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Abstract: A new instrument for the quantification of light absorption by particles collected on filters
has been developed to address long standing environmental questions about light-absorbing particles
in air, water, and on snow and ice. The Light Absorption Heating Method (LAHM) uses temperature
changes when filters are exposed to light to quantify absorption. Through the use of calibration
standards, the observed temperature response of unknown materials can be related to the absorption
cross section of the substance collected on the filter. Here, we present a detailed description of
the instrument and calibration. The results of the calibration tests using a common surrogate for
black carbon, Fullerene soot, show that the instrument provides stable results even when exposed
to adverse laboratory conditions, and that there is little drift in the instrument over longer periods
of time. Calibration studies using Fullerene soot suspended in water, airborne propane soot, as
well as atmospheric particulates show consistent results for absorption cross section when using
accepted values for the mass absorption cross section of the soot and when compared to results from
a 3-wavelength photoacoustic instrument. While filter sampling cannot provide the time resolution
of other instrumentation, the LAHM instrument fills a niche where time averaging is reasonable and
high-cost instrumentation is not available. The optimal range of absorption cross sections for LAHM
is from 0.1 to 5.0 cm2 (~1.0–50.0 µg soot) for 25 mm filters and 0.4 to 20 cm2 (4.0–200.0 µg soot) for
47 mm filters, with reduced sensitivity to higher values.

Keywords: absorption coefficient; light-absorbing particles; aerosol absorption; black carbon

1. Introduction

For many types of scientific measurements, the standard practice is to collect samples
on filters. Common examples include air pollution measurements such as PM2.5 and
PM10 (airborne particulate matter aerodynamically smaller than 2.5 and 10 microns) in
which air is pulled through a filter at a constant rate with instrumentation such as an
MiniVol Sampler (AirMetrics, Springfield, OR, USA). Air pollution filter samples are
commonly used worldwide for scientific research purposes [1] as well as for day to day
monitoring. Additional applications of filtration include studies of water turbidity [2] and
the measurement of light-absorbing particles in snow and ice [3]. For turbidity and snow
and ice samples, a known quantity of water is filtered, and the filters are preserved for
further analysis of impurities.

The LAHM instrument was initially developed to determine light-absorbing particles
on snow [4]. An earlier version of the instrument was used to quantify light-absorbing
particles on glaciers in Peru [4]. In that study, the LAHM instrument results were shown
to be well correlated to black carbon as measured by the Single Particle Soot Photometer
(SP2: Droplet Measurement Technologies, Longmont, CO, USA) [5]. Later studies showed
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that this was not typically the case when non-SP2-sized particles or non-soot particles were
present [6]. Further studies suggested that the LAHM instrument could determine the
absorption cross section of the full particle load on the filter. These results were useful
for calculations of the spectral reflectance of snow when compared to observations [6].
The LAHM instrument directly measures light absorption rather than mass for the total
population of particles on the filter, which facilitates the study of the impacts of light-
absorbing particles on snow.

The analysis of filter samples is often conducted by gravimetric means, by weighing
the filter before and after sample collection. Beyond mass, often the optical characteristics
of particles collected on filters can be of interest. Optical techniques such as measuring
light attenuation through a sample filter and comparing the attenuation to that of a clean
filter are frequently utilized [7,8] and are the basis of operation for the Maggee science
sootscan transmissometer and the Particle Soot Absorption Photometer (PSAP: Berkeley,
CA, USA), used in the Global Atmospheric Watch (GAW) program. Light attenuation
by particles on filters can be interpreted to estimate black carbon (BC) concentration on
filters, as well as attributing the absorption between BC and other materials such as dust
and brown carbon, as is conducted by [9] for snow-borne impurities. A frequently used
system for light-absorbing particles in snow is the Integrating Sphere integrating Sandwich
spectrometer (ISSW: University of Washington, Washington, WA, USA) [9]. The ISSW
measures the spectra of light after it passes through a filter that is loaded with particles.
The spectral information assists in distinguishing different species. More sophisticated
instruments such as the Single Particle Soot Photometer (SP2) have been developed for the
measurement of airborne BC and have been adapted for the measurement of snow-borne
BC [5].

