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Abstract: We apply extreme value theory (EVT) to study the daily precipitation and temperature
extremes in the Calabria region (southern Italy) mainly considering a long-term observational dataset
(1990–2020) and also investigating the possible use of the ERA5 (ECMWF Reanalysis v5) fields. The
efficiency of the EVT applied on the available observational dataset is first assessed—both through a
punctual statistical analysis and return-level maps. Two different EVT methods are adopted, namely
the peak-over-threshold (POT) approach for the precipitation and the block-maxima (BM) approach
for the temperature. The proposed methodologies appear to be suitable for describing daily extremes
both in quantitative terms, considering the punctual analysis in specific points, and in terms of the
most affected areas by extreme values, considering the return-level maps. Conversely, the analysis
conducted using the reanalysis fields for the same time period highlights the limitations of using these
fields for a correct quantitative reconstruction of the extremes while showing a certain consistency
regarding the areas most affected by extreme events. By applying the methodology on the observed
dataset but focusing on return periods of 50 and 100 years, an increasing trend of daily extreme
rainfall and temperature over the whole region emerges, with specific areas more affected by these
events; in particular, rainfall values up to 500 mm/day are predicted in the southeastern part of
Calabria for the 50-year-return period, and maximum daily temperatures up to 40 ◦C are expected
in the next 100 years, mainly in the western and southern parts of the region. These results offer a
useful perspective for evaluating the exacerbation of future extreme weather events possibly linked
to climate change effects.

Keywords: extreme weather; extreme value theory; temperature; precipitation; climate change; ERA5

1. Introduction

The latest IPCC (Intergovernmental Panel on Climatic Change) report published
in 2022 (IPCC Sixth Assessment Report (AR6)) [1] describes an unequivocal increase of
the Earth’s surface temperature over the next decades. Particular attention in the report
was given to extreme weather and climate phenomena, whose increased frequency and
intensity have the potential to cause widespread and pervasive effects on ecosystems and
infrastructure [1]. Furthermore, recent works show that significant information about
multi-decade climate change can be obtained by quantifying shifts in the overall probability
distribution of daily weather conditions—that is, by using the study of extreme events as a
magnifying lens for understanding climate change [2–7].

The variation in both frequency and intensity of extreme events has a strong spatial
dependence, [8,9]. The intensification of the hydrological cycle due to global warming
in the Mediterranean area [10] has raised the need to conduct several studies based on
future climate projections. These studies mainly reveal that the occurrence of extreme
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precipitation in a (future) warmer climate can possibly increase [11], even if the mean
(light/medium) precipitation amount is predicted to decrease in various zones [12,13].
Similar considerations can be applied for temperature extremes, clearly more linked to the
expected global warming. Heatwaves in the Mediterranean Basin have been assessed to
occur more frequently in recent decades [14,15].

Based on regional climate model simulations under the more pessimistic greenhouse
gas emission scenario (RCP8.5), the authors found an increase of heatwaves over the
Mediterranean for the future and that the intensity of these events will be strongest in
the southern and eastern part of the Basin. The spatial dependence of extreme events
reveals the main limitation of a statistical approach to extreme climate events, namely the
availability and quality of meteorological data. In this work, temperature and precipitation
data for a period longer than 30 years were used for the first time in southern Italy—the
Calabria region in particular.

The present study focuses on the Calabria region (southern Italy), in the central
Mediterranean, an area particularly prone to heavy rain events and heatwaves. The region
has a complex orography with several mountain chains and a marked land–sea contrast that
leads to a coexistence of different local atmospheric circulation regimes. Several papers have
dealt with the topic of severe weather events in the Calabria region—in particular, heavy
rains—all adopting statistical/climatological approaches [16–18] and through in-depth
analyses of remarkable extreme episodes [19–22] in order to study their characteristics and
dynamics.

