Characteristics and Sources of Volatile Organic Compounds in the Nanjing Industrial Area
Abstract
:1. Introduction
2. Methodology
2.1. Sampling Site and Data Description
2.2. The PMF Model
2.3. The CPF Method
2.4. OFP, LOH and SOAP
3. Result and Discussion
3.1. Characteristics of Gaseous Pollutants
3.2. Source Detection Results
3.2.1. PMF and CPF Results
3.2.2. Proportions of OFP, LOH and SOAP Concentrations
3.2.3. Estimation of VOCs in the OFP and SOAP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- de Abrantes, R.; De Assuncao, J.; Pesquero, C.R. Emission of polycyclic aromatic hydrocarbons from light-duty diesel vehicles exhaust. Atmos. Environ. 2004, 38, 1631–1640. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, H.R.; Ling, Z.H.; Louie, P.K.K.; Ayoko, G. Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta? J. Hazard. Mater. 2011, 188, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; An, J.; Xin, J.; Wu, F.; Wang, J.; Ji, D.; Wang, Y.S. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmos. Res. 2016, 176–177, 64–74. [Google Scholar] [CrossRef]
- Bolden, A.L.; Kwiatkowski, C.F.; Colborn, T. New Look at BTEX: Are Ambient Levels a Problem? Environ. Sci. Technol. 2015, 49, 5261–5276. [Google Scholar] [CrossRef]
- Davidson, C.J.; Hannigan, J.H.; Bowen, S.E. Effects of inhaled combined Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX): Toward an environmental exposure model. Environ. Toxicol. Pharmacol. 2021, 81, 103518. [Google Scholar] [CrossRef]
- Buczynska, A.J.; Krata, A.; Stranger, M.; Godoi, A.F.L.; Kontozova-Deutsch, V.; Bencs, L.; Naveau, I.; Roekens, E.; Van Grieken, R. Atmospheric BTEX-concentrations in an area with intensive street traffic. Atmos. Environ. 2009, 43, 311–318. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J.; Yang, L.; Wu, S.; Hao, J. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos. Res. 2008, 88, 25–35. [Google Scholar] [CrossRef]
- Wang, M.; Qin, W.; Chen, W.; Zhang, L.; Zhang, Y.; Zhang, X.; Xie, X. Seasonal variability of VOCs in Nanjing, Yangtze River delta: Implications for emission sources and photochemistry. Atmos. Environ. 2020, 223, 117254. [Google Scholar] [CrossRef]
- Hoque, R.R.; Khillare, P.; Agarwal, T.; Shridhar, V.; Balachandran, S. Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Sci. Total Environ. 2008, 392, 30–40. [Google Scholar] [CrossRef]
- Shu, L.; Wang, T.; Han, H.; Xie, M.; Chen, P.; Li, M.; Wu, H. Summertime ozone pollution in the Yangtze River Delta of eastern China during 2013–2017: Synoptic impacts and source apportionment. Environ. Pollut. 2020, 257, 113631. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Luo, H.; Yuan, Z.; Zheng, J.; Huang, Z.; Li, C.; Lin, X.; Louie, P.K.K.; Chen, D.; Bian, Y. Quantitative impacts of meteorology and precursor emission changes on the long-term trend of ambient ozone over the Pearl River Delta, China, and implications for ozone control strategy. Atmos. Chem. Phys. 2019, 19, 12901–12916. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Zhang, L.; Wang, X.; Gao, M.; Li, K.; Zhang, Y.; Yue, X.; Zhang, Y. Rapid Increases in Warm-Season Surface Ozone and Resulting Health Impact in China Since 2013. Environ. Sci. Technol. Lett. 2020, 7, 240–247. [Google Scholar] [CrossRef]
- Yin, Z.; Cao, B.; Wang, H. Dominant patterns of summer ozone pollution in eastern China and associated atmospheric circulations. Atmos. Chem. Phys. 2019, 19, 13933–13943. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, P.E.; Klingberg, J.; Engardt, M.; Andersson, C.; Langner, J.; Karlsson, G.P.; Pleijel, H. Past, present and future concentrations of ground-level ozone and potential impacts on ecosystems and human health in northern Europe. Sci. Total Environ. 2017, 576, 22–35. [Google Scholar] [CrossRef]
