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Abstract: Climate change has intensified the frequency and severity of extreme weather events,
necessitating a nuanced understanding of flood patterns for effective risk management. This study
examines flood risk in the Chi watershed, Thailand, using Weekly Moving Cumulative Rainfall
(WMCR) data from 1990 to 2021. We employ extreme value copula analysis to assess spatial depen-
dence between meteorological stations in the watershed. Nine bivariate generalized extreme value
(BGEV) models were evaluated using the Akaike Information Criterion (AIC) and the Likelihood
Ratio test (LRT) to ensure model robustness. The BGEV model revealed higher tail dependence
among stations near the bay of the watershed. We also calculated the flood recurrence period to esti-
mate flood events’ frequency and potential severity. Stations ST5 (Khon Kaen), ST6 (Tha Phra Khon
Kaen), and ST8 (Maha Sarakham) were identified as potential hotspots, with higher probabilities of
experiencing extreme rainfall of approximately 200 (mm.) during the rainy season. These findings
provide valuable insights for flood management and mitigation strategies in the Chi watershed and
offer a methodological framework adaptable to other regions facing similar challenges.

Keywords: flooding; risk analysis; extreme value theory; Chi watershed; goodness-of-fit tests

1. Introduction

The impacts of climate change on river discharges and subsequent flooding have
become increasingly significant. Consequently, flood management to minimize the impacts
of climate change has become a priority at national and regional levels [1]. Floods are
one of the most catastrophic natural events, caused by extreme rainfall that exceeds a
particular catchment’s capacity. Extreme weather events are indeed becoming more severe
and frequent due to radical climate changes [2,3]. Global climate change is leading to
increased frequency and severity of extreme weather events, such as hurricanes, floods,
extreme rainfall, and heatwaves [4,5]. These events are causing devastating consequences
for human populations and intensifying erosion processes in both mountainous and plain
regions. The resulting heavy inundations have significant social and economic impacts on
human life and the surrounding environment. In fact, they account for 31% of the world’s
economic loss, and flash floods, in particular, are more dangerous as they offer little time
for warning the populace and result in more fatalities than typical floods [6,7]. According
to the World Atlas of Natural Disaster Risk, Thailand is among the top 10% of countries
worldwide at risk of economic loss from flooding. Extreme river flooding is predicted to
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cause more than 2 million injuries by 2035–2044, and coastal flooding could injure almost
2.4 million persons by 2100 [8–10]. Flooding in the Chi watershed, where farming and
animal husbandry are critical to the economy, has been a recurrent problem for about two
to three times, with significant flooding occurring every two to three years. The most
devastating floods occurred in 1978, 1980, 1995, 2000, and 2001, resulting in a profound
impact on human life and property. The 2011 flood in Thailand serves as an illustration of
how natural disasters disproportionately affect lower-income groups [11,12], and the area
was studied 11 floods occurred repeatedly during 2005 and 2021 [13]. Therefore, assessing
flood risks in the Chi watershed is critical for flood management and reducing the impact
on human life and property.

Despite the inherent danger of living in flood-prone areas, settlements continue to
be located along floodplains due to the benefits offered by rivers and their basins drawn
to flood-prone regions due to the fertile soil left behind by receding waters, resulting in
bountiful crops and economic prosperity [14]. Low-lying flood-prone areas often undergo
development for various land uses, driven by their strategic locations and agricultural
suitability, despite being less than ideal for development [15]. Numerous researchers have
explored different approaches to studying floods. For instance, Dottori [16] produced a
new dataset for river flood hazard maps for the European and Mediterranean Basin regions
by evaluating present and future river flood risk scenarios to the cost-benefit assessment of
different adaptation strategies to reduce flood impacts. Chatzichristaki et al. [17] analyzed
the flash flood on Rhodes Island in order to achieve the goals of this research the effective
rainfall was estimated by using the Curve Number (CN) method and the flood hydrograph
was estimated by using Soil Conservation Service (SCS) synthetic unit hydrograph. On the
other hand, fundamental analysis with extreme value theory is another effective method
that takes into account the nature of spatial data and can simultaneously describe the
extreme value properties [18,19]. However, flood factors are dependent on each other, and
spatial dependence of flood events at several locations has been assessed using different
areas [20]. The copula function is modeled by the marginal distribution and multivariate
dependency, offering flexibility in making the needful adjustment of the marginal and joint
probability functions.