The study of [16], in particular, showed a first exploratory result on a 30-year (1978–2007)
homogeneous precipitation database for the Calabria region (daily precipitation/88 rain
gauges), to assess the key roles of the orography and the sea as well as the seasonal
dependence of rainfall unequivocally linked to the synoptic scale conditions. As a general
deduction, despite yearly precipitation being larger on the west side of the region, the most
intense rainstorms are more frequent on the east side.

In continuation of a work [23] that provided a first classification of atmospheric
patterns for the Calabria region, a recent study [18] classified the main precipitation systems
through the analysis of selected heavy rainfall events, considering a high-resolution rain
gauge network. This work also assessed the relationships between the selected events and
the main synoptic atmospheric patterns derived by the ERA5 Reanalysis dataset.

The works that have dealt with (extreme) temperatures in Calabria are few. Among
them, considering a long-time period of monthly mean values and extreme daily tem-
peratures in southern Italy, [24,25] revealed a positive trend in spring and summer and
a negative trend in the autumn–winter period; specifically, regarding the extreme tem-
peratures, the authors observed an increase in the frequency and intensity of the highest
temperatures and some negative trends for the lowest ones, i.e., a major (minor) probability
of heatwaves (cold extremes) throughout the years.

Although climatological studies are mainly performed using global or regional climate
models, a common approach to study extreme weather events is the adopting of statisti-
cal procedures, such as the statistical extreme value theory (EVT), on different datasets.
The EVT has emerged as one of the most important statistical theories for climate ob-
servations and for understanding the outputs of numerical models. A challenge already
anticipated by Wigley [26] and later taken up in a commentary by Coley [27] indicates the
great potential for applications of extreme value theory on climate change.

One of the most important results of EVT, which differentiates it from other statistical
approaches, is its ability to estimate the distribution of extreme values using the asymptotic
argument. The origins of the asymptotic characterisation of the maximum sample go
back to Fisher and Tippett [28]. The first formalisation of a model of extreme events was
proposed by Jenkinson [29,30], showing that there are only three families of possible limit
laws for the distribution of extremes, namely the Gumbel, Frechet and Weibull distributions.
These three distributions can be expressed in a single distribution function known as the
“generalized extreme value” distribution (GEV) [31].
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EVT is currently used in several fields and particularly in the analysis of environmental
extreme events, e.g., extreme value theory provides a solid theoretical basis for the statistical
modelling of extreme hydrological events due to its many applications on floods [32–34].
Several works have used EVT to investigate atmospheric phenomena in order to understand
climate extremes [35–37], hydrology [38,39] and oceanography [40,41]. There are also
several works using EVT on rainfall datasets [42–45] and on temperature extremes [46–49].

Observational datasets represent the best data source for performing reliable statistical
studies; at the same time, the availability of long-term data series is often a problem
in several zones, as there are still large areas not sufficiently covered by measurements.
In this context, the use of regularly gridded data, such as those derived from modelling
products (reanalysis), would help as they are not affected by problems of spatial/temporal
availability. Despite this, previous works demonstrated the limited skill of the reanalysis in
correctly reproducing extreme values when compared with other datasets (observations
in particular).

Ref. [50] considered ERA5 hourly precipitation over Europe to study extreme val-
ues and found that reanalysis represents a good reference for general mean statistics
(e.g., spatial patterns of annual precipitation and multi-year cycles of monthly precipi-
tation); however, the coarser resolution of the dataset tends to generate a smoothing of
extreme precipitation, confirming the need for adopting highly localised data and/or dy-
namical downscaling procedures. A similar study, based on Germany [51] and considering
the precipitation field, assessed a general underestimation of precipitation of various grid-
ded data with respect to observations; the reanalysis datasets (ERA5, in this case) produced
generally worse extreme value statistics of daily precipitation—in particular, failing in
reproducing the accurate timing of observed daily precipitation extremes.

Concerning extreme temperatures over Europe, [52] also considered ERA5 fields; while
the reanalyses captured the mean temperatures very well, the results over certain European
sub-regions (e.g., the Alps and the Mediterranean, in particular) revealed that ERA5
underestimated temperatures. The main differences with observations can be attributed,
according to the authors, to the altitude differences between ERA5 grid points and stations.

