frequencies with
horizontal polarization have a stronger negative correlation with MPDI than that with
vertical polarization. MPDI between different frequencies have high correlation coefficients.
Both DEM and soil porosity have low correlation coefficients with other variables. The
relationships of independent variables in OCD are similar with that in RCD (Figure 3).

To further analyze the differences of independent variables in the OCD and RCD
training datasets, the average bias was calculated by the variable values of the training
datasets of RCD minus that of OCD, and the results are shown in Figure 4. Except for TBs
at 18V and 23H, the TBs at other channels have a positive bias, and the maximum positive
bias occurs in the channel of 10H with a mean bias of 4.0221 k. The mean biases of MPDI at
10 GHz and 18 GHz are negative, while the mean bias of MPDI at 23 GHz is positive.
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Figure 3. Correlation coefficient between variables in the training datasets from OCD (upper left
triangle) and RCD (lower right triangle).

Figure 4. Mean difference of variables in the training dataset.

3.2. Soil Moisture Retrieved from OCD and RCD

Because of the advantages of fast computation and unbiased estimation, the out of
bag error is commonly used to test performance of a RF model [55,56]. The out of bag error
of the RF model trained by 500 trees was 0.0398 m3·m−3. To reflect the seasonal variations
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in SM, the global distribution map of retrieved SM of the four days in 2019 are displayed
based on OCD and RCD (Figures 5 and 6). Compared with the existing operational SM
product (FY3D L2), the SM obtained by the random forest algorithm has higher spatial
and temporal coverage and therefore can enhance the application of SM in the fields of
atmosphere, hydrology and environment. However, there are some missing retrievals
for SM maps over the northern hemisphere, such as Russia and Canada, particularly in
January. There are also some missing retrievals in the tropical region, particularly in the
Amazon Forest and Southeast Asia, in all months. This is because the SM on these types of
land cover is naturally difficult to retrieve based on microwave remote sensing technology
including snow, ice, forest and wetland [57,58].

Figure 5. Global soil moisture maps retrieved based on OCD on: (a) 31 January; (b) 30 April;
(c) 31 July; and (d) 31 October 2019.

Figure 6. Global soil moisture maps retrieved based on RCD on: (a) 31 January; (b) 30 April;
(c) 31 July; and (d) 31 October 2019.
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Over the northern hemisphere, SM increases from winter to summer and begins to
decrease in autumn, especially for the North American and Eurasian continents. For the
equatorial region, a warm and humid climate brings an increasing trend of SM from the
winter to summer seasons. For the southern hemisphere, the seasonal variation in SM is
the opposite, particularly for the southern part of the African continent and Australia. On
the Australian continent, higher SM can be seen during January, especially over the north
coast, when compared with the July map. The southern part of the African continent has
similar trends as the Australian continent. SM in desert areas, such as the Sahel, is low
throughout the year.

From the SM inversion results (Figures 5 and 6), it can be seen that the temporal
and spatial distribution between SM retrieved by OCD and RCD is very similar. To
quantitatively show the difference between SM retrieved by OCD and RCD, the SM daily
change rate was calculated by subtracting the SM retrieved using OCD from the SM
retrieved using RCD and then dividing it by the SM retrieved using OCD. The daily change
rate of SM in most areas on the four days was between −20% and 20%; in a few areas, it
was between −20% and −60% and 20 to 60% (Figure 7). In particular, on 31 January and
31 July, the variation rate of SM in a few grids was between 60% and 80%. Therefore, the
relative change rate of SM is different in time and space. For most regions, the change rate
is within 20%.

Figure 7. Soil moisture daily change rate on (a) 31 January, (b) 30 April, (c) 31 July and (d) 31 October
of 2019.

3.3. Inversion Accuracy Evaluation
3.3.1. Verification Based on SMOPS Data

The statistical indicators computed using SMOPS products are shown in Figure 8.
The accuracy of SM retrieved based on RCD is better than that of the FY3D level two
SM product with a mean bias mostly within 0.02, R2 greater than 0.6 and ubRMSD lower
than 0.06. The inversion accuracy of SM between OCD and RCD is similar. The statistical
metrics are listed in Table 1. Both OCD and RCD have lower negative mean biases values
(−0.0062 m3·m−3) than FY-3D L2 (−0.01 m3·m−3). RCD had a higher average R2 value
(0.7223) than OCD (0.7193). Both of them have a higher average R2 values than FY-3D
L2 (0.4097). In contrast, OCD and RCD have basically the same average ubRMSD values
(0.0477, 0.0476), while FY-3D L2 has a higher average ubRMSD value (0.099 m3·m−3).
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Figure 8. Validation of soil moisture retrieved using OCD (green line), RCD (red line) and FY-3D L2
(blue line) based on SMOPS products.

Table 1. Summary of the average validation indicators of soil moisture retrieval SMOPS products.