Although most researchers primarily focus on analyzing daily rainfall data, the uti-
lization of weekly cumulative rainfall data analysis can offer numerous advantages. For
instance, weekly cumulative rainfall data contributes to the assessment of the accuracy
and skill of rainfall forecasts, leading to improvements in forecasting methods [21]. As
a result, weekly moving cumulative rainfall data emerges as an invaluable resource for
applications in water resource management, agriculture, climate change mitigation, and
the enhancement of rainfall modeling. Also, the approach facilitates the prediction of
weekly cumulative rainfall, enabling informed decision-making in agricultural practices
and aiding the selection of crop varieties suited to the prevailing climatic conditions [22].
Therefore, this study aims to assess bivariate flood risk in the Chi watershed by analyzing
the maximum weekly moving cumulative rainfall and calculating the joint probabilities
of the maximum weekly moving cumulative rainfall using various extreme value copula
functions. The performance of these copulas will be evaluated using goodness-of-fit statis-
tical tests, and the best extreme value copula will be selected for further flood risk analysis.
The risk indices considered in this study are the return periods for critical thresholds of
the maximum weekly moving cumulative rainfall, including primary, joint, and secondary
return periods.

The rest of this paper is organized as follows: We start by presenting the central
methodology adopted for this study, primarily focusing on the application of extreme
value copula in spatial dependence models. Section 2 introduces the geographical region of
interest for this research along with the data we have employed. An extensive overview of
the materials and techniques utilized for this research is provided in Section 3. In Section 4,
we discuss the outcomes of our research, with a particular emphasis on the spatial aspects
and the performance of the extreme value copula models. Section 5 is devoted to an in-
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depth discussion of these findings, while Section 6 offers our conclusions and suggests
recommendations based on our research.

2. Study Area and Data
2.1. Study Area

This study focuses on the Chi watershed in Thailand, which is depicted in Figure 1.
The watershed is represented by the dark green line and is situated in the northeastern
region of Thailand, spanning between the latitudes of 15◦30′ N to 17◦30′ N and longitudes
of 101◦30′ E to 104◦30′ E (WCPC, [23]). The watershed covers a total area of 49,131.92 km2,
with the majority of the area located in 14 provinces.

Figure 1. Map of the Chi watershed in Thailand (dark blue line) and weather station locations.

2.2. Data

This study utilized weekly moving Cumulative Rainfall (WMCR) data obtained from
the Thailand Meteorological Department (TMD) using maximum daily rainfall (MDR)
from 1990 to 2021 [24]. The maximum WMCR values for all stations ranged from 145.90
to 274.50 mm., while the average WMCR ranged from 18.39 to 27.80 mm. The station ID,
name, provincial area, latitude, longitude, and descriptive statistics for each station are
provided in Tables S1 and S2 in the Supplementary Material. To provide a clearer picture,
the ridgeline plots of WMCR by season in Thailand for five directly affected stations in the
Chi Watershed is presented in Figure 2.
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Figure 2. The seasonal WMCR data for five stations directly affected by the Chi watershed in
Thailand.

3. Materials and Methods

In this section, we describe the methodology used for our analysis, which involved
organizing the weekly moving cumulative rainfall (WMCR) data into two separate data
frames. We then applied the maximum annual WMCR to either a block maxima model
or a generalized extreme value (GEV) distribution. We chose these models because the
performance of each bivariate copula extreme analysis varies.

3.1. Marginal Distribution

This section focuses on the marginal distribution used for estimating the maximum
rainfall data. While there are several options available, this study primarily focuses on the
generalized extreme value (GEV) distribution [25].

The GEV distribution function is as Equation (1):

F(x) = exp

(
−
(

1 + ξ

(
x− µ

σ

))−1/ξ)
, 1 + ξ

(
x− µ

σ

)
> 0, (1)

where µ, σ > 0 and ξ which are location, scale, and shape parameters, respectively.

