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Abstract: The fact that both the Lorenz 1963 and 1969 models suggest finite predictability is well
known. However, less well known is the fact that the mechanisms (i.e., sensitivities) within both
models, which lead to finite predictability, are different. Additionally, the mathematical and physical
relationship between these two models has not been fully documented. New analyses, along with
a literature review, are performed here to provide insights regarding similarities and differences
for these two models. The models represent different physical systems, one for convection and
the other for barotropic vorticity. From the perspective of mathematical complexities, the Lorenz
1963 (L63) model is limited-scale and nonlinear; and the Lorenz 1969 (L69) model is closure-based,
physically multiscale, mathematically linear, and numerically ill-conditioned. The former possesses
a sensitive dependence of solutions on initial conditions, known as the butterfly effect, and the
latter contains numerical sensitivities due to an ill-conditioned matrix with a large condition number
(i.e., a large variance of growth rates). Here, we illustrate that the existence of a saddle point at the
origin is a common feature that produces instability in both systems. Within the chaotic regime
of the L63 nonlinear model, unstable growth is constrained by nonlinearity, as well as dissipation,
yielding time varying growth rates along an orbit, and, thus, a dependence of (finite) predictability
on initial conditions. Within the L69 linear model, multiple unstable modes at various growth rates
appear, and the growth of a specific unstable mode (i.e., the most unstable mode during a finite time
interval) is constrained by imposing a saturation assumption, thereby yielding a time varying system
growth rate. Both models were interchangeably applied for qualitatively revealing the nature of
finite predictability in weather and climate. However, only single type solutions were examined (i.e.,
chaotic and linearly unstable solutions for the L63 and L69 models, respectively), and the L69 system
is ill-conditioned and easily captures numerical instability. Thus, an estimate of the predictability
limit using either of the above models, with or without additional assumptions (e.g., saturation),
should be interpreted with caution and should not be generalized as an upper limit for atmospheric
predictability.

Keywords: Lorenz model; chaos; instability; saddle point; SDIC; sensitivities; finite predictability;
ill-conditioned

1. Introduction

Two pioneering studies by Dr. Lorenz [1,2] changed our view on the predictability of
weather, and turned our attention from regularity and unlimited predictability associated
with Laplace’s view of determinism to the irregularity and finite predictability associated
with Lorenz’s view of deterministic chaos. Chaos is defined as the sensitive dependence
of solutions on initial conditions (SDIC), known as the butterfly effect [3]. The feature of
SDIC reveals the difficulty in obtaining accurate, long-term predictions, suggesting a finite
predictability (e.g., [4]).
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Over the past several years, pioneering, yet incomprehensive, theoretical results
derived from a limited collection of the above, and other studies, have led to an increased
understanding (or misconceptions, to be illustrated) that the conventional view of “weather
is chaotic” and that the so-called theoretical limit of predictability of two weeks are well
supported by Lorenz’s 1963 (L63) and 1969 (L69) studies [1,5]. As a result, when real-world
global models produced encouraging simulations at extended-range (15-30 day) time scales
[6-9], people who believe in the predictability limit of two weeks have interpreted these new
results as inconsistent with chaos theory (e.g., [10]). While some researchers have applied
nonlinear L63-type models for understanding the chaotic nature of weather and climate,
other researchers have applied the major findings of linear L69-type models for estimating a
predictability horizon for the atmosphere. Over the past several decades, researchers in the
field of nonlinear dynamics have continuously improved our understanding of nonlinear
responses, as well as local and global stability, within Lorenz-type models. Some recent
theoretical studies may potentially provide justifications for promising extended-range
simulations. However, due to ineffectiveness and difficulties in exchanging ideas and
sharing results in different disciplines, related findings are, unfortunately, not fully known
within the Earth science community. In this study, dynamical systems methods that are now
fairly standard in recent nonlinear studies are applied in order to reveal the unreported
features of the classical Lorenz model(s) (in particular, the L69 model).

Based on a comprehensive literature review, we believe current barriers to the ad-
vancement of weather and short-term climate predictions originate from gaps between the
“improved understanding” of predictability with multistability, derived from advanced
theoretical models, and the current approach, based on the conventional, yet incomplete,
understanding of predictability with only SDIC and monostability. In contrast to the monos-
tability that allows single type solutions (i.e., chaotic solutions in [1] and unstable solutions
in [5]), the concept of multistability that contains coexisting chaotic and non-chaotic solu-
tions has been emphasized (e.g., [11-14]). Recently, based on the concept of time varying
multistability, refs. [15,16] provided a revised view that “weather possesses chaos and
order; it includes emerging organized systems (such as tornadoes) and recurrent seasons”.
Such a revised view that suggests distinct predictability for chaotic and non-chaotic systems
may lay a foundation for a potential predictability beyond Lorenz’s predictability limit
of two weeks. The revised view was proposed based on the classical and generalized
L63 models that are well studied in nonlinear dynamics (e.g., [11-14,17-31]).

By comparison, it is the L69 model that has mainly been applied for addressing pre-
dictability in meteorology (e.g., [32,33]). Since statistical methods were applied to derive the
L69 model, which is not a turbulence model but laid a foundation for the development of
turbulence models (e.g., [34,35]), the L69 model has been analyzed using methods different
from those of dynamical systems. On the other hand, the advantages of applying dynamical
systems methods for investigating turbulence models have been documented (e.g., [36,37]).
Although eigenvalue problems associated with L69-type models have previously been
solved, only features for the largest eigenvalues have been documented. From the perspec-
tive of dynamical systems, an analysis of both positive and negative eigenvalues, as well
as the corresponding exponential and oscillatory solutions, is helpful for understanding
predictability within a multiscale system. Thus, by applying a unified, although simple,
approach in a reanalysis of the models, fundamental questions can be revisited, including:
(1) what type of mathematical, as well as physical, relationship exists between the two
models and (2) what are their similarities and difference in spatial and temporal scale
interactions. We hope that such an analysis will help researchers who are familiar with one
type of model to quickly capture the major features and findings of the other type of model.

In this study, we perform new analyses, together with a literature review, to provide
insights on the L63 and L69 models in terms of two types of sensitivities and the common
feature of a saddle point. We then discuss how specific features of the two models were
previously applied to determine finite predictability. Section 2 reviews general features
of the L63 and L69 models. Similarities and differences of the two models are presented
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in Section 3. Concluding remarks are provided at the end. Appendix A discusses the full
L63 model and its simplified versions, including the non-dissipative L63 model [29]. Part
I of Supplementary Materials includes the following two sections: Section (A): a simple
illustration of ill-conditioning, and Section (B): an Illustration of a stiff ODE. Part II of
Supplementary Materials summarizes additional features of the L63 model regarding SDIC
and finite predictability.