For some applications, knowledge of the absorption cross section of filter-borne parti-
cles is sufficient without a complete understanding of the particle makeup. For applications
such as light-absorbing particles in and on snow, the absorption of light by particles is
the fundamental value necessary to estimate the radiative forcing caused by the particles.
Source attribution requires knowledge of the exact quantity of the emission product of the
source. Speciation of light-absorbing particles is not critical for understanding the impacts
on snow (e.g., melting).

The convention for reporting light-absorbing particles on snow is to report the mass. In
the case of the SP2, this is the mass of rBC (refractory Black Carbon), essentially, the portion
of black carbon that is detected by the SP2. The LAHM instrument as well as the ISSW
reports in units of eBC (effective Black Carbon), basically, the mass of black carbon that
absorbs an equivalent amount of light as the particles on the filter. Thus, eBC is essentially
a measure of the absorption cross section of the particles.

While instrumentation for the measurement of light-absorbing particles can be expen-
sive, the basic measurement of the absorption of light is relatively straight forward. High
time resolution and particle by particle information can be useful for some applications,
but bulk measurements can be scientifically valuable and can be studied with lower cost
techniques. For reasons of instrument cost, portability, and accuracy, we have developed
the Light Absorption Heating Method (LAHM) instrument to characterize the absorption
of particles on filters. The LAHM instrument can be used to analyze filters such as 47 mm
diameter filters often used for PM2.5 studies as well as 25 mm filters used for waterborne
and snow-borne particle studies. The LAHM instrument takes advantage of the fact that
light-absorbing particles increase in temperature upon the absorption of visible light. A
filter loaded with a sample is placed in the instrument in a thermally isolated location
and exposed to visible light. A noncontact infrared thermometer measures the resulting
temperature change of the filter. With appropriate calibration, the temperature increase
of the filter can be directly related to the absorption cross section of the particles on the
filter, which can be converted to particle mass with knowledge of the mass absorption cross
section (MAC).
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The technique is straightforward, does not involve costly equipment, and can be
used to detect light absorption accurately across filter loadings spanning two orders of
magnitude. The instrument has been refined from an earlier version [4] to the point
where it now produces repeatable results, with the uncertainty having been reduced by
a factor of ten even under unstable laboratory conditions such as full sun exposure. The
instrument version described in this publication was developed with ease of use and
stability in mind. The previous version [4] had an uncertainty of about 10% each time the
same filter was analyzed. The current version reduced the uncertainty by a factor of 10.
This improvement was achieved by improving several components of the system. This
started with better isolating the filter from the surroundings during the measurement. The
previous version had a more open format, and airflow in the laboratory could easily impact
the measurements. Reproducibility of filter placement was improved in the current version
by placing the light, filter, and infrared thermometer in line rather than having 45◦ angles
between these components. In the current version, a microcontroller controls the light
source and data collection; whereas, in the previous version, the operator operated the
light manually. The better standardization of the initiation of the lighting phase of the
measurement significantly reduces uncertainty as well.

The LAHM instrument can be calibrated for known substances, and its sensitivity
can span two orders of magnitude (e.g., from less than 1 µg to 50 µg of BC on a filter can
be quantified to a high degree of certainty). Here, we describe the LAHM instrument
from a theoretical perspective as well as the current instrument, which is being used by
10 research groups worldwide studying light-absorbing particles on glaciers. The LAHM
instrument has been used to quantify light-absorbing particles extracted from snow and is
being used in studies of aerosol absorption in the PM2.5 and PM10 size ranges. In Section 2,
the instrument is described in detail. Section 3 describes the calibration, stability, and
uncertainty of the instrument. In Section 4, the results of two intercomparison studies are
presented demonstrating the utility of the instrument for measuring the absorption cross
section of airborne aerosols. In Section 5, the work is summarized.

2. Instrument Description

The principle of operation of the LAHM instrument is that the temperature response
of a substance to impinging light can be directly related to the absorption cross section of
the substance. As suggested by the name of the LAHM technique, the thermodynamic state
of particles on a filter are perturbed by increasing the quantity of light impinging on the
substance leading to an increase in the temperature as the substance re-equilibrates with
its surroundings. The increase in absorbed energy is accompanied by additional infrared
emission as the filter temperature increases.

