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Abstract: The high altitude in mountainous regions results in lower atmospheric pressure, oxygen
concentration and temperature, leading to lower combustion efficiency in motor vehicles. Therefore,
there may be differences in carbon dioxide (CO2), carbon monoxide (CO), and nitrogen oxides (NOx)
emissions characteristics at different altitudes. In this study, a portable emission measurement system
was used to investigate the effects of varying elevations on the emission factors of CO2, CO, and NOx

on diesel and gasoline-powered vehicles at altitudes ranging from 2270 to 4540 m in the Qinghai–Tibet
Plateau of China. Additionally, the influencing factors of CO2, CO, and NOx emissions were studied.
Results showed that the CO2, CO, and NOx emission factors for diesel vehicles varied in the range of
161.83–195.54, 0.59–0.77, and 4.61–6.58 g/km; the population means with 90% confidence intervals
were 178.54, 0.68, and 5.60 g/km, respectively. For gasoline vehicles, the CO2, CO, and NOx emission
factors varied in the range of 161.66–181.98, 0.95–1.06, and 0.12–0.25 g/km; the population means
with 90% confidence intervals were 171.82, 1.01, and 0.19 g/km, respectively. Overall, the emission
factors of diesel vehicles were higher than those of gasoline vehicles, and the emissions increased
with increasing altitude. Atmospheric pressure was identified as the primary environmental factor
affecting CO2, CO, and NOx emissions. As the speed of motor vehicles increased, the emission of
CO2 also increased, while there was a quadratic relationship with acceleration. This study provides a
reference and guidance for vehicle pollution control in high-altitude regions.

Keywords: tailpipe gas; emission factor; portable emission measurement system; high-altitude region

1. Introduction

Vehicle emissions refer to the waste gases and particulate matter produced during
the combustion of fuels. These emissions contain a range of harmful chemicals to the
environment and human health. Major pollutants from vehicle emissions include carbon
dioxide (CO2), nitrogen oxides (NOx), carbon monoxide (CO), volatile organic compounds
(VOCs), particulate matter (PM), and more. The background of vehicle emissions can be
traced back to the industrial era. With the widespread use of automobiles and an increase
in transportation, vehicle emissions have gradually become a significant factor in urban
air quality and global climate change. The combustion of fossil fuels such as gasoline and
diesel not only releases a substantial amount of carbon dioxide, contributing to tailpipe gas
emissions, but also generates other harmful substances, negatively impacting air quality
and human health.
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The emission characteristics of vehicles in plateau and high-altitude regions are influ-
enced by geographical and meteorological conditions, leading to significant differences
compared to low-altitude areas: (1) Effect of Oxygen Concentration: The oxygen con-
centration in high-altitude and plateau regions is relatively low, which can impact the
combustion efficiency of internal combustion engines. Vehicles may need to adjust fuel
mixtures and air–fuel ratios to accommodate lower oxygen levels, or incomplete combus-
tion and increased emissions may result. (2) Impact of Temperature and Atmospheric
Pressure: High-altitude and plateau regions generally experience lower temperatures and
atmospheric pressure. This can cause variations in the combustion process, affecting engine
performance. Vehicles may require special engine adjustments and control systems to adapt
to these changes. (3) Engine Load Variation: In high-altitude areas, engines may need to
bear greater loads to overcome changes in elevation. This could lead to engines operating
at higher loads, producing more exhaust gases and particulate matter. (4) Steep Inclines:
High-altitude regions often feature steep inclines, requiring vehicles to exert more power
when climbing. To cope with this situation, engines may need more fuel, contributing
to increased emissions. (5) Increased Use of Braking Systems: In high-altitude regions,
due to the unique nature of mountainous roads, vehicles may use braking systems more
frequently. This heightened usage can result in wear and tear on the braking system and
the generation of particulate matter.