2. The Lorenz 1963 and 1969 Models

In this section, through new analyses and a literature review, we discuss general
features of the L63 and L69 models in order to propose a simple, 2nd-order ODE that
retains the common properties of the two models. Based on the proposed 2nd-order ODE,
specific features of the L63 and L69 models, including two types of sensitivities and the
impact of a saddle point, are discussed in Section 3.

2.1. The L63 Limited-Scale, Nonlinear Model

The L63 model has been discussed in numerous studies [17,19-21], including in our
studies [11,12,25-31] and references therein. A brief summary of the model is provided
here, along with mathematical equations for the full and simplified versions found in
Appendix A. Based on a system of partial differential equations that describe the time
evolution of vorticity and temperature for the Rayleigh-Benard convection [38]), a system
of three, 1st-order ODEs (e.g., Equations (A1)-(A3)) were obtained for rediscovering the
SDIC [1]. Three major physical processes are heating, dissipation, and nonlinear processes.
Such a model is called the Lorenz 1963 (L63) model.

As discussed in Appendix A, the system of three, 1st-order ODEs can be transformed into
a system containing one 2nd-order and one 1st-order ODEs (e.g., Equations (A6) and (A7);
also see [31]). Such a system with (or without) dissipations can easily be compared to
the Pedlosky model [39-43] (or the Duffing Equation) to reveal mathematical universality
amongst the systems (e.g., [30,31]). By ignoring dissipative terms, the 1st- and 2nd-order
ODEs become uncoupled. The uncoupled, 2nd-order ODE is referred to as the non-
dissipative L63 model (e.g., Equation (A11)), which is written as:

2x  ,, X3
FEa A X+ o5 = 0. (1)

Here, 7 is dimensionless time. The constant A? is proportional to the product of ¢ and
r that represent the Prandtl number and the normalized Rayleigh number, respectively. In
general, A2 is also a function of initial conditions and, thus, A2 = or + constant.

Without a loss of generality, A2 is assumed to be positive (i.e, A = or > 0) within the
non-dissipative L63 model. Thus, the linear version of the system produces both stable
and unstable modes (i.e., e, ¢",and ¥ = \/ﬁ). The role of nonlinearity is discussed in
Section 3.1.

To facilitate discussions below, the energy function of the above system is obtained by
multiplying both sides of Equation (1) by dX/dT and by performing an integration with

respect to T (e.g., [23,31]):
1/dx\*
2\ dt

Here, TE indicates the total energy. The first and second pairs of brackets represent
the kinetic energy and potential energy, respectively (see [31] for details). C is a constant
that is determined by an initial condition. Within a linear system (i.e., no cubic term in
Equation (1)), we have:

1/dx)’
2\ dt

TE = + [;AZXZ + 1x4} =C. (2a)

8

1

TE = + [—ZAZXZ} = C (for alinear system). (2b)
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Later, to illustrate solution characteristics, we compute the contour lines of total energy
for both linear and nonlinear systems. We specifically examine the special case of TE = 0
(i.e., C=0).

2.2. The L69 Multiscale, Linear Model

By applying a modified, quasi-normal (QN) closure which assumes the 4th cumulants
are zero (e.g., [44]; i.e., relating the fourth-order velocity correlations to second-order veloc-
ity correlations), Lorenz proposed the L69 model based on the following two-dimensional,
conservative vorticity equation:

vy
dr
where ¥ and V2¥ represent the 2D (x, y) stream function and the vorticity, respectively.

Such an approach was extended to yield the Eddy-Damped QN(EDQN) approxi-
mation, that replaces the 4th cumulants by a linear damping term, and then the EDQN
Markovian (EDQNM) approximation using a minor modification called the Markovianiza-
tion [34,44,45]. While Leith, 1971 [34] applied a model with the EDQNM approximation in
order to study the predictability of 2D turbulence, ref. [35] proposed the test-field mode,
overcoming the issue using an artificial cutoff in nonlinear interactions in the Leith 1971
model, for determining the predictability of turbulent flows. In regards to the above models
[5,34,35], a common assumption was that: “Estimates of the predictability of the planetary-scale
motions of the atmosphere have been based on turbulence models in which the atmosphere is treated
as an isotropic homogeneous two-dimensional turbulent fluid.” [35].

Since many Fourier modes were used for derivations, the L69 model contains multiple,
physical modes. While used to illustrate the statistics of predictability within a multiscale
framework, the model is not a turbulence model as compared to the models of Leith, 1971
and Leith and Kraichan, 1972 [34,35].

For revealing major features of solutions, linearization was applied to yield the follow-
ing model in matrix form (e.g., Equation (43) of Lorenz, 1969 [5]):

0, (3)

—
d?W =

Here, A is a N x N time-independent matrix, and N is the total number of wave
modes. Each element within the matrix A represents the scale interactions of two Fourier

modes (Equations (2a) and (2b) of Durran and Gingrich, 2014 [33]). W represents a column
vector consisting of N state variables Wy, k = 1,2,--- ,N. k is the wavenumber, and W
represents the ensemble mean of the kinetic energy of the perturbations for the wave mode
k. Equation (4) indicates that the L69 model is physically multiscale withk =1,2,--- , N,
and also mathematically linear. For a comparison to Equation (2b), the energy function for
Equation (4), which contains a symmetric matrix, is written as follows:

TE — ;(ﬁ)z +[—;V7AW}:C.

_>
Here, m is the transpose of the column vector W. The above equation becomes
(2b) when N = 1. In general, since A is not a symmetric matrix, the so-called similarity
transformation is applied for diagonalization to obtain the above equation. Thus, the vector

W is replaced by the corresponding transformed column vector.

Since the L69 model is linear, it is important to understand how the model can help
reveal the features of the original system (i.e., a partial differential equation for the conser-
vation of vorticity). From a dynamical system perspective, the foundation of linearization
is rooted in the linearization theorem, also known as the Hartman—Grobman Theorem
(e.g., [22,46]): Suppose the N-dimensional system has an equilibrium point at X, that is
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hyperbolic (i.e., with non-zero growth or decay rates). If so, nonlinear flow is then conjugate
(i.e., dynamically equivalent) to the flow of the linearized system in the neighborhood of
X.. Within the L69 model, the origin is a saddle point and, thus, a hyperbolic point. As a
result, the L69 model may describe the solution of the corresponding nonlinear system near
the origin. Due to the limit of a linear system, a saturation assumption was imposed to
prevent the unbounded growth of perturbations, as follows: when an unstable mode grows
to reach its maximum, as determined by the selected spectrum, it is removed from the
system (e.g., [32,47]. Then, a predictability horizon for a specific unstable mode represents
the time when the mode becomes saturated. Thus, the impact of the saturation assumption
on the estimate of predictability should be examined, and is discussed in Section 3.