- Ashworth, K.; Wild, O.; Eller, A.S.D.; Hewitt, C.N. Impact of Biofuel Poplar Cultivation on Ground-Level Ozone and Premature Human Mortality Depends on Cultivar Selection and Planting Location. Environ. Sci. Technol. 2015, 49, 8566–8575. [Google Scholar] [CrossRef] [Green Version]
- Safieddine, S.; Bouillon, M.; Paracho, A.; Jumelet, J.; Tencé, F.; Pazmino, A.; Goutail, F.; Wespes, C.; Bekki, S.; Boynard, A.; et al. Antarctic Ozone Enhancement During the 2019 Sudden Stratospheric Warming Event. Geophys. Res. Lett. 2020, 47, e2020GL087810. [Google Scholar] [CrossRef]
- Li, J.; Wu, R.; Li, Y.; Hao, Y.; Xie, S.; Zeng, L. Effects of rigorous emission controls on reducing ambient volatile organic compounds in Beijing, China. Sci. Total Environ. 2016, 557–558, 531–541. [Google Scholar] [CrossRef]
- Shao, P.; An, J.-L.; Yang, H.; Lin, X.; Ji, D.-S. Variation characteristics of surface ozone and its precursors during summertime in Nanjing northern suburb. Environ. Sci. 2014, 35, 4031–4043. [Google Scholar]
- Fan, M.-Y.; Zhang, Y.-L.; Lin, Y.-C.; Li, L.; Xie, F.; Hu, J.; Mozaffar, A.; Cao, F. Source apportionments of atmospheric volatile organic compounds in Nanjing, China during high ozone pollution season. Chemosphere 2021, 263, 128025. [Google Scholar] [CrossRef]
- Cao, M.Y.; Lin, Y.Q.; Zhang, Y.L. Characteristics, source apportionment of atmospheric VOCs in the Nanjing industrial area in autumn. Environ. Sci. 2020, 41, 2565–2576. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Qin, Y.; Zhang, Y.; Zheng, S.; Yang, Y.; Jin, S.; Yang, X. VOC Characteristics and Their Source Apportionment in the Yangtze River Delta Region during the G20 Summit. Atmosphere 2021, 12, 928. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Fujita, E.M. Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ. 2001, 35, 1567–1584. [Google Scholar] [CrossRef]
- Sosa, E.R.; Bravo, A.H.; Mugica, A.V.; Sanchez, A.P.; Bueno, L.E.; Krupa, S. Levels and source apportionment of volatile organic compounds in southwestern area of Mexico City. Environ. Pollut. 2009, 157, 1038–1044. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S.; Xing, X.; Mao, Y.; Hu, T.; Ding, Y.; Li, G.; Liu, D.; Li, S.; Qi, S. Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year. Atmos. Chem. Phys. 2018, 18, 4567–4595. [Google Scholar] [CrossRef] [Green Version]
- Bari, A.; Kindzierski, W.B. Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment. Environ. Pollut. 2018, 235, 602–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruno, P.; Caselli, M.; De Gennaro, G.; Traini, A. Source apportionment of gaseous atmospheric pollutants by means of an absolute principal component scores (APCS) receptor model. Anal. Bioanal. Chem. 2001, 371, 1119–1123. [Google Scholar] [CrossRef]
- Guo, H.; So, K.; Simpson, I.; Barletta, B.; Meinardi, S.; Blake, D. C1–C8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment. Atmos. Environ. 2007, 41, 1456–1472. [Google Scholar] [CrossRef] [Green Version]
- Olson, D.A.; Norris, G.A.; Seila, R.L.; Landis, M.S.; Vette, A.F. Chemical characterization of volatile organic compounds near the World Trade Center: Ambient concentrations and source apportionment. Atmos. Environ. 2007, 41, 5673–5683. [Google Scholar] [CrossRef]
- Song, Y.; Shao, M.; Liu, Y.; Lu, S.; Kuster, W.; Goldan, P.; Xie, S. Source Apportionment of Ambient Volatile Organic Compounds in Beijing. Environ. Sci. Technol. 2007, 41, 4348–4353. [Google Scholar] [CrossRef]