Thus, due to differences in altitude, the high-altitude regions exhibit significant vari-
ations in environmental factors such as atmospheric pressure, oxygen concentration, air
humidity, and temperature compared to plain regions [1,2]. These differences can potentially
affect the combustion efficiency and emission performance of motor vehicles, thereby lead-
ing to variations in carbon emissions characteristics of motor vehicles at different altitudes.

Vehicle emission factor refers to the amount of pollutants released into the atmosphere
by vehicles during the combustion of fuel, typically expressed per unit of distance traveled
or per unit of fuel consumed. The study of motor vehicle tailpipe gas emission factors
in high-altitude areas has gained widespread attention in recent years. Researchers have
estimated the tailpipe gas emission factors of motor vehicles in high-altitude regions
through field measurements and simulation experiments [1]. These studies have found
that due to the different climatic conditions in high-altitude areas, motor vehicles exhibit
lower combustion efficiency, resulting in relatively higher tailpipe gas emission factors [2].

Furthermore, the influencing factors behind the high values of motor vehicle tailpipe
gas emission factors in high-altitude areas have been systematically studied. Firstly, climate
conditions play a significant role, as the thin oxygen and low temperatures in high-altitude
areas can affect the combustion efficiency of motor vehicles, leading to increased carbon
emissions [3,4]. Secondly, road conditions are a contributing factor, as high-altitude areas
often have relatively poor road conditions with rugged terrain and steep slopes, which can
increase energy consumption and emissions from motor vehicles [5,6]. Thirdly, fuel quality
is another important factor, as it has a significant impact on the combustion efficiency and
carbon emissions of motor vehicles [7,8]. However, there is still a lack of quantitative analy-
sis on the coupling relationship between motor vehicle tailpipe gas emission factors, and
vehicle driving characteristics and environmental conditions in high-altitude areas. This
limitation hinders the development of energy-saving and emission reduction policies for
motor vehicles in high-altitude regions, as well as the optimization of automobile designs.

Therefore, this study utilized a Portable Emission Measurement System (PEMS) to
conduct actual testing experiments on the CO2, CO, and NOx emission factors of diesel-
powered and gasoline-powered vehicles in the Qinghai–Tibet Plateau region of China,
at altitudes ranging from 2270 to 4540 m. The influencing factors of CO2, CO, and NOx
emission factors were systematically investigated, including vehicle driving characteristics,
atmospheric pressure distribution, and temperature distribution across different altitude
ranges. By comparing the CO2, CO, and NOx emission characteristics of representative
vehicle models at different altitudes, a comprehensive understanding of the emission char-
acteristics and influencing factors of motor vehicles in high-altitude areas can be obtained,



Atmosphere 2023, 14, 1739 3 of 13

providing important evidence for improving environmental quality and formulating rel-
evant policies. Furthermore, this research can serve as a reference for vehicle pollution
control in other plateau regions.

2. Materials and Methods
2.1. Testing Equipment

Vehicle onboard emission testing is the direct installation of a PEMS inside a vehicle
during actual road driving. It collects motor vehicle driving parameters and pollutant
emission concentrations on a per-second basis, providing reliable data for the analysis of
motor vehicle exhaust emission characteristics. Onboard testing, as an emerging method
for motor vehicle exhaust testing in recent years, utilizes onboard exhaust emission testing
instruments to obtain dynamic pollutant emission data from vehicles during actual road
driving [9–11]. It has the advantages of responsiveness, shock resistance, real-time data
acquisition, and stability [12,13]. Its benefit lies in the ability to obtain pollutant emission
information under real road driving conditions, thus providing reliable data for the analysis
of motor vehicle exhaust emissions.