From a dynamical perspective, Equation (4) can be transformed into a system of
2N, 1st order ODEs by introducing additional N state variables that represent 1st-order
time derivatives of the original N state variables. The 2N state variables can be used
as coordinates for constructing the so-called phase space for analysis, as discussed in
Section 3. Critical points are defined when the right hand side of the system of 2N ODEs
becomes zero.

3. Discussions

In the discussion, we first analyze the saddle point and instability within a simple,
linear, 2nd-order ODE, then turn the system into the non-dissipative L63 model by including
a cubic term, and then present periodicity and limit chaos within the non-dissipative L63
model. We then illustrate specific features of the L69 model, including a saddle point,
numerical instability, and numerical sensitivities; and provide comments on a L69-based
conceptual model for a chain process. Based on the SDIC of the L63 model and the
multiscale instability of the L69 model, we also discuss how to estimate predictability.

3.1. Features of the L63 Model
3.1.1. Physical vs. Numerical Instability within a Linear 2nd-Order ODE
Based on Equations (1) and (4), which represent the L63 and L69 models, respectively,
a simple linear, 2nd-order ODE is proposed that is, in reality, Equation (1) without the cubic
term, as follows:
d?X
dr?
A? is positive within the L63 model and is either positive or negative within the 1L69 model.
A system that contains a positive value for A% possesses both stable an unstable modes

= A2X. (5)

(i.e., e and €77 for a positive y = v/A2). A general solution can be expressed as the linear
combination of these two modes (i.e., c1e™ 7" + c¢77, ¢1 and ¢, are determined by initial
conditions). As a result, given the same model parameter, solutions may contain a stable
mode, an unstable mode, or both, depending on the initial condition.

While an unstable mode may be physically interesting and important (e.g., [48]), in
the real world, a stable mode likely represents a more realistic solution in response to
initial small-scale perturbations. For example, given a tiny perturbation (e.g., any human’s
flap) as an initial condition, we may select a stable solution if the corresponding response
can be described by Equation (5). However, as illustrated by an example that produces
an analytical, stable solution [49], an unstable mode may be incorrectly captured by a
numerical method. Such a feature, referred to as numerical instability, is reviewed below
using Equation (5).

Given A2 = 107t% (~98.7) and an initial condition of X(0) = 1 and X’(0) = —+/107, an
analytical, stable solution of X = ¢~ V10T can be obtained. Such an initial condition yields
TE = 0in Equation (2b) for the linear system. Values for the solution that is a monotonically
decreasing function of time are listed in the 3rd column of Table 8.6.4 of Boyce and DePrima,
2012 [49]. By comparison, when the Runge-Kutta scheme is applied, numerical solutions
within the 2nd column of their Table increase with time, indicating an instability. A detailed
calculation (not shown) indicates that the growth rate of the numerical, unstable solution
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is v/107t. Therefore, the occurrence of such an instability appears because: (1) given the
same parameters, the model (Equation (5)) allows both stable and unstable modes, and
numerical errors produce a tiny, but non-zero, coefficient for the unstable mode; and (2) the
error amplifies at the growth rate of the unstable mode and quickly dominates due to a
large growth rate (i.e., v/1077). Below, we analyze the solution within a 2D phase space for
comparison to a nonlinear solution, and then illustrate that such numerical instability can
easily be captured within the L69 model.

3.1.2. A Perspective of Dynamical Systems: Phase Space and a Saddle Point

From the perspective of dynamical systems, the above feature can be qualitatively
illustrated using the following system of 1st-order ODEs derived from Equation (5):

dx
E - Y, (63)
‘C% = A2X. (6b)

A new variable Y = X is introduced. Using X and Y (i.e., X and X’) as coordinates, a
two-dimensional phase space can be constructed. As previously discussed, a solution with
a positive value of A? is written as:

X=c1e " 47, (7a)

(5)-er(L)emr(})

Here, Y = X' and v = VA2 = v/107t. The first and second vectors on the right hand
side of the equation are referred to as the stable and unstable eigenvectors, respectively,
within a phase space. Thus, when an orbit begins near the origin (X,Y) = (0,0), it may
move away from the origin in the direction of the unstable eigenvector or approach the
origin in the direction of the stable eigenvector. The origin (X, Y) = (0,0) is called a saddle
point. Stable and unstable eigenvectors within a linear system can be generalized to become
stable and unstable manifolds of a saddle point within a nonlinear system, respectively:
the stable (unstable) eigenvector is tangent to the stable (unstable) manifold at the saddle
point (e.g., [50]).

Based on the total energy in Equation (2b), which describes the relationship between
X and Y (i.e., X'), a solution trajectory can be analyzed using the contour lines of total
energy. As shown in Figure 1, two straight lines with TE = C = 0 (i.e.,, X’ = v/107X and
X' = —/107rX) indicate the unstable and unstable eigenvectors, respectively. In the previ-
ous example, the stable solution, starting at the initial condition of (X,Y) = (1, —v/107),
moves towards the origin along the zero contour line (Figure 1a,b). Ideally, the orbit should
eventually arrive at the origin and stay there forever. However, since the origin is a saddle
point, it is numerically challenging to simulate that type of evolution. When the orbit moves
very close to the origin where the value of both X and X’ are small, any tiny noise (caused
by round-off errors) may lead the orbit to move away from the saddle along the direction
of the unstable eigenvector (i.e., the line of X' = \/ETL’X). A similar challenge within a
nonlinear system, as documented in Shen, 2020 [30], is reviewed in the next subsection.

yielding:
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Figure 1. The contour lines of total energy in Equations (2a) and (2b) for the linear (a,b) and nonlinear
(¢,d) systems of X" — 102X + X3/2 = 0. Panels (b,d) provide a zoomed-in view of panels (a,c),

respectively. A large red dot at (X, X’) = (1, —/107r) displays a starting point of an orbit that moves
along the zero contour line towards the origin.

By comparison, a negative eigenvalue (A> < 0) produces a general periodic solution
with trigonometric functions of sin and cos. The corresponding solution displays a closed

curve within the 2D X — X’ phase space, and the critical point (0,0) is called a center
(Table 1).

Table 1. The classification of various types of solutions for a linear 2D system with real coefficients.
We assumed an arbitrary &, § > 0, and v > 0.