- He, Z.; Wang, X.; Ling, Z.; Zhao, J.; Guo, H.; Shao, M.; Wang, Z. Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications. Atmos. Chem. Phys. 2019, 19, 8801–8816. [Google Scholar] [CrossRef] [Green Version]
- Bon, D.M.; Ulbrich, I.M.; de Gouw, J.A.; Warneke, C.; Kuster, W.C.; Alexander, M.L.; Baker, A.; Beyersdorf, A.J.; Blake, D.; Fall, R.; et al. Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution. Atmos. Chem. Phys. 2011, 11, 2399–2421. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, M.C.; Aklilu, Y.-A.; Brown, S.G.; Lyder, D.A. Source apportionment of volatile organic compounds measured in Edmonton, Alberta. Atmos. Environ. 2013, 81, 504–516. [Google Scholar] [CrossRef]
- An, J.; Zhu, B.; Wang, H.; Li, Y.; Lin, X.; Yang, H. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmos. Environ. 2014, 97, 206–214. [Google Scholar] [CrossRef]
- An, J.; Zou, J.; Wang, J.; Lin, X.; Zhu, B. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China. Environ. Sci. Pollut. Res. 2015, 22, 19607–19617. [Google Scholar] [CrossRef] [PubMed]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. Syst. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Carter, W.P. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- Derwent, R.G.; Jenkin, M.; Utembe, S.; Shallcross, D.E.; Murrells, T.P.; Passant, N.R. Secondary organic aerosol formation from a large number of reactive man-made organic compounds. Sci. Total Environ. 2010, 408, 3374–3381. [Google Scholar] [CrossRef]
- Baudic, A.; Gros, V.; Sauvage, S.; Locoge, N.; Sanchez, O.; Sarda-Estève, R.; Kalogridis, C.; Petit, J.-E.; Bonnaire, N.; Baisnée, D.; et al. Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France). Atmos. Chem. Phys. 2016, 16, 11961–11989. [Google Scholar] [CrossRef] [Green Version]
- Gentner, D.R.; Worton, D.R.; Isaacman, G.; Davis, L.C.; Dallmann, T.R.; Wood, E.C.; Herndon, S.C.; Goldstein, A.H.; Harley, R.A. Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications for Ozone Production. Environ. Sci. Technol. 2013, 47, 11837–11848. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Geng, F.; Tie, X.; Yu, Q.; An, J. Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmos. Environ. 2010, 44, 5005–5014. [Google Scholar] [CrossRef]
- Buzcu, B.; Fraser, M.P. Source identification and apportionment of volatile organic compounds in Houston, TX. Atmos. Environ. 2006, 40, 2385–2400. [Google Scholar] [CrossRef]
- Ou, J.; Guo, H.; Zheng, J.; Cheung, K.; Louie, P.K.; Ling, Z.; Wang, D. Concentrations and sources of non-methane hydrocarbons (NMHCs) from 2005 to 2013 in Hong Kong: A multi-year real-time data analysis. Atmos. Environ. 2015, 103, 196–206. [Google Scholar] [CrossRef]
- Wang, T.; He, H.Q.; Xia, Z.H.; Zhang, Q.Q. Characteristics, source apportionment of atmospheric VOCs in the Nanjing industrial area in autumn. Chin. J. Environ. Eng. 2017, 11, 4155–4161. [Google Scholar]
- Olszyna, K.; Luria, M.; Meagher, J. The correlation of temperature and rural ozone levels in southeastern U.S.A. Atmos. Environ. 1997, 31, 3011–3022. [Google Scholar] [CrossRef]
- Coates, J.; Mar, K.A.; Ojha, N.; Butler, T.M. The influence of temperature on ozone production under varying NOx conditions—A modelling study. Atmos. Chem. Phys. 2016, 16, 11601–11615. [Google Scholar] [CrossRef] [Green Version]
- GB3095-2012; National Ambient Air Quality Standard of China. Ministry of Ecological Environment of the People’s Republic of China: Beijing, China, 2012.