This study employed the SEMTECH-DS onboard emission testing instrument to
conduct tests on the gaseous pollutants (CO, CO2, and NOx, etc.) emitted by vehicles
on actual roads. The SEMTECH-DS is a high-precision and integrated onboard exhaust
analysis system manufactured by SENSORS company in the United States. It mainly
consists of the SEMTECH-DS onboard exhaust analyzer (Figure 1a), SEMTECH-EFM3
onboard exhaust flow meter (Figure 1b), environmental sensors, GPS module, and other
components. The specification of SEMTECH-DS on-board vehicle emission analyzer is
shown in Table 1.
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Figure 1. The SEMTECH-DS onboard emission testing instrument. (a) the SEMTECH-DS onboard
exhaust analyzer, (b) the SEMTECH-EFM3 onboard exhaust flow meter.

Table 1. The specification of SEMTECH-DS on-board vehicle emission analyzer.

Test Item Measurement
Range Resolution Accuracy

CO 0~8% 10 ppm ±3% of reading or 50 ppm
CO2 0~20% 0.01% ±3% of reading or ±0.1%
NO 0~2500 ppm 0.1 ppm ±3% of reading or 15 ppm
NO2 0~500 ppm 0.1 ppm ±3% of reading or 10 ppm
O2 0~25% 0.1% ±1% oxygen

The SEMTECH-DS host has dimensions of length 432 mm, width 549 mm, and height
355 mm. To facilitate more precise measurements, the SEMTECH-DS was placed in the
trunk of the test vehicle. Exhaust gases were connected to the flow meter of the SEMTECH-
DS through semi-rigid, high-temperature-resistant, and stable material pipes. The sampling
gas was transported to the onboard SEMTECH-DS analyzer host via threaded connection
interfaces, connecting the sampling tube for analysis.
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2.2. Testing Vehicle Model

Through the analysis and investigation of traffic statistics data, diesel-powered vehicles
and gasoline-powered vehicles are the two most common types of motor vehicles on the
roads in the Qinghai–Tibet Plateau region. Therefore, this study selected two types of
vehicles with high ownership and activity levels as representative vehicles for onboard
testing. These vehicles include a light-duty diesel vehicle (LDDV) that meets the China
National IV emission standard (Figure 2a) and a light-duty gasoline vehicle (LDGV) that
meets the China National V emission standard (Figure 2b). Among them, the Jiangling
Transit is equipped with a turbocharged diesel engine, with a fuel efficiency of 7.6 L/100 km
and an engine condition indicating a total mileage of 138,404 km, with regular maintenance
performed annually. The Dodge Journey, on the other hand, features a naturally aspirated
gasoline engine, achieving a fuel efficiency of 9.6 L/100 km. Its engine condition shows a
total mileage of 140,778 km, with regular maintenance conducted each year. Characteristics
of test vehicles in this study can be found in Table 2.
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Table 2. Characteristics of test vehicles in this study.

Number Brand Fuel Total Mass
(kg)

Displacement
(L)

Emission
Standard

Mileage
(km)

Vehicle
Type

Intake
Method

a Jiangling
Transit Diesel 3510 2.77 China IV 138,404 Light Truck Turbocharged

b Dodge
Journey Gasoline 2404 2.36 China V 140,778 Compact

SUV
Naturally
Aspirated

The LDDV employs Selective Catalytic Reduction (SCR) post-treatment technology,
while the LDGV utilizes three-way catalytic post-treatment technology, both of which
comply with relevant national standards. The National IV emission standard for motor
vehicles specifies that HC emissions should be below 0.1 g/km, CO emissions below
1.0 g/km, NOx emissions below 0.08 g/km, with no PM requirement. The National
V emission standard for motor vehicles specifies that HC emissions should be below
0.068 g/km, CO emissions below 1.0 g/km, NOx emissions below 0.06 g/km, and PM
emissions below 4.5 mg/km. During the experimental process, the vehicles carried three
passengers and testing instruments. The payload of the vehicles was kept the same for both
experiments, with only the vehicle’s own weight differing. Therefore, the experimental
process has effectively controlled the impact of vehicle payload variations.