Basic thermodynamic considerations can be used to understand the response of the
LAHM instrument. When the light is switched on, a portion of that energy is absorbed
by the particles on the filter leading to an increase in the temperature of the filter. Once
the filter is out of equilibrium with its surroundings, it begins to radiate more as indicated
by its brightness temperature as well as directly transmitting energy by contact with air
in order to return to equilibrium with its surroundings. A broadband visible wavelength
range LED lightbulb is used to illuminate the filter, and an infrared detector measures the
brightness temperature of the filter over time. The LAHM instrument works by monitoring
the infrared brightness temperature after the LED is switched on and the filter nears a new
equilibrium temperature.

2.1. Physical Design

The specific instrument description presented here is for an instrument designed to
determine particle properties of particles on 25 mm filters. Figure 1 shows a schematic
diagram of the instrument as well as a photo. With simple configuration changes, 47 mm
filters can be accommodated. The instrument is composed of several plexiglass sheets
15 × 15 cm in size. Thick clear sheets of plexiglass are used because they do not change
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temperature rapidly, and stray light leaves the system rather than being reflected back to the
filter, where it could increase uncertainty. The bottom sheet is 2 cm thick and has a 23 mm
diameter hole that penetrates 1.5 cm into the sheet. The remaining 0.5 cm is drilled to the
diameter of an infrared thermometer (IRT) module (MLX90614, Melexis Microelectronics,
leper, Belgium, approximately 0.8 cm diameter). The datasheet for the IRT module states
that its sensitivity range is from 5.5 to 14 microns. The IRT module is secured on bottom of
the sheet with space for the thermometer electronics. For analysis, a 25 mm filter is placed
over the 23 mm hole; this placement positions most of the filter underside into the field
of view of the IRT. Two additional 2.5 cm thick sheets with increasingly larger diameter
holes are placed on top of the first sheet for analysis. The additional sheets enable direct
transmission of light to the filter. To prevent the accumulation of warmed air above the
filter, a gap is created using two 2.5 × 15 cm bars 0.5 cm thick and a final 15 × 15 sheet
0.5 cm thick again. An LED light (Philips 7W LED 50W replacement indoor flood, Philips
Electronics, Amsterdam, The Netherlands) is then placed onto four small rubber bumpers
on top of the top sheet. The LED light spectrum ranges from 400 to 800 nm and peaks at
600 nm (see Figure 1 inset for the LED spectrum compared to the IRT sensitivity region.
The rubber bumpers create another small air gap thus further reducing the possibility of
the transfer of heat directly from the bulb to the instrument (although the bulb temperature
change is only 1–2 ◦C even after several hours of operation). The final configuration was
determined through experimentation in an effort to reduce the heat exchange between the
components of the instrument. The IRT is monitored with an Arduino microcontroller that
also controls the light through a relay system.
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Figure 1. Schematic drawing and image of the LAHM instrument. The schematic view is a cross
section through the instrument with blue representing the plexiglass sheets or transparent rubber
feet (highest and lowest) to support the instrument or to support the lightbulb. The upper (wider)
level of the open air space is not closed on the adjacent sides, which allows air warmed by the filter
through conduction and convection to escape. The upper right plot shows the measured spectrum of
the lightbulb compared to the IRT sensitivity.

2.2. Data System

An Arduino program has been written to operate the system through five illumination
and cooling cycles for each sample measurement. Taking the average temperature increase
over 3–5 cycles substantially reduces the instrument uncertainty, while additional cycles
do not appreciably improve the results. The first four illumination periods were 30 s long,
and the final was 120 s, all followed by 90 s cooling periods. Unless otherwise stated,
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temperature profiles presented in this publication are the average of the first four heating
cycles with ambient temperature removed by averaging the ten seconds before the initial
heating cycle began. The final 120 s cycle can be used to estimate the actual mass of
extremely heavily loaded filters, which has a very high uncertainty and is, therefore, not
described here. During operation, the temperature data are saved at 4 Hz, and the resulting
data are saved for later final analysis. The instrument has been mainly used with 25 mm
filters, investigating light-absorbing particles extracted from glaciers.