- Huang, Y.-K.; Luvsan, M.-E.; Gombojav, E.; Ochir, C.; Bulgan, J.; Chan, C.-C. Land use patterns and SO2 and NO2 pollution in Ulaanbaatar, Mongolia. Environ. Res. 2013, 124, 1–6. [Google Scholar] [CrossRef]
- Marković, D.M.; Jovanović, A.; Lazić, L.; Mijić, Z. Determination of O3, NO2, SO2, CO and PM10 measured in Belgrade urban area. Environ. Monit. Assess. 2007, 145, 349–359. [Google Scholar] [CrossRef]
- Yao, S.; Wang, Q.; Zhang, J.; Zhang, R.; Gao, Y.; Zhang, H.; Li, J.; Zhou, Z. Ambient volatile organic compounds in a heavy industrial city: Concentration, ozone formation potential, sources, and health risk assessment. Atmos. Pollut. Res. 2021, 12, 101053. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, B.; Li, Y.; Zhang, Y.; Bi, X.; Wu, J.; Song, C.; Dai, Q.; Han, Y.; Ren, G.; et al. Multi-scale volatile organic compound (VOC) source apportionment in Tianjin, China, using a receptor model coupled with 1-hr resolution data. Environ. Pollut. 2020, 265, 115023. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.; Liu, X.; Tan, Q.; Feng, M.; An, J.; Qu, Y.; Zhang, Y.; Jiang, M. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China. Atmos. Environ. 2018, 192, 55–71. [Google Scholar] [CrossRef]
- Guo, H.; Wang, T.; Simpson, I.; Blake, D.; Yu, X.; Kwok, Y.; Li, Y. Source contributions to ambient VOCs and CO at a rural site in eastern China. Atmos. Environ. 2004, 38, 4551–4560. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Shao, M.; Lu, S.; Chang, C.-C.; Wang, J.-L.; Chen, G. Volatile Organic Compound (VOC) measurements in the Pearl River Delta (PRD) region, China. Atmos. Chem. Phys. 2008, 8, 1531–1545. [Google Scholar] [CrossRef] [Green Version]
- An, J.; Wang, J.; Zhang, Y.; Zhu, B. Source Apportionment of Volatile Organic Compounds in an Urban Environment at the Yangtze River Delta, China. Arch. Environ. Contam. Toxicol. 2017, 72, 335–348. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, H.; Xu, Y.; Liao, X.; Xu, L.; Chen, J. Pollution characteristics of volatile organic compounds in the atmosphere of Haicang District in Xiamen City, Southeast China. J. Environ. Monit. 2012, 14, 1145–1151. [Google Scholar] [CrossRef]
- Xia, L.; Cai, C.; Zhu, B.; An, J.; Li, Y.; Li, Y. Source apportionment of VOCs in a suburb of Nanjing, China, in autumn and winter. J. Atmos. Chem. 2014, 71, 175–193. [Google Scholar] [CrossRef]
- Huang, C.; Wang, H.L.; Li, L.; Wang, Q.; Lu, Q.; de Gouw, J.A.; Zhou, M.; Jing, S.A.; Lu, J.; Chen, C.H. VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China. Atmos. Chem. Phys. 2015, 15, 11081–11096. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Yu, Y.; Sun, J.; Zhang, J.; Wang, J.; Tang, G.; Wang, Y. Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province, China. Sci. Total Environ. 2016, 548–549, 347–359. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, B.; Gao, J.-H.; Li, Y.-Y.; Xia, L. Source apportionment of VOCs in the northern suburb of Nanjing in summer. Environ. Sci. 2013, 34, 4519–4528. [Google Scholar]