This work presents the first use of the EVT (extreme value theory) to study temperature
and heavy rain in the Calabria region considering a long-term observational dataset and
also investigating the possible use of gridded reanalysis data. The paper is organised
as follows. Information about the study area and the adopted data, both observations
and reanalysis fields, are provided in Section 2. The extreme-value-theory methods are
described in Section 3. Section 4 reports the results and the general discussion about the
reliability of the proposed EVT methods on extreme temperature and precipitation fields
using both observations and gridded data. Our conclusions are summarised in Section 5.

2. Data and Study Area

The study area was the Calabria Peninsula, in southern Italy. The region is surrounded
by the Tyrrhenian Sea (west) and by the Ionian Sea (east and south). The Apennines
Mountains ideally separate the region into two sectors, crossing it from north to south more
or less symmetrically; a maximum elevation of about 2000 m is reached. Daily extremes
were computed considering a wide (regional) network of rain-gauges and temperature
sensors (see next paragraph). State-of-the-art atmospheric reanalyses were also considered
to evaluate the ability of the modelled gridded data to reproduce extreme daily values
over Calabria.

2.1. Observational Dataset

Observed data are provided by ‘Centro Funzionale Multirischi della Calabria’ of the
‘Agenzia Regionale per la Protezione dell’Ambiente della Calabria (Arpacal)’
(http://www.cfd.calabria.it, accessed on 1 March 2022). The whole dataset of daily tem-
perature and precipitation data from 1990 to 2020 (31 years), distributed quite uniformly
over the whole region, was initially considered. Although the data are quality-controlled

http://www.cfd.calabria.it
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by the centre before being granted for research activities, we also adopted further selection
criteria that permitted to retain 38 points/stations, starting from a larger number (254 rain
gauges and 137 temperature sensors).

In particular: (i) each station was equipped with both a rain gauge and thermometer
and (ii) each station had possible missing data of less than 3 years, even if non-consecutive,
considering the whole 31-year period. Using these criteria, the percentages of missing data
were 3.5% for temperature and 3.7% for precipitation. Starting from the hourly data, we
computed the daily accumulated (0–24 h) precipitation and the daily maximum (Tmax),
minimum (Tmin) and mean (Tmean) temperatures. The spatial distribution of the selected
stations is shown in Figure 1. In the figure, eight zones in which the region has been ideally
divided are also visible; the spatial extensions of these zones are comparable, and they
divide the Calabria region more or less uniformly into the western (zones 1, 2, 3 and 4) and
eastern (zones 5, 6, 7 and 8) side as well as in the northern (zones 1–5) and southern side
(zones 4–8).

We used this subdivision as well, following that proposed by the Calabrian Regional
Civil Protection (https://www.protezionecivilecalabria.it, accessed on 1 March 2022), which
is responsible for disseminating weather-marine warnings on the region, and in order to
make our results easily accessible (and usable) to the bodies responsible for the managing
of weather alerts and emergencies.

From each of these zones, one station was selected and taken as representative of the
area (see Table 1) considering the stations with less missing data and closest to the ERA5
gridded points. For each of these eight stations, the extreme values of daily temperature
and precipitation were computed following the extreme value theory (see Section 3). In the
same table, for each station, we report the average mean temperature (Tavg) and average
annual precipitation (ANP), considering the 31-year period, in order to provide information
about the climatic conditions of the different stations/zones.
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Figure 1. (a) Map of Italian peninsula; (b) spatial distribution of observations and reanalysis for
the Calabria region: observation points (38; blue circles) and ERA5 points (30; red circles). Filled
circles indicate the selected points for each zone. The black numbers indicate the eight climatic zones
(delimited by dotted contours). The orography of the regions and some locations cited in the text are
also shown.
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Table 1. The eight zones and the related representative stations/ERA5 points used in the analysis.
Longitude, latitude and altitude (only for observational stations) are also reported. The positions of
each station for each zone are identified by the blue filled circles in Figure 1.