Characteristics Solutions Critical Points Remarks
non-oscillatory 17T+ cpe 1T saddle monotonic
oscillatory (B # 0) c1e(@HP)T 4 oy pla—if)T
a«=0 center periodic
x>0 spiral source
x <0 spiral sink

3.1.3. Periodicity and Centers Enabled by Nonlinearity

Mathematically, it is natural to add nonlinear terms, X2 or X3, into the linear system
in Equation (5) in order to constrain growth of the unstable mode. As previously illus-
trated, the inclusion of the quadratic and cubic terms yields systems comparable to the
Korteweg-de Vries (KdV) and nonlinear Schrodinger equations, respectively, in a traveling-
wave coordinate [30,51-55]. The latter can be mathematically written as the non-dissipative
L63 model in Equation (1), as follows:

2x L, X3
q2 AMX+5 =0,

which also represents an unforced Duffing Equation (e.g., [29,56]).
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Inclusion of the nonlinear cubic term leads to two, non-trivial critical points at
X =221 and A > 0 (e.g., [31]). To reveal the role of the nonlinear term, we can sim-
ply compare the contour lines of the energy functions, Equations (2a) and (2b), for the
nonlinear and linear systems, Equations (1) and (5), respectively. As shown in Figure Ic,
two centers appear, as indicated by a family of nearby closed contour lines that enclose one
of the centers. Each of the closed curves represents one periodic solution with a specific
initial condition.

As a result of the two centers and the saddle point at the origin, small- and large-cycle os-
cillations, and homoclinic orbits appear for C < 0, C > 0, and C = 0 in Equations (2a) and (2b),
respectively. As shown in Figure 1c, for C # 0, each closed contour line indicates an
oscillatory solution (see [29,30,57,58]). For C = 0, an orbit may move in the direction of
the unstable manifold of a saddle point and return back along the direction of the sta-
ble manifold of the same saddle point. Such an orbit connecting the unstable and stable
manifolds of the same saddle point is called a homoclinic orbit. The number “8” shape
in Figure 1c indicates two homoclinic orbits. Thus, all three types of solutions reveal how
nonlinearity limits the growth of the unstable solution, producing bounded solutions and
global stability.

On the other hand, while an unstable eigenvector can be easily captured using a
numerical method even though the initial conditions only allow solutions with a stable
eigenvector in a linear system, such a feature also appears in association with the homoclinic
orbit within a nonlinear system. Below, an analysis of the homoclinic orbit in Shen, 2020 [30]
is briefly reviewed for a comparison.

3.1.4. (Computational) Limit Chaos Associated with a Homoclinic Orbit

The association of a saddle point with SDIC has been illustrated using the so-called
linear geometric model [59] and the nonlinear non-dissipative L63 model [11,29]. Although
the two simplified models may not exactly produce the same type of SDIC as the full L63
model, they may serve as a baseline system for revealing solution sensitivities. Sensitivities
associated with the special homoclinic orbit were previously documented in Figure 4 of
Shen, 2020 [30]. Most solutions within the non-dissipative L63 model are oscillatory and
only two of them are homoclinic orbits. As a result, such sensitivities may be referred to as
limit chaos [3]. Since it is challenging to avoid limit chaos in numerical integrations of the
non-dissipative L63 model, we may simply call the sensitivity computational limit chaos.

3.1.5. Spiral Sinks Associated with an Additional Dissipative Term (—€Y)

In general, saturation of an unstable mode requires the existence of a stable critical
point. However, the above discussions suggest that the appearance of two centers cannot
enable unstable modes to become saturated (i.e., the solution reaches a constant). To obtain
non-trivial stable critical points that can help yield steady-state solutions, one dissipative
term (—€Y) is added into the non-dissipative L63 model (e.g., Equation (A2)), yielding:

2 3
i%+e‘jl—ff)\2x+x7=0, (8)
which can also be obtained from Equation (A10) that represents a simplified Lorenz model
with only one dissipative term (—Y) (i.e., without two dissipative terms, —cX and —bZ).

Following the derivations for Equations (2a) and (2b), the energy function for Equation (8)
indicates that the system energy decreases with time, producing steady state solutions. This
is consistent with the analysis of critical points, showing two, stable, non-trivial critical
points as spiral sinks [31]. A mathematical solution for a general spiral sink is listed in
Table 1. As summarized in Table 3 of Shen, 2021 [31], the locations of the critical points
for cases € = 0 and € # 0 in Equation (8) are the same. Therefore, it is relatively easy
to make a comparison. While the model for € = 0 displays regular oscillatory solutions
(e.g., Figure 7 of Shen, 2018 [29]), the model for € # 0 simulates steady-state solutions, as
shown in Figure 2. For steady-state solutions that indicate a saturation, an orbit moves
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from the saddle point and towards one spiral sink. However, the time evolution of the
solution is not a monotonic function in time.

(a) (b)
20
15 25
10 20 MWW
5
> 0 Xls
-5 10
-10
5
-15
-20 0
0 5 00 25 50 7.5 100 125 150 17.5 20.0
T
(c) (d)
20
15 25
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5
15
> 0 x
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X T
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X T

Figure 2. Solutions for the simplified Lorenz model that only contains one dissipative term, —€Y,
and € = 0.5,1, and 2.5, from top to bottom. Left panels (a,c,e) display orbits within the X — Y space,
while right panels (b,d,f) depict the time evolution of X. A stable non-trivial critical point is indicated
by a large red dot.

3.1.6. SDIC and Finite Predictability Within the L63 Model

The full L63 model has been widely applied for illustrating the SDIC, as follows. Two
runs, the control and parallel runs, are performed using the same model and the same
parameters, but slightly different initial conditions (ICs). For example, a tiny perturbation
of e = 10710 is added into the initial condition for the parallel run. Then, the time evolution
for the two solutions is analyzed. As a result of the tiny perturbations, the two runs
almost produce identical results during an initial period of time. As shown in Figure 3,
this feature is called continuous dependence on ICs [50]. However, in spite of the initial
tiny perturbations, two runs produce very different solutions after a certain period of
time. Such a feature with very different results is referred to as SDIC. Similar results have
been documented within the scientific literature (e.g., Figure 2 of Shen, 2019b [8] and
Figure 1 of Shen et al., 2021b [16]). Combined CDIC and SDIC determine the predictability
horizon. Namely, the predictability limit is determined before the onset of SDIC, and the
predictability horizon displays a dependence on initial conditions that are close to or away
from one of three critical points within the L63 model [15,60-62].
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Figure 3. Two nearby trajectories within the L63 model with r = 28 and ¢ = 10. Solutions, in
different colors, were obtained from the control and parallel runs. The only difference between the
two solutions is that the parallel run adds a small perturbation (1 x 10~'9) into the initial value of Y.
The sensitive dependence of solutions on the initial conditions is indicated by the divergence of two
orbits in blue and red. The two horizontal lines indicate the location of the non-trivial critical points.