3.2. Extreme Value Copulas

In this study, we applied copula analysis due to the non-linear correlations present
among the weekly maximum cumulative rainfall (WMCR) at different stations. Sklar’s
Theorem [26] illustrates how the copula, a function that connects univariate marginal
distributions to a multivariate distribution, can be utilized. This analysis hinges on the
concept of extreme value copulas, particularly because they yield multivariate extreme
value distributions when combined with Unit Frechet margins [20].

We graphically examined the dependence structure and performed spatial correlation
analysis using Kendall’s correlation coefficient [27]. From this, we identified the pairs
exhibiting the highest spatial correlations for copula function analysis. We then used nine
copula distribution functions specified in Table S4 and estimated the parameters using the
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maximum likelihood method. The model with the lowest LR-test value was selected for
representation.

The class of extreme value copulas is particularly important among copula functions.
This is because multivariate extreme value distributions can be obtained by using copulas
with Unit Frechet margins [20]. In the case of bivariate analysis, the bivariate extreme
value distribution denoted by G∗(x, y) with unit Frechet margins can be expressed as
Equation (2):

G∗(x.y) = exp(−µ∗[0, (x, y)]C), (2)

where µ∗[0, (x, y)]C = ( 1
x + 1

y )A( x
x+y ).

A(ω) =
∫ 1

0
max(q(1−ω), (1− q)ω)S(dp),

the conditions for measurement of S is that s
∫ 1

0 qS(dp) =
∫ 1

0 (1− q)S(dp) = 1.
We also analyze the spatial correlations (spatial dependence) of the data between

the ranking data with the Kendall’s correlation coefficient as Equation (3) under the null
hypothesis of independence of X and Y [27];

τ =
2
˜n(n− 1)

(∑
i<j

sgn(xi − xj)sgn(yi − yj)). (3)

Then, we selected each pair of the highest spatial correlations to analyze the copula
function as follows.

F(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)),

when F1(x1), F2(x2), . . . , Fn(xn) are marginal distribution function, then Copula function,
C is unique

The specified model as in Table S4 total nine copula distribution functions from
bivariate generalized extreme value (BGEV) distribution. Then we estimate the parameters
by using the maximum likelihood method (MLE) [28] according to Equation (1), where the
parameter estimate is obtained from Equation (4). Finally, the model with the deviance
value of the LR-test was presented.

θ̂ = argmaxL(θ) = argmax
n

∑
i=1

lnC(u1, u2, . . . , un), (4)

when C(u1, u2, . . . , un) = F(F[−1]
1 (u1), . . . , F[−1]

n (un)) is quasi-inverses of F1, F2, . . . , Fn and
un ∈ [0, 1] .

We define yk = yk(xk) = {1 + ξk(xk − µk)/σk}−1/ξk for 1 + ξk(xk − µk)/σk > 0 and
k = 1, 2, where the marginal parameters are given by (µk, σk, ξk), ξk > 0. If σk = 0 then yk is
defined by continuity. In each of the bivariate distributions functions G(x1, x2) given below,
the univariate margins are generalized extreme value, so that G(xi) = exp(−yk).

Our findings revealed that the extreme value copulas provided a robust framework for
understanding the complex interdependence and potential flood risk in the Chi watershed.
This work contributes to advancing methods for flood risk analysis, which are critical in
the context of climate change and its impacts on extreme weather events.

3.3. Goodness-of-Fit Statistical Tests

In order to assess the performance of the marginal and joint probabilities, hypothesis
tests are used to determine the goodness-of-fit of the collected data to a particular distri-
bution. Specifically, the Kolmogorov-Smirnov are commonly used for univariate analysis
and Likelihood-ratio tests or deviance statistic (D) while the bivariate case in this study
employs these tests to evaluate the performance of the joint probabilities [25].
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3.4. Selection of Extreme Value Copula Models

This study selects the best EVC models by Akaike Information Criterion (AIC) is
to select the model that minimises the negative likelihood penalised by the number of
parameters as specified in the equation AIC = −2logL(θ̂) + 2k and Bayesian information
criterion (BIC) for candidate model is defined as ;BIC = −2lnL(θ̂k|y) + kln(n) where θ =
the set(vector) of model parameter; L(θ̂) = the likelihood of the candidate model given the
data when evaluated at the maximum likelihood estimate of θ ;k is number of estimated
parameters in the candidate model.