3. Instrument Calibration
3.1. Calibration

Instrument calibration was conducted empirically with a set of filters loaded with
known quantities of fullerene soot (Stock # 40971, Lot F12S011, Alfa Aesar Inc., Ward
Hill, MA, USA), a laboratory BC that is the recommended proxy for refractory BC [10].
As described in [4], the filters were loaded with fullerene soot quantities ranging from
1 to 100 micrograms from a gravimetric standard in which the particle size distribution
was similar to the ambient atmospheric BC aerosol size distributions (diameters in the
range of ~0.1–0.5 µm) [11]. Then, 25 mm diameter Millipore mixed cellulose ester filter
membrane 0.22 micron filters, used in the LAHM, captured approximately 97% of the
total fullerene mass (determined by passing the post-filter water through a single-particle
soot photometer (SP2)). Note that since the entire filter is heated by the light absorbed by
the particles, different filter types that are heavier or lighter will have different response
functions. For filtering snow water, Pallflex Membrane Tissuquartz (Pall, Port Washington,
NY, USA) 0.7 micron filters have similar temperature responses in the LAHM instrument.
It is also critical to completely dry the filter before analysis, as excess water mass in the
filter impacts the LAHM instrument response.

Figure 2 shows the temperature responses for a selection of calibration filters and a
blank filter. It shows the temperature profiles measured with the LAHM instrument with
fullerene soot masses ranging from 0 to 100 micrograms. The temperature of the blank filter
increased less than 0.1 ◦C, while the temperature of a filter with one microgram increased
about 0.5 ◦C demonstrating the sensitivity at very low filter loadings. The temperature
difference between the two highest filters (with 66 and 100 micrograms) was approximately
1.0 ◦C suggesting that the sensitivity was much less at higher values. If the instrument
is operated without a filter in place, the temperature increase is approximately 3.8 ◦C
indicating that the IRT is sensitive to light put out by the lightbulb, but given that a blank
filter reduces that substantially and the filter temperature can reach much higher values,
the process of absorption of visible light and then reemission in the IR is dominant.

The LAHM was calibrated through the development of an empirical relationship
between the temperature increase and the mass of fullerene soot on the filter. The tem-
perature increase (dT) is found by averaging the temperature increase for the four initial
30-s heating cycles after the average of the ambient temperature (Ta) for the first 10-s (time
0–10 on Figure 2) preceding each cycle is subtracted. Variability in the laboratory ambient
temperature was found to affect the measurement slightly and predictably. The effect of
ambient temperature on the dT values can be found using Equation (1).

Tcorr = dT × (1.0536 − 0.00163 × Ta − 0.0000815 × Ta
2)−1 (1)

The adjustment in Equation (1) was determined by repeatedly analyzing three filters
(with 10, 25, and 44 micrograms of Fullerene soot, respectively) at laboratory ambient
temperatures, Ta, from −3 ◦C to +25 ◦C. Each instrument was slightly different, mainly
due to the variability in the lightbulbs. It has been found that the temperature increase
caused by one lightbulb can be scaled to another light with 0.5% certainty with a factor
developed by measuring the dT for the two lights using the same filter. In this manner, all
instruments were calibrated to a standard instrument (owned by the lead author), which is
used for determining response calibrations.
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Figure 2. Eight measured temperature profiles for calibration filters. The calibration filters had
between 0 and 100 micrograms of fullerene soot.

Figure 3 shows a calibration curve developed for the fullerene soot test filters, which
used the Tcorr increase after 30 s (T30, 40 s after on the x axis of Figure 2). Individual filter
temperature increases are shown on the plot as well. The scatter in the data is likely due
to the variability in Fullerene soot properties. Calibration filters were created on three
different occasions using different starting mixtures that were made by mixing Fullerene
soot in water and allowing the larger particles to settle to achieve a distribution similar to
airborne black carbon. Given that each mixture could be slightly different, all calibration
filters were used to develop the plot shown in Figure 3. The R2 value for the fit was 0.971.
Equation (2) shows the Equation for the fit

M = 3.43 × exp (T30 × 0.238) − 3.0 (2)

where T30 is the corrected filter temperature after thirty seconds of illumination (Time = 40 s
on Figure 2), and M is the mass in micrograms of fullerene soot on the filter. The reader is
cautioned that it is critical to reference the specific type of BC that is associated with the
calibration measurement, as different types of BC can have significantly different Mass
Absorption Cross-section (MAC) values that can substantially affect the results. If the
MAC of the particle(s) was not known, Equation (2) would give the effective black carbon
quantity (eBC).
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represents one calibration filter, and the solid line is an empirical fit to the data.