Zone Station Name Lon-Lat Lon-Lat (ERA5) Alt. (msl) Tavg (◦C) ANP (mm)

1 Castrovillari 16.25–39.77 16.15–39.80 353 16.3 646

2 Montalto U. 16.13–39.40 16.15–39.30 468 15.7 1459

3 Nicastro 16.30–38.99 16.40–39.05 200 14.5 1139

4 Reggio Calabria 15.65–38.11 15.65–38.05 15 18.7 591

5 Acri 16.39–39.48 16.40–39.55 790 13.2 901

6 Crotone 17.13–39.09 17.15–39.05 5 17.9 630

7 Palermiti 16.45–38.75 16.40–38.80 480 14.6 1230

8 Serra S. Bruno 16.32–38.57 16.40–38.55 790 11.1 1630

2.2. ERA5 Reanalysis

With the aim of evaluating the skill of large-scale atmospheric reanalyses in reproduc-
ing daily extreme values, we used the global climate monitoring dataset ECMWF ReAnaly-
sis (ERA5; [53]). The ERA5 fields are available hourly on regular latitude–longitude grids at
0.25◦ × 0.25◦ resolution. The fields taken into account are the hourly total precipitation and
the 2 m temperatures for the whole 31-year period. Starting from these data, the daily ones
were computed. The points of the ERA5 dataset are shown in Figure 1. As of the coarse hor-
izontal spatial resolution, the number of ERA5 points is limited (about 30 points on the whole
region, clearly uniformly arranged) but comparable with the retained measuring stations.

3. Methods
3.1. Extreme Value Theory

We analysed extreme daily temperature and precipitation using the statistical extreme
value theory (EVT). The theory is often applied to quantify the stochastic behaviour of
unusually large (i.e., extreme) phenomena. The procedure for establishing what is meant
by extreme may be different. In this paper, two different approaches were used for the
two different temperature and rainfall datasets. The motivation is inherent in the type of
signal for the two different cases. Whereas the temperature daily data show a strongly
periodic pattern dominated by seasonality, the rainfall data are more variable with non-
regular peaks.

3.1.1. Peak Over Threshold (POT)

In the POT approach, an observation is treated as an extreme if an associated measure-
ment exceeds a predetermined threshold. For independently and identically distributed
random observations {X1, X2, . . . , Xn}, the distribution function of exceedances X over
a threshold u is Fu(x) = Pr(X − u ≤ x|X > u) [31]. With a high enough threshold u,
the Fu(x) can be fitted by

G(x) = 1−
(

1 +
ξx
σ̂

)− 1
ξ

, (1)

defined on {x : x > 0 and (1 + ξx/σ̂) > 0}, where

σ̂ = σ + ξ(u− µ) .

The family of distributions defined by Equation (1) is called the generalized Pareto
distribution (GPD). Moreover, the parameters of the generalized Pareto distribution of
threshold excesses are uniquely determined by those of the associated GEV distribution of
block maxima. In particular, the parameter ξ in (1) is equal to that of the corresponding
GEV distribution [31].
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In this work, the threshold approach was used to analyse the daily rainfall. This choice
is due to the fact that the rainfall dataset is significantly more irregular than the temperature
signal, and the influence of seasonality is significantly reduced. Due to its irregularity,
the use of block maxima for rainfall is an expensive approach to the analysis of extreme
values as many extreme events are discarded [31,54].

The threshold approach we described has an obvious dependency on the choice
of threshold itself. Ref. [31] asserted that the threshold must be “as large as possible”,
indicating some methods for determining this threshold from the data itself and not a
priori. The first consequence of this approach is that the threshold u is not the same for
every station but depends on the individual signals.

To determine the thresholds, in this work, we used the procedure known as “graphical
method” [31]. This method consists of observing the evolution of the parameters σ and ξ
as the threshold u changes. The choice of the threshold will be the highest value for which
the parameters remain almost constant. If a GPD is used for the excesses of a threshold
u0, then the excesses of a different threshold u can also be described by a GPD. The shape
parameters of the two distributions are the same. If σu is the scale parameter for a threshold
u > u0, then

σu = σu0 + ξ(u− u0) .