The above discussions qualitatively reveal the finite predictability of the L63 model.
Within the nonlinear L63 model, its chaotic feature is indicated by the appearance of
one positive Lyapunov exponent (e.g., [25,26] and references therein). The Lyapunov
exponent (LE) is defined as the long-term average exponential rate of divergence of nearby
trajectories [63—65] (i.e., the long-term average growth rate of an infinitesimal error [66]).
The LE is calculated by evaluating the derivative along the direction of maximum expansion
and averaging its logarithm along the trajectory (e.g., [67,68]). Although earlier studies
made an attempt to apply the largest Lyapunov exponent for estimating predictability, a
general average predictability is less interesting as compared to short-term behavior [66].
Additionally, the L63 limited-scale model with one positive LE is too simplified to estimate
predictability in weather and climate. On the other hand, a challenge in extending the
predictability horizon by improving the accuracy of initial conditions can be illustrated by
assuming the error (i.e., separations of nearby trajectories) to be proportional to -7, here L
and 7 represent a LE and time, respectively (see [23] for details). However, such a rough
formula of e-* that does not take SDIC into consideration should be applied with caution.

As discussed, when using the linear and nonlinear versions of the non-dissipative L63
model (e.g., Equation (1)), it is challenging to simulate the evolution of an orbit that moves
towards the saddle point in a two-dimensional or higher phase space. By comparing the
geometric and Lorenz models, such a feature is shown to be related to SDIC.

3.2. Features of the L69 Model

Based on the L63 model, the previous discussions illustrate the different roles of
nonlinearity, which are missing in the L69 model. In comparison, within or based on the
L69 model, the following features are discussed: (1) eigenvalues and eigenvectors; (2) a
conceptual model for a chain process; (3) numerical instability associated with large eigen-
values; (4) ill-conditioning associated with large condition numbers; and (5) monotonicity
within the L69 model. Based on the L69 and L63 models, we then provide comments on
the estimate of predictability.
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3.2.1. Eigenvalues and Eigenvectors

As shown in Equation (4) of this study or Equation 43 of Lorenz, 1969 [5], the L69
model consists of a linear system of N, 2nd-order ODEs, here N = 21. Such a system may
be transformed to form an eigenvalue problem for an analysis. By assuming a solution

ATy

—
vector in the form of W = e , we can convert Equation (4) into the following equation:

AV =22V, 9)

Here, V and A2 represent the eigenvector and eigenvalue of the matrix A, respectively.
This approach is made possible because Equation (4) does not contain 1st-order derivatives.
Here, A2, instead of A, represents an eigenvalue. A system of N, 2nd-order ODEs produces
N eigenvalues using this approach. As compared to Equation (5) that contains “one”
eigenvalue, each of the N eigenvalues in Equation (9) is associated with two components,
"™ and e~ 7 for v = A2. Details are provided below.

To simplify discussions, we consider distinct eigenvalues that can be positive or
negative. Positive and negative eigenvalues yield real and pure imaginary values for v,
representing exponential modes and oscillatory modes, respectively. Here, we compute the
eigenvalues and eigenvectors for the six systems available from Rotunno and Synder, 2008
and Durran and Gingrich, 2014 [32,33]. For these systems, only 9 x 9 matrices were listed
in the studies. However, as discussed below, this limitation does not have a significant
impact on our major conclusion since the 9 x 9 matrices represent sub-matrices of the
original 21 x 21 matrices at larger scales. Therefore, the eigenvalues are relatively small
as compared to the eigenvalues of the corresponding full matrices. References to the six
matrices are provided in Table 2.

Table 2. Condition numbers in six L69-type systems from Rotunno and Synder (2008, RS08) and
Durran and Gingrich (2014, DG14) [32,33]. Both Python and Matlab were used for calculations and
displayed similiar results.

Python Matlab Remarks
Table 1 of RS08 8.319352 x 10° 8.3194 x 10° 2DV dynamics
Table 2 of RS08 8.446532 x 10° 8.4465 x 10° vs. Lorenz (1969)
Table 3 of RS08 2.791518 x 10* 2.7915 x 10* “unlimited predictability”
Table 4 of RS08 2.146269 x 10° 2.1463 x 10° SQG dynamics
Table A1l of DG14 7.967004 x 10° 7.9670 x 10° vs. Table 1 of RS08
Table A2 of DG14 * 9.767672 x 10° 9.7677 x 10° vs. Table 4 of RS08

* There may be a typo in C; 5 in Table A2 of DG14. A revised condition # is O(10°).

Figure 4 displays the nine eigenvalues of the matrix from Table 4 of Rotunno and
Synder, 2008 [32]. Here, we observe positive and negative eigenvalues, both of which
are large in magnitude. The first three positive eigenvalues are 457.0, 3.42, and 0.000472,
respectively. A positive eigenvalue produces a pair of stable and unstable components,
while a negative eigenvalue yields oscillatory components. Additionally, the system also
produces eigenvalues with very small magnitudes. Due to the limit of finite precision, here,
we do not make an attempt to determine whether (or not) these eigenvalues are zeros or
even double zeros. Instead, we focus on eigenvectors with large eigenvalues.
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Figure 4. Nine eigenvalues for the 9 x 9 matrix from Table 4 of Rotunno and Synder, 2008 [32].
As discussed in the main text, each eigenvalue is associated with a pair of solution components.
A positive eigenvalue yields a pair of exponentially growing and decaying components, while a
negative eigenvalue leads to oscillatory components.

3.2.2. A Conceptual Model for a Chain Process

By analyzing the eigenvalues of the system in Equation (9), growth rates and pre-
dictability on various scales can be determined. Since the most unstable mode with the
largest exponential growth rate should dominate, a system’s predictability is solely deter-
mined by the largest growth rate (i.e., the largest v/A2). On the other hand, the saturation
assumption has been applied to extend a system’s predictability as follows: when the
unstable mode at the smallest scale reaches its saturated value, as determined by the en-
ergy spectrum, it is removed from the system. The time required for the most unstable
component to become saturated defines a predictability horizon for the specific unstable
mode. Afterwards, a subsystem with a sub-matrix (e.g., a (N — 1) x (N — 1) matrix) is
obtained. Within the subsystem, different unstable modes appear, and the most unstable
mode determines the predictability horizon. After becoming saturated, the mode is re-
moved from the system. Thus, a system’s predictability is obtained by adding all of the
predictability horizons determined by each of the most unstable modes that sequentially
appear, grow, and saturate. Simply speaking, a system’s predictability is collectively deter-
mined by various eigenvalues at different scales. A mathematical analysis for an estimate
of predictability is given near the end of this section. The above procedure relies on the
successive eigenvalue calculation of matrices whose elements are continuously removed
as a result of the saturation assumption (e.g., [32,47]). The procedure implies a conceptual
model for a chain process that consists of repeated removal of the current most unstable
mode and the appearance of a new most unstable mode.