OCD vs. SMOPS RCD vs. SMOPS FY-3D L2 vs. SMOPS

Indicator Mean Bias R2 ubRMSD Mean Bias R2 ubRMSD Mean Bias R2 ubRMSD

Min −0.04 0.60 0.02 −0.04 0.59 0.02 −0.06 0.10 0.07

Max 0.02 0.98 0.06 0.02 0.98 0.06 0.04 0.67 0.12

Mean −0.01 0.72 0.05 −0.01 0.72 0.05 −0.01 0.41 0.10

3.3.2. Verification Based on Automatic Station Data

The statistical indicators computed using in situ SM are shown in Figure 9. The number
of matched soil observations in each grid point greater than 30 was used to calculate the
statistical metrics. The metrics of the grid with a p value of the correlation coefficient less
than 0.01 are displayed. As we can see from the distribution of the R, most of the grids
show a positive correlation, and a few grids show a negative correlation. The values and
spatial distribution of statistical indicators are basically similar using OCD and RCD. The
statistical results of the metrics are listed in Table 2. OCD results in a slightly higher average
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R value (0.3025) than RCD (0.2952). In contrast, the average of mean bias and ubRMSD
from OCD (0.0334, 0.0505) is slightly lower than those from RCD (0.0340, 0.0507). The
verification of satellite-based SM using in situ SM is a necessary condition for ensuring
the quality of information before being used for various studies. However, due to the
differences in penetration depth between ground-based and satellite observations and their
spatial representation, it is difficult to obtain more realistic validation results [59,60]. To
minimize the representativeness errors, all the stations falling within a particular satellite
field of view were (after quality control) averaged by calculating the arithmetic mean [61].
Finally, the mean values of SM observed at three to five automatic stations were used to
validate SM retrieved by OCD and RCD.

Figure 9. Validation of soil moisture retrieved using OCD (a,c,e) and RCD (b,d,f) based on
autostation observations.

Table 2. Summary of the average validation indicators of soil moisture retrieval based on in situ
soil moisture.

OCD vs. In Situ SM RCD vs. In Situ SM

Indicator R Mean Bias ubRMSD R Mean Bias ubRMSD

Min −0.5264 −0.1547 0.0177 −0.5615 −0.1590 0.0184

Max 0.6004 0.1939 0.1226 0.6173 0.1979 0.1207

Mean 0.3025 0.0334 0.0505 0.2952 0.0340 0.0507

3.3.3. Verification Based on SMAP Soil Moisture Products

The statistical indicators computed using SMAP SM products are shown in Figure 10.
Overall, the change trends of the statistical indicators of SM retrieved using OCD and RCD
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are basically the same. Due to the lack of SMAP SM products from 20 June to 23 July of
2019, each statistical index is discontinuous. The statistical results of the metrics are listed
in Table 3. There is little difference in the statistical results of indicators. SM retrieved based
on the random forest algorithm has an average R2 of 0.5421, average mean bias of 0.0514
and average ubRMSD of 0.0653.

Figure 10. Validation of soil moisture retrieved using OCD (green line) and RCD (red line) based on
SMAP product.

Table 3. Summary of the average validation indicators of soil moisture retrieval based on SMAP soil
moisture products.

OCD vs. SMAP RCD vs. SMAP s.

Mean Bias R2 ubRMSD Mean Bias R2 ubRMSD

Min 0.0174 0.2590 0.0475 0.0175 0.2570 0.0470

Max 0.0814 0.7239 0.0853 0.0817 0.7312 0.0857

Mean 0.0514 0.5455 0.0650 0.0514 0.5421 0.0653

The machine-learning technique allows the retrieval of SM from both active and passive
satellite systems with an accuracy of approximately 0.05 m3·m−3 of SM or better [37,62–65].
Our result is in agreement with previous studies. In addition to using polarized TB in
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different channels, these studies also use auxiliary data, such as the normalized difference
vegetation index (NDVI) and land surface temperature (LST). The difference between
this study and previous studies is that except for soil porosity, most of the auxiliary
data such as DEM and land cover type are included in the FY-3D MWRI level one data.
Thus, the implementation of the random forest algorithm using FY-3D MWRI data is
more convenient.

4. Conclusions

The performance of global SM retrieval using recalibrated FY-3D MWRI data was
evaluated using a multivariable random forest method. The SM retrieved with RCD has a
high consistency and accuracy with SMOPS products (R2 = 0.7223, mean bias = −0.0062
and ubRMSD = 0.0476 m3 m−3), the in situ data (R = 0.2952, mean bias = 0.034 and
ubRMSD = 0.0507 m3 m−3) and SMAP products (R2 = 0.5421, mean bias = 0.0514 and
ubRMSD = 0.0653 m3 m−3). The seasonal distribution of SM at the global scale is reason-
able. The accuracy difference of SM retrieved using OCD and RCD was also evaluated
using SMOPS products, in situ networks from automatic soil moisture observation stations
in China and SMAP SM products. The recalibration of TB data from the FY-3D MWRI had
an impact on global SM retrieval with the characteristics of spatial heterogeneity; however,
the change rate on most areas is within 20%. The multivariable retrieval method could
be applied to all the MWRIs onboard FY-3 satellites since 2010 due to their similar char-
acteristics, which could support the development of a long-term SM product. The newly
launched FY-3E satellite carries a microwave scatterometer (WindRad) with a 17:30/05:30
ascending/descending orbit that is operated by the Chinese National Satellite Meteorologi-
cal Center (NSMC). The WindRad measures the backscattering at C-band (5.3 GHz) and
Ku-band (13.265 GHz) with HH and VV polarization for both frequencies. The antenna
scans conically at a viewing angle of 36–45 degrees for C-band and 37–43 degrees for Ku-
band. Random forest can also be used for retrieving SM based on WindRad Observations.
This will provide the SM product at dawn and evening. It is helpful to study the diurnal
variation in SM when combined with the SM product derived from MWRI data from FY-3B
to 3D.
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