The scale parameter changes with u unless ξ = 0. To avoid this problem, the scale
parameter is reparameterized as

σ∗ = σu − ξu .

This implies that σ∗ is constant with respect to u. Consequently, ξ should also be
constant with respect to u, and indeed they should be constant above u0, if u0 is a valid
threshold for the excesses that follows the GPD [31].

3.1.2. Block Maxima

In the method known as “block maxima” (BM), extremes are created by dividing
the analysis period into non-overlapping periods of the same size and then choosing the
maximum observation of each new period. The choice of the block size is crucial because
a very small block could create distortions, while, from too large a block, only certain
extreme values could be selected [31]. The choice of the block length is subject to several
considerations. Choosing a time period of one year and then extrapolating the annual
maximum eliminates the problem of seasonal periodicity that strongly influences maximum
temperatures. This choice, however, greatly reduces the number of extreme events, e.g., in
a 30-year dataset, there will be only 30 values.

On the other hand, selecting monthly maxima allows for many more points but does
not eliminate the seasonal contribution, clearly changing the distribution of extreme events.
For example, the temperature block maximum in a spring season (defined as March to May)
in the upper Midwest will most likely be the same as the May maximum, and thus the three-
month block maximum may not be better approximated than only the May maximum.
A block length of 1 year or one season has been used in a number of studies [55–57].
In other works, in an attempt to use as many points as possible and overcome the effect of
seasonality, temperature anomalies were used [58,59].

Daily anomalies are calculated as the difference between each daily temperature and
an average value. This value varies depending on the day of the year and is calculated as
the average of the daily temperatures recorded over the time interval analysed, namely
∆Ti = Ti −

〈
Ti
〉
, where

〈
Ti
〉

represents the temperature mean value for the ith calendar day.
This definition implicitly assumes the annual seasonal cycle to be constant and generated
by a set of stationary processes. The validity of this assumption is often questionable due to
the non-linear response of the Sun–Earth system. Irregularities in the seasonal cycle have
been observed as both amplitude [60] and phase variations [61–63].

Therefore, in this paper, following the ideas of Vecchio and Carbone [64], we use
a new definition of temperature anomalies based on the empirical mode decomposition
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(EMD) [65]. The EMD has been successfully used in many fields [66–68], including geophys-
ical systems [69–71]. The EMD decomposes the temperature signal into a finite number of
intrinsic mode functions (IMF) and a residual, which describes the trend, using an adaptive
basis derived from each dataset [65], i.e.,

T(t) =
m

∑
j=0

IMFj(t) + rm(t) (2)

Each IMF represents a zero-mean oscillation with amplitude and frequency modula-
tions that both depend on time [65]. For each temperature signal, therefore, it is possible
to identify the IMF representing the seasonal oscillation and subtract it from the original
signal, so that the new definition of temperature anomaly is: ∆Tj = Tj − Sj, where Sj is
the IMF that describes the seasonal oscillation, which (in our dataset) is identified for all
stations by the index j = 1 and, for simplicity, we indicate by IMF 1.

Using this definition, the monthly maximum temperatures used in the EVT analysis
maintain a satisfactory number of points and, at the same time, do not lose useful infor-
mation from the subtraction of a value set by a simple average. In Figure 2, we show the
maximum daily temperature recorded at the Crotone station (black dots); the purple signal
is the one used in the EVT analysis obtained by subtracting from the monthly maxima the
IMF 1 extrapolated from the monthly mean temperature.

Figure 2. Maximum daily temperature recorded at the Crotone station (black dots), evolution of
monthly maximum temperatures before (red line) and after (purple line) subtracting the seasonal
mode obtained with the EMD decomposition. The right y-axis shows the IMF 1 amplitude (green line).