The above conceptual model for the chain process is analyzed using Figure 5. Panels
(a)—(f) display the first eigenvalues and the corresponding eigenvectors within a 9 x 9,
8x8,7x7,6x6,5x5,and 4 x 4 matrix, respectively. Based on Figure 5, we can observe
that the first eigenvector contains several non-zero components at smaller scales. Secondly,
the first eigenvalue becomes smaller within smaller sub-matrices. Therefore, we may say
that smaller scale modes possess larger growth rates. Since the first eigenvalue is always
positive and since the corresponding eigenvector contains components at smaller scales,
Figure 5 indicates the possibility for a chain process.
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Figure 5. The first eigenvector of the 9 x 9 matrix from Table 4 of Rotunno and Synder, 2008 [32], and
the8 x 8,7 x7,6 x6,5x5,and 4 x 4 sub-matrices, respectively.

While a specific eigenvector may contain more than one state variable, a specific state
variable may appear in more than one eigenvector, depending on the ICs. Mathematically,
we say that a general solution can be expressed in terms of a linear combination of all eigen-
vectors. As a result, a specific state variable (i.e., a specific wave mode) may concurrently
grow at more than one growth rate. This feature complicates the process for estimating
system predictability.

3.2.3. Numerical Instability Associated with Large Eigenvalues

Here, it should be noted that we cannot exclude the possibility for a specific state
variable that appears as a decaying or an oscillatory component. Such a state variable
should be more predictable. On the other hand, from a numerical perspective, such a
solution with better theoretical predictability may be incorrectly simulated, appearing as
an unstable mode. As discussed using Equation (5) in Section 3.1, it is easy for numerical
methods to capture unstable modes even though a specific initial condition only allows
a stable solution. In the example in Section 3.1, an eigenvalue of A = A? = 107t% ~ 98.7
was used. As a result, numerical instability similar to that in Equation (5) may be easily
found within the L69 system that possesses several large eigenvalues, including the largest
eigenvalue A; = 457.0 within the 9 X 9 matrix and A; = 169.3 within the 8 x 8 matrix.
Thus, it is reasonable to conclude that such numerical instability can be found within the
21 x 21 matrix.

On the other hand, as discussed in Section 3.1, nonlinearity may constrain the growth
of unstable modes, and dissipation may reduce growth rates. Therefore, due to the lack of
dissipation and nonlinearity within the L69 model, an estimate of predictability based on
the growth rates of unstable modes should be interpreted with caution.
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3.2.4. llI-Conditioning Associated with Large Condition Numbers

In addition to potential numerical instability associated with large eigenvalues, here,
we also reveal ill-conditioning with numerical sensitivities within the L69 model. Ill-
conditioning is measured by a condition number (x(A)), as follows:

x(A) = [|A[l[|ATH], (10)
where ||A|| represents the matrix norm of A and A~! is the inverse matrix of A. The above

can be written as:
Amux

min

K(A) =|—I (11)
here, A = A? represents an eigenvalue of matrix A. Ill-conditioning occurs when the
condition number (x(A)) is large. Equation (11) suggests that a system with large variances
in growth rates (i.e., containing a large ratio between the largest and smallest eigenvalues) is
ill-conditioned. Such an expression is effective in revealing potential issues in sophisticated
model systems that contain multiple scales and, thus, various growth rates. Within an
ill-conditioned system, numerical results are sensitive to small changes, including round-off
errors within the coefficient matrix. Sensitivity to small changes can be illustrated using a
system of equations in Supplementary Materials modified from Kreyszig, 2011 [69], that
contains a 2 X 2 matrix with a condition number of 20,001. The system has a unique
solution of (0,0). However, when the system is perturbed by a tiny noise of 4, its solution
is shifted to (5000.55,4999.56) (e.g., (0.50005,0.49995) for § = 10~%).

Table 2 displays large condition numbers for all of the six systems from Rotunno and
Synder, 2008 and Durran and Gingrich, 2014 [32,33]. The condition numbers are on the
order of 10* or higher. As a result, we may expect large uncertainties in determining the
location of a saddle point. On the other hand, from the perspective of transient solutions, a
large condition number also indicates a large stiffness. As discussed using an example in
Supplementary Materials, modified from [49] a system of stiff ODEs requires very small
step sizes to obtain stable numerical solutions.

3.2.5. Solutions in Terms of Eigenvalues and Eigenvectors of the L69 Model
As a brief summary, the L69 model can be described as follows:

(1) The model is closure-based, physically multiscale, mathematically linear, and numeri-
cally ill-conditioned.

(2) The model possesses multiple positive and negative eigenvalues, and, thus, produces
growing and decaying components and oscillatory components. However, the model
may easily capture unstable modes due to numerical errors and large growth rates.

(3) Since the system is linear and homogeneous, the only equilibrium point is a trivial

equilibrium (or critical) point at W = 0. The critical point is a saddle point that

contains multiple pairs of stable and unstable eigenvectors associated with multiple

positive eigenvalues.

Mathematically, solutions of the L69 linear system can be obtained by performing
numerical integration or using a linear combination of system eigenvectors and eigenvalues.
Under the saturation assumption, a system’s predictability is collectively determined by
various eigenvalues at different scales. To illustrate this idea, we provide an analysis of the
general solution using eigenvalues ('y]%) and eigenvectors (7k), as follows:

— —
W = Cye M7V + Dye" ™V, + Coe 27V + Doe 2" Vh + - + Cpe~ 1TV, + D™V, (12)

When N = 1, this leads to I/_V> = Wj and ?1 =1, and Equation (12) yields:

w)=ee (L) o ()
=Cqe 17 +Dqe’" ,
(W{ ! —y o\
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which is the same as Equation (7b). Here, we, once again, bring the reader’s attention to
the fact that the L69 model consists of N, 2nd-order ODEs and, thus, 2N, 1st-order ODEs.
When a saturation assumption is applied for determining the predictability horizon, an
initial condition for each of the unstable modes is required.