2.3. Testing Route

Figure 3 illustrates the selected test route in this study. The starting point is Chengxi
District, Xining City, Qinghai Province (Altitude: 2270 m), and the endpoint is the toll
station in Maduo County, Golog Prefecture (Altitude: 4540 m). The total distance is 467 km,
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with an altitude difference of approximately 2400 m. Each segment of measurement in this
study was performed in the range of the altitude 2270–4540 m. This test route includes
major road types in high-altitude areas and adequately reflects the actual driving conditions
of vehicles. It also incorporates altitude and terrain changes to characterize the impact of
altitude and topography on motor vehicle CO2, CO, and NOx emissions.
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2.4. Quality Control and Assurance

PEMS began sampling and measuring exhaust parameters and recording environmen-
tal parameters before the vehicle started. The vehicle’s driving speed and location were
measured and recorded using GPS. Throughout the testing period, continuous exhaust
sampling and recording of environmental data were conducted. Exhaust sampling also
continued when vehicle was idling. Prior to each test, the SEMTECH-DS was preheated
for approximately 60 min, and zeroing and calibration operations were performed using
high-purity N2 and various gaseous pollutant standard gases to ensure the accuracy of
the test results. During the testing process, the analyzer’s operational status was checked
every hour to confirm its proper functioning. The data recorded during these checks were
not used for emission calculations. The emission factor calculation formula is shown in
Equation (1).

EFp =
∑T

t=1 ERp,t

L
(1)

where EFp represents the pollutant emission factor in grams per kilometer (g/km); ERp,t is
the emission rate of pollutant p at time t in grams per second (g/s); T is the travel time; L is
the corresponding travel distance in kilometers (km).

At the end of the experiment, instrument calibration was repeated, and sufficient time
was allocated to ensure the responsiveness of the PEMS. LDDV and LDGV traveled at the
same speed across all altitudes, with an average driving speed of approximately 75 km/h
for both vehicles. During testing, data were collected at 1 s intervals for a duration of 12 h
and a distance of 467 km.

3. Results and Discussion
3.1. Emission Factors for Test Vehicles Based on Varying Altitudes

This study primarily analyzes the emission factors of CO2, CO, and NOx at different
altitude ranges. Emission factors represent the pollutants emitted by motor vehicles per
unit distance traveled and provide an intuitive understanding of the relationship between
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pollutants and driving conditions [14,15]. Figure 4 shows the emission factors of CO2, CO,
and NOx for the two test vehicles at different altitude ranges. In the altitude ranges of
[2000, 2500 m), [2500, 3000 m), [3000, 3500 m), and [3500, 4000 m), the emission factors
exhibit varying degrees of differences. The CO2 emission factors for the diesel vehicle in
the four altitude ranges are: 161.83 g/km, 169.44 g/km, 191.84 g/km, and 195.54 g/km;
the CO emission factors are: 0.59 g/km, 0.57 g/km, 0.64 g/km, and 0.77 g/km; the NOx
emission factors are: 4.61 g/km, 5.63 g/km, 5.66 g/km, and 6.58 g/km. For the gasoline
vehicle, the CO2 emission factors in the four altitude ranges are: 161.66 g/km, 164.86 g/km,
180.26 g/km, and 181.98 g/km; the CO emission factors are: 0.96 g/km, 0.76 g/km,
1.06 g/km, and 0.95 g/km; the NOx emission factors are: 0.16 g/km, 0.15 g/km, 0.25 g/km,
and 0.12 g/km. The vehicles moved at the same speed in all the altitude ranges.
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Among them, the CO2 emission factors for both vehicles show an upward trend
with increasing altitude. The increase in emission factors for the diesel vehicle is 4.5%,
11.6%, and 1.9% in the respective altitude ranges, while for the gasoline vehicle, it is
1.9%, 8.5%, and 9.5%. The increasing trend of CO and CO2 emission factors is generally
consistent with the magnitude of altitude increase. The variation trend in NOx emission
factors in different altitude ranges is slightly different. Due to the inconsistent impact of
altitude on the combustion process of the engine, the NOx emission of the diesel vehicle
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does not continuously increase with altitude but reaches a peak in the altitude range of
[2500, 3000 m), while showing fluctuating changes in the other three altitude ranges. In
the altitude range of 2000–400 m, the variation in air humidity ranged from 28.7% to
9.2%. Additionally, with the increase in altitude, there was a stable decreasing trend in
air humidity. Increasing air humidity lowers the combustion temperature of the engine,
resulting in smaller NOx emission factors at lower altitudes. In this experiment, the NOx
emission factor of LDDV significantly increased with the elevation, highlighting that air
humidity is a major influencing factor for the NOx emission from the LDDV. In previous
PEMS studies conducted at altitudes exceeding 2 km, a common observation was the
consistent increase in CO2, CO, and NOx emission factors with the elevation. Moreover,
as the altitude rises, the magnitude of this increase becomes more pronounced. However,
in our study, the emission factor for CO demonstrated an overall fluctuating pattern.
The numerical ranges of CO2, CO, and NOx emission factors in this study are essentially
consistent with those from previous PEMS tests conducted at altitudes exceeding 2 km [3–7].