The block maxima signal (purple line of Figure 2) can be fitted with the GEV (general-
ized extreme value) distribution:

G(x) = exp

{
−
[

1 + ξ

(
x− µ

σ

)]−1/ξ
}

, (3)

where x are the maxima, while the parameters µ, σ and ξ are free parameters of the
distribution that are constrained by the relation: 1 + ξ( x−µ

σ ) > 0. This method was applied
to the temperature signals for each station, and the results obtained are shown in the
next section.
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The choice of using the BM method on temperatures and the POT method on rainfall is,
as mentioned above, determined by the different types of data. The temperature signals are
more clustered (i.e., an extremely warm day is likely to be followed by another similar day),
and the POT method requires the exceedances to be mutually independent. The rainfall
signal is definitely more irregular and not clustered, and therefore with the BM method
one could ’miss’ some extreme values occurring at close but independent times.

4. Results and Discussion
4.1. EVT Reliability

The purpose of this section is to evaluate the reliability of the EVT on the available
datasets in order to assess the daily extreme rainfall and temperatures over the whole region.

4.1.1. Diagnostic Plots for the Selected Stations

We present the results obtained with the application of the EVT on the observational
dataset. In particular, in this section, we primarily comment on the application of the
theory on the selected eight stations previously defined. As already said, we used the POT
method for the precipitation and the BM method for the temperatures; in the following,
we use these terms to indicate the two EVT techniques applied to the two datasets. We
used two different python packages in order to apply the POT and BM methods on the
available dataset.

For the POT method, we used the software developed by [72], while for the BM
approach, we used the software developed by [73]. In Figure 3, the diagnostic plot obtained
via the application of the POT method on the rainfall data of Crotone station is reported.
This station is chosen as representative, in terms of extreme events, for zone 6; the plots for
the other zones are shown in Appendix A. The diagnostic plot is composed of four sub-plots:
the probability density function plot (PDF), the probability plot (P-P plot), the quantile plot
(Q-Q plot) and the return level plot.

The distribution of the values above the threshold is reported in the PDF plot, while
the P-P plot and the Q-Q plot are graphical methods for comparing two distributions
(theoretical and empirical), and they are basically the same plots but expressed on a
different scale; if the data are adequate to model the extreme daily values of precipitations
through the adopted theory, they have to lie on the diagonal of these plots. Through
Spearman’s correlation coefficient, we quantified this correspondence between the empirical
and theoretical return level obtaining, for the station of Crotone, a value of 0.94. The final
plot is the return level plot that gives a probabilistic estimation of the repetition of an
extreme event (see [49] for more details).

Figure 3a shows the distribution of the extreme values, extreme rainfall in this case,
above the threshold values. They are presented as excess− u0, where u0 is the threshold
value used for the station (in this case, the threshold is set to be u0 = 10 mm), and it differs
from station to station. The distribution has the maximum values located between 10 mm
and 60 mm, and it is possible to observe a long tail of values that represents extreme rainfall
events (less probable but more extreme).

Figure 3b,c permit us to assess if the adopted POT method is appropriate to describe
the considered event. In these two plots, most of the points lie to the diagonal except for
one. This point appears to be not well described by the POT model, and this could be due
to the fact that this type of event is extremely rare. A similar behaviour is also shown in
the other stations (see Appendix A) in which more points do not lie on the diagonal. It is
possible to define them as “abnormal” because they are out of description for the EVT. In
panel (d) of Figure 3, the return level plot is reported, which gives a probabilistic forecast
of extreme rainfall events based on the extreme events detected by the station.
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Figure 3. Diagnostic plot for the extreme rainfall data of the Crotone station: (a) probability density
function, (b) probability plot, (c) quantile plot and (d) return level plot.

All values (also the abnormal ones) are in the confidence interval of 2σ, and the POT
model (black solid line) seems to describe the behaviour of the data very well, except for a
few points. For these cases, the EVT theory seems to either overestimate and underestimate
some observed extreme values. In the case of the overestimation, the extreme data events
appear below the theoretical line, and we can define them as “delay” because it seems they
happen after the time expected from the theory. In the case of underestimation, the data
are located above the theoretical line, and we can define them as “advances” because they
occur before what is expected from the theory.