- Song, Y.; Dai, W.; Shao, M.; Liu, Y.; Lu, S.; Kuster, W.; Goldan, P. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China. Environ. Pollut. 2008, 156, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Chen, N.; Guo, H.; Zhang, W.; Wang, N.; Wang, Y.; Liu, M. Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China. Sci. Total Environ. 2016, 541, 200–209. [Google Scholar] [CrossRef]
- Liu, C.; Ma, Z.; Mu, Y.; Liu, J.; Zhang, C.; Zhang, Y.; Liu, P.; Zhang, H. The levels, variation characteristics, and sources of atmospheric non-methane hydrocarbon compounds during wintertime in Beijing, China. Atmos. Chem. Phys. 2017, 17, 10633–10649. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Qiao, Y.; Chen, C.; Lu, J.; Dai, H.; Qiao, L.; Lou, S.; Huang, C.; Li, L.; Jing, S.; et al. Source Profiles and Chemical Reactivity of Volatile Organic Compounds from Solvent Use in Shanghai, China. Aerosol Air Qual. Res. 2014, 14, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Chen, W.; Shao, M.; Wang, M.; Lu, S.; Wang, B.; Liu, Y.; Chang, C.-C.; Wang, B. Measurements of ambient hydrocarbons and carbonyls in the Pearl River Delta (PRD), China. Atmos. Res. 2012, 116, 93–104. [Google Scholar] [CrossRef]
- Mo, Z.; Shao, M.; Lu, S.; Niu, H.; Zhou, M.; Sun, J. Characterization of non-methane hydrocarbons and their sources in an industrialized coastal city, Yangtze River Delta, China. Sci. Total. Environ. 2017, 593–594, 641–653. [Google Scholar] [CrossRef]
- Leuchner, M.; Rappenglück, B. VOC source–receptor relationships in Houston during TexAQS-II. Atmos. Environ. 2010, 44, 4056–4067. [Google Scholar] [CrossRef]
- Knighton, W.B.; Herndon, S.C.; Wood, E.C.; Fortner, E.C.; Onasch, T.B.; Wormhoudt, J.; Kolb, C.E.; Lee, B.H.; Zavala, M.; Molina, L.; et al. Detecting Fugitive Emissions of 1,3-Butadiene and Styrene from a Petrochemical Facility: An Application of a Mobile Laboratory and a Modified Proton Transfer Reaction Mass Spectrometer. Ind. Eng. Chem. Res. 2012, 51, 12706–12711. [Google Scholar] [CrossRef]
- Song, M.; Tan, Q.; Feng, M.; Qu, Y.; Liu, X.; An, J.; Zhang, Y. Source Apportionment and Secondary Transformation of Atmospheric Nonmethane Hydrocarbons in Chengdu, Southwest China. J. Geophys. Res. Atmos. 2018, 123, 9741–9763. [Google Scholar] [CrossRef]
- Chan, L.-Y.; Chu, K.-W.; Zou, S.-C.; Chan, C.-Y.; Wang, X.; Barletta, B.; Blake, D.R.; Guo, H.; Tsai, W.-Y. Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial-urban, and industrial-suburban atmospheres of the Pearl River Delta (PRD) region of south China. J. Geophys. Res. Earth Surf. 2006, 111, D11. [Google Scholar] [CrossRef] [Green Version]