3.2. Influence of Varying Altitudes on the Emission Factors
3.2.1. Effects of Driving Characteristics

Figures 5 and 6 illustrate the coupled effects of speed and acceleration on CO2 emis-
sions for diesel and gasoline vehicles at different altitudes. The results indicate that motor
vehicle CO2 emissions exhibit a complex functional relationship with speed and accelera-
tion, which also vary with changes in altitude ranges. The figures represent instantaneous
emission conditions, hence the use of units in g/s.
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As shown in Figures 5 and 6, carbon emissions of vehicles in different altitude ranges
are directly proportional to the driving speed, with a more pronounced effect during decel-
eration. However, the relationship becomes more complex when considering acceleration.
At the same speed, the carbon dioxide emission is inversely proportional to the acceler-
ation, meaning that the highest CO2 emissions occur during deceleration or braking at
high speeds. This relationship becomes more pronounced with increasing altitude. This
phenomenon is primarily due to the decreased combustion efficiency caused by the high-
altitude environment. In high-altitude regions, the thin air results in insufficient oxygen
supply for fuel combustion, leading to a decrease in combustion efficiency [16,17]. This
leads to an increase in unburned carbon black and other harmful substances, resulting in a
decrease in the proportion of carbon dioxide emissions. During high-speed operation, the
engine requires more fuel consumption to maintain the same speed and power output, thus
generating more carbon dioxide emissions [18,19]. However, during negative acceleration,
although the engine continues to run, there is a reduced fuel supply, resulting in a leaner
air–fuel mixture and more complete combustion. Particularly during high-speed driving,
the engine needs to provide stable hydraulic pressure for the brakes and tires, leading to
more complete combustion and increased production of carbon dioxide as a byproduct of
complete combustion. As altitude increases, the oxygen content decreases, amplifying this
phenomenon.

Compared to diesel vehicles, gasoline vehicles exhibit a more complex relationship
between CO2 emissions, speed, and acceleration (Figure 6). Overall, the carbon emission
patterns of gasoline vehicles are similar to those of diesel vehicles, but there are differences
in emission factors under different altitude ranges and driving conditions. For example,
in the altitude range of 2000–2500 m, there is a peak in CO2 emissions when the vehicle
operates under high-speed and high-acceleration conditions. In contrast, in the altitude
range of 3000–4000 m, emissions are lower during medium- to low-speed driving conditions
(speed < 80 km/h), and the impact of acceleration is relatively smaller.