3.2.6. Finite Predictability within the L69 Model

As discussed using Figure 3, the combined CDIC and SDIC suggest finite predictability
within the L63 model. While SDIC is indicated by the divergence of two nearby trajectories
that start moving towards different non-trivial critical points, two trajectories may closely
move around one of the non-trivial critical points during the epoch of CDIC. In Figure 3,
such is indicated by oscillatory solutions centered at the value shown in green between
T =3 and T = 15. A key message is that when two nonlinear solutions leave the saddle
point and move towards one of the non-trivial critical points, both may still closely move
and revisit the neighbors of the saddle point several times (e.g., between T = 18 and
T = 22 in Figure 3) prior to their separation (e.g., after T = 26 in Figure 3). Revisiting the
neighborhood of the saddle is not allowed within a linear system.

By comparison, the L69 multiscale model that has the advantage of including a realistic
energy spectrum has been applied to estimate multiscale predictability in weather. On
the other hand, due to the limit of linearity, two nearby unstable orbits within the L69
model monotonically diverge, which is different from time varying changes within the L63
model. Additionally, the monotonic increase of errors may not be applicable to oscillatory
or decaying solutions.

In Equation (12), a specific state variable (i.e., a specific wave mode, Wy) may con-
currently grow at more than one growth rate. This feature complicates the process for
estimating system predictability. Below, to simplify discussions without the need for deter-
mining “initial conditions”, the e-folding time is used in order to estimate the predictability
horizon of the most unstable mode (e.g., [70]). The e-folding time is the time interval in
which an exponentially growing quantity increases by a factor of e. Thus, given a specific
mode k, with a dominant growth rate of 7, the predictability limit (or horizon) (i.e., an
e-folding time) for the specific mode is inversely proportional to its growth rate, as follows:

1

T = —
Yk

(13).

Thus, a system’s predictability horizon is proportional to the time required for systems
at all scales to become saturated (i.e., to increase by a factor of e):

T~

1 1 1
+ -

(14)
Y9x9  Y8x8  V7x7

Namely, a system predictability horizon is determined by the sum of the reciprocals
for all growth rates. In general, due to 21 modes within the L69 model, Equation (14) does
not represent an infinite series.

We also may want to know the condition under which the predictability is finite. If
Equation (14) is a geometric series with a factor of 1/2, the sum is finite, as shown below:

1 1 1
T~1+§+Z+§+~~-—2. (15)
The above example with a common factor of 1/2 is consistent with discussions
of Palmer et al., 2014, Palmer, 2017 and Lorenz, 1969 [5,71,72] in regards to Lorenz’s
empirical formula:
Except for the smallest scales retained, where the effect of omitting still smaller scales

is noticeable, and the very largest scales, where Xy does not conform to a —2/3 law,
successive differences ti, — ty.1 differ by a factor of about 272/3. If one chooses to
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reevaluate t1 by summing the terms of the sequence t1 — ty, tp — t3, - - -, one is effectively
summing a truncated geometric series.

The above calculation applied several assumptions, including assumptions that: (1) the
series in Equation (14) can be extended to have an infinite number of terms, and (2) the
series contains a common factor of 272/3, even for different slopes of the kinetic energy
spectrum. On the other hand, the following two series are not convergent:

1 1 1 1
14 = 1
2:1” totztgt oo, (16a)
1 1 1 1 1
Y S=s4ititoto=c0 (16b)
pprimep 2 3 5 7

The two series do not produce a finite number. Therefore, whether (or not) an exten-
sion of Equation (14) with an infinite number of terms produces a finite predictability is
still a challenging question. On the other hand, since Equation (14) is based on several
assumptions, its validity should be examined. Other than the above, the L69 model is not a
turbulence model, and all weather systems cannot be turbulent forever. As a result, it may
be legitimate to conclude that “practical predictability” within the L69 is finite. Here, the
practical predictability indicates a dependence of predictability on mathematical formulas
and ICs, in contrast to intrinsic predictability that only depends on a flow itself [73].

3.2.7. A Comparison of Monostability and Multistability

Given model parameters, the L63 model produces single type solutions, including
steady-state, chaotic, and limit cycle solutions. Such a feature is referred to as monostability.
By comparison, generalized Lorenz models possess coexisting chaotic and non-chaotic at-
tractors that appear with the same model parameters but different initial conditions [11-14].
The feature of attractor coexistence is called multistability. Although the L69 model is linear,
it does allow various types of solutions associated with positive or negative eigenvalues.
Thus, the L69 model may be viewed to possess multistability, despite the fact that only
unstable solutions have been a focus.

Based on the results with multistability, we recently suggested a revised view that
weather possesses both chaos and order, in contrast to the conventional view of “weather
is chaotic”. Such a view is additionally supported by this study. While chaotic solutions of
the L63 model or linearly unstable solutions of the L69 model produce finite predictability,
non-chaotic regular solutions may have unlimited predictability (up to the lifetime of the
system or the duration of forcing). Such a revised view that turns our attention from
monostability to multistability is neither too optimistic nor pessimistic as compared to the
Laplacian view of deterministic predictability and the Lorenz view of finite predictability.

4. Concluding Remarks

Both the Lorenz 1963 (L63) and 1969 (L69) models [1,5] have been applied in the
past to illustrate finite predictability. An estimate of a predictability limit of two weeks
was initially obtained using the L69 model. In this study, new analyses along with a
literature review provide insights on the mathematical and physical relationship, two types
of sensitivities, and the impact of a saddle point on the two types of sensitivities. The L63
and L69 models are derived from different partial differential equations. One system is
for convection, and the other system is for the conservation of barotropic vorticity. The
L63 model is limited-scale and nonlinear; and the L69 model is closure-based, physically
multiscale, mathematically linear, and numerically ill-conditioned. The former possesses a
sensitive dependence of solutions on initial conditions, known as the butterfly effect, and
the latter contains numerical sensitivities resulting from an ill-conditioned matrix with
a large condition number (i.e., a large variance of growth rates). A common feature that
produces unstable components in both systems is the existence of a saddle point at the
origin. A saddle point provides an essential ingredient for chaos within the L63 model and
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for linear instability within the L69 model. Table 3 provides a summary for the L63 model,
the geometric model, the non-dissipative L63 model, and the L69 model. All of the listed
models reveal the common feature of a saddle point.

Table 3. The Lorenz 1963 (L63) model [1], the geometric model [59], the non-dissipative L63
model [29], and the Lorenz 1969 (L69) model [5]). The non-dissipative L63 model is derived from
the L63 model without dissipative terms shown in red. For an extreme case of N = 1 and a positive
eigenvalue, the L69 model is dynamically comparable to the non-dissipative L63 model without the
cubic term shown in blue. A saddle point is a common feature amongst the four models.