- Tan, Q.; Liu, H.; Xie, S.; Zhou, L.; Song, T.; Shi, G.; Jiang, W.; Yang, F.; Wei, F. Temporal and spatial distribution characteristics and source origins of volatile organic compounds in a megacity of Sichuan Basin, China. Environ. Res. 2020, 185, 109478. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, C.; Garrido-Perez, J.M.; García-Herrera, R. Early spring near-surface ozone in Europe during the COVID-19 shutdown: Meteorological effects outweigh emission changes. Sci. Total Environ. 2020, 747, 141322. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shen, Z.; Cao, J.; Zhang, L.; Liu, L.; Li, J.; Liu, S.; Sun, Y. Characteristics of surface ozone at an urban site of Xi’an in Northwest China. J. Environ. Monit. 2012, 14, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Saunders, S.; Guo, H.; Louie, P.; Jiang, F. Photochemical trajectory modeling of ozone concentrations in Hong Kong. Environ. Pollut. 2013, 180, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xiang, Z.; Wang, L.; Jing, S.; Lou, S.; Tao, S.; Liu, J.; Yu, M.; Li, L.; Chen, Y.; et al. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China. Sci. Total Environ. 2018, 621, 1300–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Song, M.; Liu, X.; Zhang, Y.; Hui, L.; Kong, L.; Zhang, Y.; Zhang, C.; Qu, Y.; An, J.; et al. Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China. Environ. Pollut. 2020, 257, 113599. [Google Scholar] [CrossRef]
- Zheng, J.; Zhong, L.; Wang, T.; Louie, P.K.; Li, Z. Ground-level ozone in the Pearl River Delta region: Analysis of data from a recently established regional air quality monitoring network. Atmos. Environ. 2010, 44, 814–823. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Beevers, S.D. Characterising and understanding emission sources using bivariate polar plots and k-means clustering. Environ. Model. Softw. 2013, 40, 325–329. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Z.; Tian, J.; Zhu, C.; Ni, H.; Zhang, Y.; Zhang, N.; Shen, Z.; Han, Y.; Cao, J. Seasonal Transport and Dry Deposition of Black Carbon Aerosol in the Southeastern Tibetan Plateau. Aerosol Sci. Eng. 2017, 1, 160–168. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, Y.; Wang, L.; Liu, C.; Fan, S.; Chen, C.; Tong, Y.; Lin, X.; Gao, Z. Temporal characteristics of carbon dioxide and ozone over a rural-cropland area in the Yangtze River Delta of eastern China. Sci. Total Environ. 2021, 757, 143750. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Jing, S.; Gao, Y.; Peng, Y.; Lou, S.; Cheng, T.; Tao, S.; Li, L.; Li, Y.; et al. Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional transport. Atmos. Environ. 2019, 215, 116902. [Google Scholar] [CrossRef]