These differences are attributed to the different intake methods of the engines. The
gasoline engine used in the experiment adopts a ‘naturally aspirated’ intake method, which,
compared to the ‘turbocharged’ engine of the diesel vehicle, has lower intake pressure and,
consequently, lower output power and combustion efficiency. In the low-speed driving
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range, the CO2 emissions are also lower for gasoline vehicles compared to diesel vehicles.
However, turbocharged engines have a more complex structure, which can increase fuel
consumption [20]. Additionally, during low-speed driving, the turbocharger may require
time to ‘respond’ and generate sufficient pressure [21,22]. As shown in Figures 5a and 6a,
naturally aspirated gasoline vehicles have faster acceleration response times in low-altitude
regions, resulting in higher carbon emissions.

In general, diesel vehicles have higher emission rates compared to gasoline vehicles,
which are determined by the fuel type and engine condition. In terms of fuel, diesel has
a higher density than gasoline, and diesel fuel has a higher C/H ratio in its chemical
composition. As a result, diesel combustion generates more CO2 emissions. Additionally,
diesel engines are generally larger and heavier than gasoline engines, requiring more fuel
consumption to provide sufficient power, which also leads to higher carbon emissions.

3.2.2. Effects of Atmospheric Pressure and Temperature

Figure 7 illustrates the variations in atmospheric pressure and environmental temper-
ature across different altitude ranges. The PEMS tests for the LDDV and the LDGV started
in the early morning and continued for 12 h, resulting in a gradual increase in temperature
over time. Due to the different dates of the two tests, the distribution of specific meteoro-
logical parameters varies, but the overall trend remains essentially consistent. As altitude
increases, the air pressure and oxygen concentration decrease. This results in insufficient
oxygen supply during the engine combustion process, requiring increased throttle input to
maintain stable vehicle speed, leading to higher fuel consumption and increased pollutant
emissions [23,24]. Additionally, the emission of NOx is influenced by the temperature gen-
erated during the combustion process. As altitude rises, the air becomes thinner, reducing
the cooling effect and raising the maximum temperature inside the combustion chamber.
Consequently, the emission of NOx exhibits a unimodal or oscillating pattern within a
certain range.
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As the altitude increases, the CO2 and CO emission factors of diesel vehicles gradually
increase, while the NOx emission factor shows a fluctuating trend. Specifically, for diesel
vehicles, the CO2 emission factor increases by approximately 20% from the lowest to the
highest altitude point. The NOx emission factor reaches its peak in the altitude range
of [2500, 3000 m], while the remaining three altitude ranges exhibit fluctuating trends.
On the other hand, gasoline vehicles show smaller increases in CO2 and CO emission
factors compared to diesel vehicles, while the NOx emission factor demonstrates irregular
fluctuations. Specifically, for gasoline vehicles, the CO2 increases by less than 15% from
the lowest to the highest altitude point. The NOx emission factor also exhibits irregular
fluctuating changes.

Figure 8 shows the coupled impact of meteorological factors (temperature, atmospheric
pressure) on the CO2 emission rate of vehicles. The results indicate that both types of
vehicles exhibit similar patterns of CO2 emissions influenced by meteorological factors, with
diesel vehicles generally emitting slightly more CO2 than gasoline vehicles. Specifically, a
decrease in atmospheric pressure significantly increases CO2 emissions, while temperature
variations have a relatively smaller impact on CO2 emissions.
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In high-altitude regions, the reduction in atmospheric pressure leads to a decrease
in air density, resulting in reduced collisions between oxygen molecules and fuel during
the combustion process, thereby exacerbating incomplete combustion [6,25]. During high-
speed operation, the engine requires more fuel to maintain the same speed and power
output, resulting in higher CO2 emissions. Additionally, an increase in temperature intensi-
fies the combustion reaction, leading to an increase in CO2 emissions. However, at high
altitudes, the impact of temperature on CO2 emissions generated by vehicle combustion
is relatively small due to the lower temperatures. As shown in the graph, under lower
temperature conditions, temperature variations still have a certain influence on CO2 emis-
sions, although they are not the primary factor. The fact that the boundaries of the color
blocks in the figure are all vertical indicates that CO2 emissions are primarily influenced
by atmospheric pressure. The impact of temperature variations is confined within the
influence of atmospheric pressure.