3.5. Risk Analysis

Flood risk is the potential harm arising from the interaction between flood-inducing
factors and the environment. It’s often represented by the flood return period, which
indicates the frequency of a flood of a certain magnitude. The longer the return period,
the more severe the potential flood damage. The flood recurrence period is calculated as
T = 1

1−P , where P is the probability that an event won’t exceed a set threshold. The trend
of return period T aligns with the probability P. The higher the value of P, the longer the
return period, implying a higher potential loss and thus greater flood risk.

The paper suggests that the joint (primary) return periods can be further characterized
by “AND” cases. This implies that the joint return period is calculated by considering the
probability of both events occurring simultaneously [29,30]. For instance, the joint return
period for a flood event could be calculated by considering the probability of both the
rainfall event and the river discharge event exceeding certain thresholds within a given
time frame as Equation (5) :

TAND
u1,u2

=
1

1− u1 − u2 + CU1U2(u1, u2)
, (5)

where µ indicates the mean inter-arrival time of the two consecutive extreme events. u1
and u2 are specific values of U1 and U2, respectively;U1 = F1(x1) and U2 = F2(x2); F1 and
F2 are the cumulative distribution function (CDF) which the Figure 3 shows clearly about
the risk area concept. In addition, small circles are scatter points of rainfall(mm.) between
ST5 and ST6, dash lines are threshold for 95% quantile rainfall(mm.) for both stations are
shown in Figure 3.

Figure 3. The risk area in terms of Equation (5).

The intensity of flood risk is usually determined by the period of future re-occurrence
of heavy inundation, commonly known as the return period. Under consideration of the
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service time (i.e., n) of a hydrological infrastructure, the risk of failure associated with the
return period of a flooding event can be expressed as Equation (6) [30] :

R = 1− (1− p)n = 1− qn = 1−
(

1− 1
T

)n
, (6)

where R is the risk of failure, p and q are the probability of an event exceeding and not
exceeding the set threshold, and T is the return period. The failure probability (R) is the
measure of flood risk ranging between 0 and 1, with a greater value indicating a greater
risk magnitude. A risk framework that considers more than one variable may provide
more support for actual flood control than the conventional analysis [31]. It is essential
to characterize floods through multiple variable aspects by a process called bivariate risk
analysis. Bivariate risk analysis plays a significant role in taking non-structural safety
measures and developing flood mitigation strategies. Bivariate risk analysis in relation to
joint return period in AND is defined as Equation (7):

Ru1,u2 = 1−
(

1− 1
TAND

u1,u2

)n

. (7)

In addition, the flow chart of this study are shown in Figure 4 as below:

Figure 4. Flow chart of the proposed study.

4. Results
4.1. Marginal Probability Distribution

The parameter estimation using the maximum likelihood estimator (MLE) is used.
It was found that the data were suitable for the GEV distribution, as observed from the
p-value of KS test and AD test greater than 0.05, which from Table S3, the p-value were
between 0.7–0.9. The range of location parameter is (60.21, 99.99), scale parameter is (13.61,
26.55) and shape parameter is (−0.43, 0.33).

4.2. Extreme Copula Value Analysis

In this section Bivariate Generalized Extreme Value (BGEV) distribution is used to
model the tail dependence between stations which the component wise block maxima
approach is considered for BGEV distribution.
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4.2.1. Correlation between Stations

The Annual Maximum Weekly Moving Cumulative Rainfall (AMWMCR) data are
presented in the following Figure 5. The Kendall tau correlation is also estimated and
compared with estimates of extreme dependence. For convenience, the estimated Kendall
tau is presented in the corresponding sub-sections and shows 5 stations that are directly
affected in the Chi Watershed, Thailand. Approaches suggested to interpreting the correla-
tion coefficient range is between −1 to 1. We provide three categories; (1) 0.01 to 0.39 is a
weak positive correlation,( 2) 0.40 to 0.69 is a medium positive correlation and (3) 0.7 to 1.00
is a strong positive correlation [32]. On the contrary, (1) −0.01 to −0.39 is a weak negative
correlation, (2) −0.40 to −0.69 is a medium negative correlation and (3) −0.7 to −1.00 is a
strong negative correlation
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0
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2
0

50 100 150 200

50 100 150 200

Corr: 0.497
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Figure 5. The scatter plot and correlation coefficient between the AMWMCR data for each pair at
5 stations in the rainy season.