- Zou, Y.; Deng, X.; Zhu, D.; Gong, D.; Wang, H.; Li, F.; Tan, H.; Deng, T.; Mai, B.; Liu, X.; et al. Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China. Atmos. Chem. Phys. 2015, 15, 6625–6636. [Google Scholar] [CrossRef] [Green Version]
Type | Mean | Std a | Min | Max | N b |
---|---|---|---|---|---|
Wind Speed (m·s−1) | 1.95 | 0.97 | 0.10 | 7.70 | 8184 |
Temperature (℃) | 16.8 | 8.90 | −5.10 | 36.4 | 8227 |
Relative Humidity (%) | 67.1 | 21.8 | 12.0 | 98.0 | 8201 |
Mean | Std | Min | Max | MIR a | KOH × 10−12 b | SOAP c | DL d | |
---|---|---|---|---|---|---|---|---|
TVOC | 38.6 | 21.4 | 3.79 | 164 | ||||
Alkanes | ||||||||
Ethane | 5.03 | 2.56 | 0.04 | 29.9 | 0.28 | 0.25 | 0.10 | 0.08 |
Propane | 3.65 | 1.92 | 0.02 | 15.0 | 0.49 | 1.11 | 0.04 | |
i-Butane | 1.36 | 0.87 | 0.01 | 10.1 | 1.23 | 2.14 | 0.03 | |
n-Butane | 1.99 | 1.46 | 0.01 | 18.4 | 1.15 | 2.38 | 0.30 | 0.03 |
Cyclopentane | 0.11 | 0.11 | 0.01 | 2.65 | 2.39 | 5.02 | 0.02 | |
i-Pentane | 1.20 | 1.15 | 0.01 | 19.1 | 1.45 | 3.60 | 0.20 | 0.02 |
n-Pentane | 0.82 | 0.86 | 0.01 | 17.3 | 1.31 | 3.84 | 0.30 | 0.02 |
Methylcyclopentane | 0.13 | 0.12 | 0.02 | 1.93 | 2.19 | 5.68 | 0.04 | |
2,3-Dimethylbutane | 0.38 | 1.06 | 0.01 | 15.3 | 0.97 | 5.79 | 0.03 | |
2-Methylpentane | 0.26 | 0.27 | 0.01 | 6.78 | 1.50 | 5.20 | 0.00 | 0.03 |
2,4-Dimethylpentane | 0.06 | 0.07 | 0.01 | 2.15 | 1.55 | 4.77 | 0.03 | |
2,2-Dimethylbutane | 0.09 | 0.36 | 0.02 | 14.3 | 1.17 | 2.27 | 0.04 | |
3-Methylpentane | 0.28 | 0.36 | 0.02 | 10.1 | 1.80 | 5.20 | 0.20 | 0.04 |
n-Hexane | 0.45 | 0.56 | 0.02 | 13.1 | 1.24 | 5.25 | 0.10 | 0.04 |
Cyclohexane | 0.78 | 2.13 | 0.02 | 22.8 | 1.25 | 7.02 | 0.00 | 0.04 |
2-Methylhexane | 0.13 | 0.15 | 0.02 | 3.51 | 1.19 | 6.89 | 0.00 | 0.03 |
3-Methylhexane | 0.04 | 0.05 | 0.01 | 0.94 | 1.80 | 7.17 | 0.00 | 0.03 |
2,3-Dimethylpentane | 0.15 | 0.15 | 0.02 | 3.33 | 1.34 | 7.15 | 0.40 | 0.03 |
2,2,4-Trimethylpentane | 0.03 | 0.05 | 0.01 | 1.35 | 1.26 | 3.38 | 0.03 | |
n-Heptane | 0.15 | 0.16 | 0.01 | 3.87 | 1.07 | 6.81 | 0.10 | 0.03 |
Methylcyclohexane | 0.10 | 0.11 | 0.01 | 2.19 | 1.70 | 9.64 | 0.03 | |
2,3,4-Trimethylpentane | 0.02 | 0.05 | 0.01 | 1.36 | 1.03 | 6.60 | 0.02 | |
2-Methylheptane | 0.44 | 0.99 | 0.01 | 14.0 | 1.07 | 8.31 | 0.02 | |
3-Methylheptane | 0.03 | 0.05 | 0.01 | 1.72 | 1.24 | 8.59 | 0.02 | |
n-Octane | 0.17 | 0.24 | 0.01 | 3.52 | 0.90 | 8.16 | 0.80 | 0.02 |
n-Nonane | 0.04 | 0.10 | 0.01 | 3.31 | 0.78 | 9.75 | 1.90 | 0.02 |
n-Decane | 0.08 | 0.15 | 0.03 | 5.40 | 0.68 | 11.0 | 7.00 | 0.06 |
n-Undecane | 0.35 | 0.93 | 0.01 | 8.56 | 0.61 | 12.3 | 16.2 | 0.02 |
n-Dodecane | 0.11 | 0.08 | 0.01 | 2.01 | 0.55 | 13.2 | 34.5 | 0.03 |
Alkenes | ||||||||
Ethene | 4.29 | 3.76 | 0.04 | 54.9 | 9.00 | 8.15 | 1.30 | 0.07 |