3.2. Instrument Stability

To test instrument stability, the instrument was set to operate indefinitely with two
minute cycles of thirty seconds illumination followed by 90 s cooldown. Twice, the in-
strument was allowed to operate for 80 cycles. Figure 4 shows the instrument response
during these experiments. The overall temperature registered slowly increased throughout
each of the tests, likely due to in some part to the ambient temperature increasing rather
than solely due to the instrument operation. During the second test (lower panels), the
instrument was relocated to an area with direct sunlight after cycle 39 then returned to
an area out of the sun at cycle 60. Both the low temperature baseline and the local high
temperature for each illumination phase elevated approximately 0.2 ◦C degrees with expo-
sure to direct sun and then dropped 0.2 ◦C when removed from direct sun. Treating each
illumination phase individually (by normalizing for the ten seconds before) the profiles
show remarkable stability even when comparing the sunlit phases to the non-sunlit phases.
For each time step, the standard deviation of the observed dT values of the 80 normalized
profiles was calculated for the two experiments. The 80 individual traces as well as the
standard deviation (multiplied by 100 so it can be seen) are shown in the right panels of
Figure 4. Note that the standard deviation is higher for the 80 measurements with the
sun influence; yet, the increase was still small during the illumination phase. The higher
standard deviation for the sunlight experiment was caused by the profiles collected as the
instrument was moved in and out of the sun. The direct sunlight test is an extreme case
suggesting that standard laboratory conditions should not affect the results significantly.
The only profiles significantly affected were the profiles collected during the transition
suggesting that one should avoid placing the instrument near a window in the sun when
clouds were passing by from time to time, although the 0.2 ◦C difference would likely be
reduced by averaging four profiles as is standard, and the 0.2 ◦C affects all parts of the
temperature profile, thus having a negligible effect on dT.
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Figure 4. Demonstration of instrument stability. (a) Experiment showing 80 two minute cycles with
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time step multiplied by 100 is also shown. (c) Same as (a) except the instrument was moved into
direct sunlight, then returned to the shade where indicated. (d) Same as (b) showing the increased
standard deviation caused by the change in lighting.

3.3. Measurement Uncertainty

The uncertainty in the LAHM instrument is the uncertainty in the temperature increase.
In the upper right plot of Figure 4, the uncertainty in the 80 runs was approximately 0.035 ◦C
based on the standard deviation plot between 20 and 40 s. In addition to this, there is the
potential for instrument drift over time. To test this, two filters that were analyzed in 2016
were reanalyzed in 2022. The average difference in temperature at time = 40 s was 0.7%
for a filter with 12 ◦C temperature change (equal to 0.084 ◦C). The second filter with a
lighter load had a similar percentage change as well. Thus, the instrument uncertainty was
approximately 0.12 ◦C. Using Equation (2) (e.g., assuming Fullerene soot absorption), a
0.12 ◦C error led to a 3% uncertainty with a 12 ◦C measured temperature change. Applying
the same percentage temperature difference over six years to a filter that had a 2.5 ◦C
temperature change also led to a 3% uncertainty. Larger particles with low MAC values
would likely experience significant overlap, so it is recommended that filters be only lightly
loaded, thus reducing any potential issues with overlap.

4. Results
4.1. Estimating Mass with Known Particle Characteristics

In April–May 2016, the prototype LAHM instrument was operated in conjunction
with the SP2 and the three wavelength photoacoustic absorption spectrometer PAAS-3λ
(SchnaiTEC, Bruchsal, Germany) [12] at the Aerosol Interactions and Dynamics in the
Atmosphere (AIDA) cloud chamber in Karlsruhe, Germany, during a research campaign
to study the spectral optical properties of airborne soot from a co-flow diffusion flame
of propane and air [13]. Airborne soot particles were sampled by the SP2, the PAAS-3λ,
and collected on filters for thermographic elemental carbon/organic carbon (EC/OC)
analysis and for light absorption analysis by LAHM. SP2 measurements were used to
determine the mass of propane soot collected on the filters. The LAHM instrument showed
substantially more absorption per unit mass of soot on the filter as compared to filters with
the same mass of fullerene soot indicating that the MAC for the propane soot particles



Atmosphere 2022, 13, 824 9 of 12

was significantly higher than the MAC for fullerene soot. The values in the literature
suggest that propane soot can have an MAC on the order of 12–15 m2/g [12,14], while
fullerene soot has been reported to have a MAC value between 7 and 10 m2/g [15]. Figure 5
shows the temperature increase for the LAHM calibration filters made with fullerene soot
along with several propane soot filters as a function of micrograms of BC of each type.
The temperature increase for the propane soot particles was substantially more than the
temperature increase for the fullerene soot filters with the same mass, confirming the MAC
difference from previous studies as well as with the PAAS-3λ measurements at AIDA. A fit
equation to the propane soot filters is shown in Equation (3).