Figure 4 shows the diagnostic plot (obtained via the application of the BM method)
for the extreme temperature and, in this case, for the Crotone station (the plots for the other
stations/zones are reported in Appendix A). The plot composition is the same as Figure 3.
The density plot differs from that seen for the rainfall case because we used a different
approach of EVT (i.e., the BM approach). We used the GEV model, which takes into account
the maximum values of the temperature for each month of the dataset. The density plot
(Figure 4a) shows the distribution of the maximum temperature values.

The distribution does not appear symmetric; however, it exhibits a pronounced tail
in the right side of the figure. This indicates the presence of high extreme temperatures.
Figure 4b,c are similar to the plot shown for the rainfall case. Most of the points lie on the
diagonal except for a few of them, indicating that the adopted GEV approach well describes
the dataset of extreme temperature. Again, Spearman’s correlation coefficient between
empirical and theoretical return level was calculated, obtaining, for the temperatures in
Crotone, a 0.95 value. The return level plot (Figure 4d) shows a similar behaviour as the
rainfall data; however, in this case, some values do not belong to the confidence interval of
2σ. These points are probably the ”abnormal” data discussed before, and the BM method
fails in their description.
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Figure 4. Diagnostic plot for the extreme temperature data of the Crotone station: (a) probability
density function, (b) probability plot, (c) quantile plot and (d) return level plot.

As already said, we report in Appendix A the diagnostic-plots for all the other seven
stations/zones (Section 2.1) for both precipitation and temperature extremes. Considering
the other zones, the results are quite similar to zone 6. It is evident that the higher values of
extreme precipitation are detected in the zones located in the eastern side of the Calabria
region (along the Ionian sea). These zones are characterised by more extreme rainfall events,
with respect to the zones along the Tyrrhenean sea, and this is in agreement with several
previous works confirming that the east side of the region is mainly affected by higher
precipitation events. An inverse behaviour was found for extreme temperatures; from the
results obtained with the application of the BM method, the highest extreme values appear
located on the western side of the region, i.e., along the Tyrrhenian sea.

4.1.2. Return-Level Maps for the Observational Dataset

In this section, we discuss the application of the EVT method on the whole observed
dataset. The purpose of this analysis is to qualitatively compare, in terms of return periods,
the areas affected by daily precipitation and temperature extremes. Clearly, the maximum
time interval for which such a comparison can be made is 31 years (i.e., the time interval in
which the observations are available).

The return level plots give us the probability that a certain event will be expected
into a certain return period interval; this probabilistic method allows us to better identify
the regions subjected to extreme phenomena. In Figure 5a,c, we report the map of the
empirical (i.e., considering the observed daily precipitations) return level for 10 and 30 years,
respectively, while Figure 5b,d are the theoretical (i.e., applying the POT method on the
observed daily precipitations) return-level maps for 10 and 30 years, respectively. These
maps, as with all those in this section, are produced using the inverse distance interpolation
method, considering all the available points (Figure 1).
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Figure 5. Comparison between daily rainfall return-level maps for return period of 10 and 30 years.
Return-level map for the observed data (a,c) and from the POT model (b,d).

The maps have similar characteristics with the same features of daily extreme rainfall
as also anticipated in the diagnostic plots of Figure 3 (although they refer to a single station).
Comparing the 10- and the 30-year-return periods, a general increase in extreme rainfall
values is visible. These probabilistic results, based on observations, can be used to assess
the expected intensity of extreme precipitation events, providing a useful complementary
tool to climate projections and models, that hypothesise, in the coming years, an increase of
such events.

For these fixed return periods, it is easy to identify a zonal gradient of extreme
precipitation over Calabria, with the south-eastern part of the region most affected by
such events (the Ionian areas, in particular), as opposed to the north-western part. This
occurrence is found by considering only the observational data and the application of
the POT method, with values up to 300 (400) mm/day for the fixed return period of
10 (30) years.