Propene | 1.86 | 2.65 | 0.01 | 33.0 | 11.7 | 26.0 | 1.60 | 0.03 |
Trans-2-Butene | 0.08 | 0.10 | 0.01 | 1.89 | 15.2 | 63.2 | 4.00 | 0.02 |
1-Butene | 0.35 | 0.31 | 0.01 | 4.56 | 9.73 | 31.1 | 1.20 | 0.02 |
Cis-2-Butene | 0.07 | 0.11 | 0.01 | 5.55 | 14.2 | 55.8 | 3.60 | 0.03 |
Trans-2-Pentene | 0.03 | 0.05 | 0.01 | 1.70 | 10.6 | 67.0 | 3.10 | 0.03 |
1-Pentene | 0.05 | 0.05 | 0.02 | 0.93 | 7.21 | 31.4 | 0.00 | 0.03 |
Cis-2-Pentene | 0.03 | 0.03 | 0.02 | 0.65 | 10.4 | 65.0 | 3.10 | 0.03 |
Isoprene | 0.26 | 0.56 | 0.01 | 13.1 | 10.6 | 99.6 | 1.90 | 0.02 |
1-Hexene | 0.02 | 0.05 | 0.02 | 2.49 | 5.49 | 37.0 | 0.00 | 0.04 |
Alkyne | ||||||||
Acetylene | 3.76 | 2.37 | 0.02 | 20.6 | 0.95 | 0.76 | 0.10 | 0.04 |
Aromatics | ||||||||
Benzene | 2.80 | 4.46 | 0.02 | 54.9 | 0.72 | 1.22 | 92.9 | 0.03 |
Toluene | 2.44 | 2.75 | 0.01 | 33.3 | 4.00 | 5.58 | 100 | 0.03 |
Ethylbenzene | 1.61 | 1.36 | 0.01 | 26.1 | 3.04 | 7.00 | 112 | 0.02 |
m,p-Xylene | 0.60 | 0.54 | 0.01 | 8.67 | 7.80 | 18.7 | 75.8 | 0.02 |
Styrene | 0.20 | 0.33 | 0.01 | 4.97 | 1.73 | 58.0 | 212 | 0.02 |
o-Xylene | 0.40 | 0.41 | 0.01 | 9.27 | 7.64 | 13.6 | 95.5 | 0.02 |
i-Propylbenzene | 0.05 | 0.07 | 0.01 | 1.03 | 2.52 | 6.30 | 95.5 | 0.02 |
n-Propylbenzene | 0.05 | 0.06 | 0.01 | 1.48 | 2.03 | 5.80 | 110 | 0.02 |
p-Ethyltoluene | 0.26 | 0.17 | 0.02 | 2.60 | 4.44 | 11.8 | 69.7 | 0.04 |
m-Ethyltoluene | 0.07 | 0.11 | 0.02 | 1.35 | 7.39 | 18.6 | 101 | 0.04 |
1,3,5-Trimethylbenzene | 0.06 | 0.15 | 0.01 | 8.01 | 11.8 | 56.7 | 13.5 | 0.03 |
o-Ethyltoluene | 0.07 | 0.08 | 0.01 | 1.49 | 5.59 | 11.9 | 94.8 | 0.02 |
1,2,4-Trimethylbenzene | 0.57 | 0.73 | 0.06 | 15.7 | 8.87 | 32.5 | 20.6 | 0.12 |
1,2,3-Trimethylbenzene | 0.05 | 0.04 | 0.01 | 1.01 | 12.0 | 32.7 | 43.9 | 0.02 |
m-Diethylbenzene | 0.04 | 0.05 | 0.01 | 1.16 | 7.10 | 0.02 | ||
p-Diethylbenzene | 0.07 | 0.05 | 0.01 | 0.68 | 4.43 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; An, J.; Tang, G.; Zhang, Y.; Wang, J.; Lv, H. Characteristics and Sources of Volatile Organic Compounds in the Nanjing Industrial Area. Atmosphere 2022, 13, 1136. https://doi.org/10.3390/atmos13071136
Feng Y, An J, Tang G, Zhang Y, Wang J, Lv H. Characteristics and Sources of Volatile Organic Compounds in the Nanjing Industrial Area. Atmosphere. 2022; 13(7):1136. https://doi.org/10.3390/atmos13071136
Chicago/Turabian StyleFeng, Yuezheng, Junlin An, Guiqian Tang, Yuxin Zhang, Junxiu Wang, and Huan Lv. 2022. "Characteristics and Sources of Volatile Organic Compounds in the Nanjing Industrial Area" Atmosphere 13, no. 7: 1136. https://doi.org/10.3390/atmos13071136
APA StyleFeng, Y., An, J., Tang, G., Zhang, Y., Wang, J., & Lv, H. (2022). Characteristics and Sources of Volatile Organic Compounds in the Nanjing Industrial Area. Atmosphere, 13(7), 1136. https://doi.org/10.3390/atmos13071136