The correlation between AMWMCR of two margins (stations) estimated by Kendall
tau. Figure 5 right hand side showed the value of correlation among which were −0.2
to −0.4 (low to mild correlation) and the distribution of AMWMCR of all station is right
heavy-tailed distribution.

4.2.2. Copula Function Fitting

We estimated some upper quantile probability from fitted BGEV models. The threshold
are fixed at 95% quantile of WMCR data, because the value of 90%, 95% and 99% quantile are
high enough by the mean residual life plot. In particularly, these amounts are similar to the
heavy rainfall criteria from the TMD. All models were considered to analyse the dependence
and strength estimated between stations. The summary of dependence estimates were
presented as Table 1.

The largest correlation estimated by Kendall tau, between stations ID ST5 and ST6,
is 0.497. The strength of dependence is estimated by negbilog copula function. For other
stations mostly the strength of dependence is estimated by alog, amix and negbilog, respec-
tively as in Table 1 and Figure 6.
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Table 1. Extreme value copula model for the best BGEV model

Station ID τ Copula Function D of LR-Test AIC

ST5 ST6 0.497 Negbilog 0.090 603.695
ST8 −0.002 Log 0.060 609.535

ST10 0.062 HR 0.044 599.181
ST11 −0.058 Alog 0.086 609.767

ST6 ST8 0.060 Log 0.005 630.730
ST10 0.132 Bilog 0.974 618.780
ST11 −0.046 Neglog 0.654 634.101

ST8 ST10 −0.221 Neglog 0.001 615.923
ST11 0.262 Alog 1.177 623.090

ST10 ST11 −0.277 Neglog 0.029 619.134

(a) Quantile plots (p = 0.50, 0.80 and 0.90) (b) Dependence functions from BGEV models

Figure 6. Quantile plots (p = 0.50, 0.80 and 0.90) and dependence functions from BGEV model fits at
ST5–ST6.

4.3. Risk Analysis

The utilization of multiple flood variables in flood risk analysis provides valuable in-
formation for a deeper comprehension of flood characteristics. To reflect historical flooding,
return periods were calculated using the BGEV model (Table 1). The risk value of rainfall
and joint return periods were presented in Table 2 and Figure 7 (see Tables S4 and S5 in
the supplementary material for further details). The risk of rainfall was computed using
Equation (7) and demonstrated a strong correlation between station and rainfall risk value,
as evident in Tables S6 and S7 in the supplementary material.

We aim to analyze flood risk based on extreme rainfall events between two meteoro-
logical stations. We focus on extreme rainfall scenarios, the univariate return period (RP)
levels are taken to be 2, 5, 10, 25, 50, and 100 Years, the corresponding values of Rainfall
by region are calculated, respectively, and the corresponding two-dimensional Copula
function values are calculated by the optimal Copula functions of different characteristic
variables. According to Equation (5), the corresponding bivariate joint return periods at a
given univariate return period level are calculated as flood risk for regions. The computed
values are shown in Table 2. The probability distributions of rainfall by region are plotted
and corresponding recurring contours are added to the measured data for comparison, as
shown in Figures 8 and 9.
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Figure 7. Flood risk exceedance when certain return period in the Chi watershed for BGEV model.

(a) (b)

Figure 8. Joint cumulative distribution function of rainfall at ST5–ST6 through Negative bilogistic
(Negbilog). (a) Joint cumulative distribution. (b) The contour of joint cumulative distribution.

(a) (b)

Figure 9. Probability density distribution of rainfall at ST5–ST6 through Negative bilogistic (Negbilog).
(a) Joint probability density distribution. (b) The contour of joint probability density distribution
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Table 2. Joint return periods from the joint distribution and flood risk for univariate and bivariate
distributions

Region RP (Years)
Rainfall by Region (mm.)