M = 2.42 × exp (T30 × 0.236) − 3.0 (3)

As Equations (2) and (3) are similar aside from the prefactor, it can be estimated that
the MAC difference between Fullerene soot and propane soot is the ratio of the prefactors,
indicating that the propane soot has an MAC value 1.42 times higher than Fullerene soot,
which fits reasonably within the ranges mentioned in the previous paragraph.
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4.2. Ambient Measurements of Absorption Coefficient

The Karlsruhe Institute of Technology, Karlsruhe, Germany conducted measurements
with a PAAS-3λ for two months of ambient sampling during the winter of 2019. The 25 mm
sample filters were collected in conjunction with PAAS-3λ measurements. The PAAS-3λ
sampled continuously provided measurements of photoacoustic absorption coefficient
[1/m] at three wavelengths (405 nm, 532 nm, 658 nm) with high time resolution, while
the filters collected aerosol for periods between 1 and 4 days. As the PAAS-3λ alternates
wavelengths during measurement cycles, the average absorption coefficient was taken for
each filter sampling period; then, the value was scaled by the filter sample duration and
the volume sampling rate (i.e., the total sampled volume). This led to an estimate of the
absorption cross section [cm2] of all particles on the filter. This absorption cross section was
plotted versus LAHM temperature after 30 s of light exposure. One important note is that
the physical sampling area of a 25 mm diameter filter is approximately 7 cm2; thus, values
higher than this in the PAAS data suggest that there would be significant particle overlap
on the filter. Figure 6 shows the fit data and the measurement data. Equations (4)–(6)
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show the relationship between the LAHM response and blue, green, and red photoacoustic
absorption.

Ablue = 0.34 × exp (T30 × 0.26) (4)

Agreen = 0.17 × exp (T30 × 0.28) (5)

Ared = 0.15 × exp (T30 × 0.28) (6)
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5. Conclusions

The Light Absorption Heating Method instrument fulfills a significant need in research
and monitoring. For applications such as the measurement of light absorption by particles
on snow, the LAHM instrument provides a method to quantify the absorption charac-
teristics of the particle population making it much more straightforward to quantify the
impact of the particle population. This compares to other techniques that measure particle
concentrations, sizes, and composition, and use those particle characteristics to calculate
the light absorption. For air pollution sampling, the LAHM instrument can be used to
estimate the bulk absorption cross section of particles collected on filters. In this article, we
have shown that the LAHM instrument is very stable, provides repeatable results over time,
and that potential uncertainties can be quantified or minimized. The results are comparable
to other techniques of measuring absorption; however, knowledge of the particle MAC is
critical to determining exact mass of a specific particle type. Conversely, with knowledge
of the exact mass, the LAHM instrument provides a unique method to directly measure the
relative differences in MAC for different substances. Additionally, the LAHM instrument
is made of low cost components making it cost effective for student projects, laboratory
classes, as well as for research and monitoring by research groups with lower levels of
financial support.

For optimal results, the filters should be lightly loaded. Absorption cross sections
of more than half of the filter area can lead to substantial uncertainties. If the absorption
cross section is too high, the likelihood of absorbing particles being hidden by other
particles increases significantly. Figures 3 and 5 clearly demonstrate that small differences
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in mass can lead to large changes in temperature when the total mass loads are low; thus,
the sensitivity is much better at low values of absorption. Data from overloaded filters
(not shown) suggests that particles with different MAC values behave quite differently,
likely due to scattering within the particles on the filter. This suggests an upper limit of
approximately 25 micrograms of highly efficient absorbers (soot) on a 25 mm filter or up
to 100 micrograms of soot on a 47 mm filter. While the results presented herein are for
25 mm filters, relationships for 47 mm filters are under development. Uncertainty estimates
suggest that there is a potential 1% uncertainty in temperature change for a filter that
warms 12 ◦C which leads to an uncertainty of 3% or less for light absorption.
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