(1) The L63 Model (2) The Geometric Model
%:ay—ax, ;%:—3X,
= _XZ+rx-v, X =2y,
92 = XY - bZ. @7 = 7.
(3) The Non-dissipative L63 Model  (4) The L69 Model
2 3 2
X — (g +onX - X, 2W _ AW,

A: N x N matrix,

)p: constant.
_>
W: a vector for N state variables.

Within the chaotic regime of the L63 nonlinear model, unstable growth is constrained
by nonlinearity, as well as dissipation, yielding bounded solutions and time varying growth
rates along an orbit. The appearance of SDIC suggests a finite predictability that displays
a dependence on initial conditions. Within unstable solutions of the L69 linear model,
multiple growth rates at various scales exist. Unlimited growth of the most unstable mode
is suppressed by artificially imposing the saturation assumption: a saturated unstable mode
that reaches its upper limit within a finite interval is removed from the system, enabling the
appearance of a new most unstable mode. Thus, a system’s growth rate appears to be time
varying and a system’s predictability is collectively determined by various eigenvalues at
different scales.

While both the L63 and L69 models suggest finite predictability, only single type
solutions (e.g., chaotic solutions within the L63 model and linearly unstable solutions within
the L69 model) were considered. The SDIC of the L63 model leads to finite predictability.
By comparison, ill-conditioning and the appearance of numerical instability are likely
responsible for the “finite predictability” of the L69 study, as suggested by the following
quote from the L69 study: two states of the system differing initially by a small “observational
error” will evolve into two states differing as greatly as randomly chosen states of the system within
a finite time interval, which cannot be lengthened by reducing the amplitude of the initial error.”
Thus, the mechanisms for finite predictability within the L63 and L69 model are not exactly
the same, although both models contains a saddle point.

Based on the L69 linear model with a saturation assumption, the conceptual model for
a chain process possesses a collection of unstable modes that sequentially appear, grow,
and saturate. Although the L69 model effectively describes the phenomena of instability,
it cannot precisely reveal the true nature of chaos. In contrast to growing solutions, the
L69 linear model also produces decaying components (with positive eigenvalues) and
oscillatory components (with negative eigenvalues). As documented in [11,12,15,16], the
L63 model and its generalized version (e.g., [11]) can produce non-chaotic solutions and
coexisting chaotic and non-chaotic solutions. Therefore, a realistic model should possess
both chaotic and non-chaotic processes (as well as both unstable and stable solutions) and,
thus, distinct predictability. An estimate of a predictability limit using either the (classical)
L63 or L69 model, with or without additional assumptions (e.g., saturation), should be
interpreted with caution and should not be generalized as an upper limit for predictability.

Supplementary Materials: Supplementary Materials can be downloaded at: https://www.mdpi.
com/article/10.3390/atmos13050753/s1. Table S1 displays the definitions of CDIC and SDIC. Lists
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1-12 are provided for the analysis of the L63 model by Palmer et al., 2014 [71], the fundamental local
theorem of ODEs, CDIC, Lipschitz constant, CDIC and the Lipschitz constant, SDIC and chaos, a
definition of chaos, volume contraction within the L63 model, a definition of the Lyapunov function,
existence of the Lyapunov function and global stability within the L63 model for » < 1. Figures S1-57
display: a relationship between c; in [71] and the Lipschitz constant L, an illustration of CDIC and
SDIC, numerical experiments of control and parallel runs within the L63 model, time-varying local
Lyapunov exponents, dependence of predictability on initial conditions, and qualitative description
of local predictability on the Lorenz attractor [74].
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Appendix A. The Lorenz 1963 Model and Its Simplified Systems

Here, the Lorenz 1963 model [1] is rewritten by introducing two additional parameters
(07 and €) as the coefficients of dissipative terms, as follows:

dX
E :O'Y*(Tlx, (Al)
dYy
9= —XZ+rX —¢€Y, (A2)
dz
— = XY - bZ. A
dr b (A3)

Here, T is dimensionless time. The above three, first-order ODEs describe the time
evolution of three state variables X, Y, and Z. Two parameters, ¢ and r, are called the
Prandtl number and the normalized Rayleigh number, respectively. The parameter b is
a function of the ratio of the horizontal and vertical scales of a convection cell. The term
—bZ introduces dissipation. Compared to the classical Lorenz model, Equations (A1)—(A3)
introduce two additional parameters, ; and €, in order to trace the impact of each of
the three dissipative terms. When 07 = ¢ and € = 1, Equations (A1)-(A3) represents the
classical L63 model.

By introducing () = X2/2 — ¢Z, one can transform Equations (A1)—(A3) into the
following 2nd- and 1st-order ODEs that produce the same form as the Pedlosky model [31]:

d2x ax X3
F_|_((71+(;)E—(Q—i—(fr—(fﬁ)X—k—2 =0, (A4)
aQ by o
I+ (01— )X =0, (A5)

From left to right, the four terms of Equation (A4) represent acceleration, linear
dissipation, linear forcing, and a nonlinear cubic restoring force, respectively.

The above system in Equations (A4) and (A5) has been compared to the Pedlosky
model for revealing their mathematical universality, identifying two crucial dissipative
terms, and illustrating the physical relevance of related findings to predictability problems.

Equations (A4) and (A5) can be simplified into the following systems:
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(@) o0q1 =cande =1 (i.e, the L63 model):

d?X dX X3
F+(a+l)ﬁ—(0+ar—o’)){+ > =0, (A6)
aQ b,
The system hasar, = ‘757‘?7::3) = 24.74 for the onset of chaos.

(b) o1 =cand e = 0 (i.e., the simplest Lorenz-type model for chaos):

d?X dX X3
— — - (O X+ == A
i + (0) 1T (Q+o0r)X + > 0, (A8)
aQ b,
E—i—b(}—k(a—i)X =0. (A9)
The system has a 7. = Ugfgjbb) = 17.27 for the onset of chaos.

(¢) 01 =b =0 (an uncoupled 2D system with dQ}/dt = 0):

d*X = dX X3
The above system is briefly analyzed in the main text, yielding spiral sink solutions.
(d) o1 =b=¢€=0(.e., the non-dissipative L63 model with dQ}/dt = 0):

dzx X3
F—(mmm7 =0. (A11)

As discussed in Shen, 2018, 2020 [29,30] and reviewed in the main text, the above

system produces two types of oscillatory solutions and homoclinic orbits.

(e) Nononlinear term in Equation (A11) (i.e., a linear system with dQ}/dt = 0):
dz—X —(Q+0r)X=0 (A12)
dr2 -

The above system represents the most fundamental 2nd order ODE with stable and
unstable solutions.
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