In addition, the variation trend of emission factors between vehicles is mainly at-
tributed to the differences in fuel type and intake method. Specifically, gasoline combustion
requires a proper mixture of oxygen and fuel, followed by ignition through a spark plug to
generate energy [26]. On the other hand, diesel combustion involves direct fuel injection
into the combustion chamber at high temperature and pressure, resulting in self-ignition
and heat generation [27,28]. Therefore, at different altitudes, as the oxygen concentration
decreases, the growth rate of CO2 emissions from gasoline vehicles slows down due to
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limitations in the combustion process. Gasoline fuel itself has a higher oxygen content,
requiring less oxygen during combustion, making it less susceptible to the influence of
altitude on oxygen concentration and resulting in a slower increase in CO2 emissions
compared to diesel vehicles. Conversely, the combustion method of diesel vehicles leads to
a stronger dependence on environmental conditions. As altitude increases, diesel vehicles
require higher fuel consumption and increased turbocharging to compensate for the lower
oxygen concentration. Consequently, the growth rate of CO2 emissions from diesel vehicles
accelerates. Additionally, the lower NOx emissions in gasoline vehicles are attributed to
their relatively lower combustion temperatures and the use of devices such as three-way
catalytic converters to effectively control NOx emissions.

4. Conclusions

This study has investigated gas emission rates based on different elevation ranges
using a portable emission measurement system. The effects of driving characteristics and
environmental factors on the emission rates were examined on gasoline and diesel-powered
vehicles. Actual testing experiments were conducted on diesel and gasoline-powered
vehicles at altitudes ranging from 2270 m to 4540 m in the Qinghai–Tibet Plateau region of
China. CO2, CO, and NOx emission factors at different altitudes were calculated, and a
comprehensive analysis was performed considering factors such as vehicle type, engine
conditions, and environmental factors.

The results showed that the CO2, CO, and NOx emission factors for diesel vehicles
varied in the range of 161.83–195.54 g/km, 0.59–0.77 g/km, and 4.61–6.58 g/km; the
population means with 90% confidence intervals were 178.54, 0.68, and 5.60 g/km, respec-
tively. For gasoline vehicles, the CO2, CO, and NOx emission factors varied in the range
of 161.66–181.98 g/km, 0.95–1.06 g/km, and 0.12–0.25 g/km; the population means with
90% confidence intervals was 171.82, 1.01, and 0.19 g/km, respectively. In terms of driving
characteristics, as the driving speed of motor vehicles increased, the CO2 emissions also
increased, while their relationship with acceleration followed a quadratic function. The
CO2, CO, and NOx emission factors of diesel vehicles were higher than those of gasoline
vehicles, and their emissions increased with higher altitudes. Atmospheric pressure was
found to be the primary environmental factor influencing CO2, CO, and NOx emissions.

Overall, this study provides a comprehensive understanding of the emission char-
acteristics and influencing factors of motor vehicles in high-altitude areas by comparing
the CO2, CO, and NOx emission rates of typical vehicle models at different altitudes. This
information can serve as an important basis for improving environmental quality and
formulating relevant policies. In response to the lower oxygen concentration conditions
in high-altitude areas, the selection of engines with characteristics such as turbocharging,
small displacement, diesel, and multiple cylinders is more suitable for motor vehicles.
Turbocharged engines, by providing more air into the cylinders, compensate for the lower
oxygen concentration at high altitudes, contributing to increased power output and com-
bustion efficiency. Smaller displacement engines are generally more efficient, adapting
more easily to the thin air conditions in high-altitude areas. Diesel engines, known for
higher torque, are well-suited for climbing and high-load situations in high-altitude re-
gions. Multiple-cylinder engines typically exhibit superior performance at high altitudes,
providing smoother power output and reducing the potential power loss that may occur in
such environments.
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