Tand (Years) Risk Value
Region 1 Region 2

ST5–ST6 2 83.80 90.90 3.52 1.00
5 110.24 117.42 23.57 0.75

10 122.16 120.93 56.08 0.44
25 148.67 141.10 211.81 0.14
50 156.60 147.90 431.69 0.07
100 160.35 153.45 712.76 0.04

ST5–ST8 2 84.80 74.70 3.50 1.00
5 109.68 94.38 11.56 0.94

10 134.73 118.63 44.65 0.52
25 152.38 139.89 118.12 0.24
50 172.19 144.39 205.60 0.14
100 186.30 146.35 294.60 0.10

ST5–ST10 2 84.80 97.30 4.26 1.00
5 109.68 114.32 12.18 0.94

10 134.73 127.02 30.54 0.66
25 152.38 193.00 164.45 0.18
50 172.19 196.15 240.45 0.12
100 186.30 198.73 314.59 0.10

ST5–ST11 2 84.80 88.35 3.48 1.00
5 109.68 119.68 13.84 0.91

10 134.73 148.85 41.32 0.54
25 152.38 168.50 77.52 0.34
50 172.19 172.20 115.09 0.24
100 186.29 172.20 147.98 0.20

Table 2, shows the bivariate joint return period (Tand (Years)), and the risk value which
is the probability of extreme rainfall in each pair of meteorological stations. The results
indicate extreme rainfall by region analyzed the risk of flooding over a range of return
periods, including 2, 5, 10, 25, 50, and 100 years, and plotted the corresponding probabilities
of exceedance, as shown in Figure 7. Taking the region ST5–ST11 as an example, in the
100-year return periods the estimate of rainfall in ST5 and ST11 are 186.29 mm. and
172.20 mm., respectively on the joint return period 147.98 years making the flood risk of
ST5–ST11 by the probability 0.20.

5. Discussion

In this investigation, we implemented copula functions to encapsulate the interde-
pendence structure between the weekly moving cumulative rainfall (WMCR) from two
separate stations within the Chi watershed. Our focus was primarily on extreme value
copulas, as these have a notable significance in modeling multivariate extreme value dis-
tributions. To gauge the performance of marginal and joint probabilities, we executed
goodness-of-fit tests. The most suitable copula function was then determined according to
the results of these tests. The outcomes demonstrated that the stations directly influenced
within the Chi watershed exhibit high-risk values and correlation. In addition, it was
observed that there is an escalated risk of extreme rainfall during the rainy season, notably
at stations ST5 (Khon Kaen), ST6 (Tha Phra Khon Kaen), and ST8 (Maha Sarakham), which
have a greater likelihood of experiencing extreme rainfall in the vicinity of 200 mm. In
summary, our findings offer vital insights into flood risk within the Chi watershed. This
knowledge is instrumental in informing and enhancing flood management practices and
disaster response strategies.
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6. Conclusions

This study’s findings can be distilled into three main points. First, the BGEV model
demonstrated satisfactory performance in estimating the tail dependence between meteoro-
logical stations. Stations located near the watershed’s bay exhibited strong tail dependence,
while those geographically distant showed nearly no dependence. Moreover, the BGEVD
model’s estimated upper quantile probability exceeded the empirical probability, suggest-
ing its superior capacity in predicting heavy rainfall risk. Second, the research revealed
that flood risk analysis can be characterized by extreme rainfall across two meteorological
stations. We considered four extreme rainfall patterns 120, 150, 180, and 200 mm. for
2, 10, and 25 weekly events. During the rainy season, stations ST5 (Khon Kaen), ST6
(Tha Phra Khon Kaen), and ST8 (Maha Sarakham) warrant close monitoring due to their
heightened probability of experiencing extreme rainfall of around 200 mm. Lastly, the
methodology employed in this research can be adapted for analyzing numerical model out-
puts of climate systems, enabling a comparison with a model fitted to climate observations.
Future research should consider significant covariates that impact temperature, such as
topographical aspects and proximity to the coast. Modeling a climate variable’s complete
distribution for a spatial field may prove more accurate and valuable than focusing solely
on extremes. A time-dependent MSP model incorporating climatic covariates could be
beneficial for this purpose. The challenges and potentials inherent in this area necessitate
further collaborative exploration between climate scientists and statisticians.
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