The result is not surprising since, as said in the introduction, several studies previously
assessed how the most intense rainstorms are more frequent on the east side of the region.
In this case, and also confirmed by the aforementioned works (e.g., [16]), the role played
by the orography of the region and by the prevailing synoptic conditions associated with
extreme precipitation events in southern Italy is visible. In such situations, the presence of
a cyclonic area located in the southern Ionian Sea [23] prevails, which draws more unstable
and humid air on the Ionian coast of Calabria.

The contrast between these air masses with the terrain and the orography of the region,
in particular the Aspromonte mountain range, causes an uplift of the air masses and a
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consequent increase in convective instability conditions (see, for example, the case study
analysed in [19]), and this results in a significant amount of precipitation windward of
the orographic reliefs. In Figure 6a,c, we report the map of the empirical (i.e., considering
the observed daily maximum temperatures) return level for 10 and 30 years, respectively,
while Figure 6b,d are the theoretical (i.e., applying the BM method on the observed daily
maximum temperatures) return-level maps for 10 and 30 years, respectively.

Figure 6. Comparison between daily max temperature return-level maps for return period of 10 and
30 years. Return-level map for the observed data (a,c) and from the BM model (b,d).

Furthermore, in this case, the maps have similar characteristics with the same extreme
temperature features as also anticipated in the diagnostic plots of Figure 4. Considering
the fixed return period of 10 years, the areas most affected by extreme daily temperatures,
and therefore possible heatwaves, are the flat areas of the region, in particular those on the
Tyrrhenian side. Observing the differences between the 10- and the 30-year-return periods,
we can see a general increase of the daily extreme temperature values.

As for the case of daily precipitation, it is possible to use these results to obtain
information on the local effects of general global warming possibly linked to the ongoing
climate change. Considering the 30-year-return period, the daily extreme temperatures,
apart from being higher, seem to be more concentrated in the southern part of the region,
although it is possible to note a small area with high temperature values also in the
north part. The observed data (Figure 6c) suggest an intensification of extreme maximum
temperature events in the south-eastern areas of Calabria, while those obtained from the
application of the BM method (Figure 6d) confirm the feature seen in the 10-year-return
period maps, with the Tyrrhenian part most affected by these extreme thermal features.
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It is important to note that the empirical return values are not known for all the
stations, especially for larger return times. This is because, being an empirical value, it is
not always possible to detect it at the same return time for all stations. This implies that,
for higher return times, the spatial interpolation was calculated with fewer points. This
problem does not arise for the theoretical return value, since extreme events are estimated
theoretically and for each return time chosen by the numerical procedure (in our case, with
a variation of 0.1 years).

The empirical (based on observed data) and the EVT maps are very similar; this
implies that, for both daily extreme precipitation and temperature, the EVT applied on the
observations describes their behaviour well.

In considering these first results, it is important to note the significant difference in the
number of available stations over the region. In particular, the eastern-northeastern part of
Calabria (zone 6 and 5, above all) is much less covered by observations (see Figure 1) and,
therefore, also the interpolation procedure for creating the maps is inevitably conditioned
by this fact.

4.1.3. Return-Level Maps for the Reanalysis Dataset: Comparison with Observations

In this section, we evaluate the possible use of ERA5 reanalysis data in studying
extreme weather events, since regular gridded data are not affected by spatial/temporal
availability problems. We consider the results obtained from observed data and from ERA5,
comparing the return-level map for a fixed return period of 10 years, both for temperature
and precipitation.

In Figure 7, we show the return-level maps of extreme daily rainfall; Figure 7a is the
same as Figure 5a (here duplicated, to allow a direct comparison), while Figure 7b is the
map obtained by the EVT theory application (POT method) on the reanalysis. In order to
better comment on the results, we reduced the colour scale values on the maps, mainly
because the maximum extreme rainfall values for the ERA5 data are significantly lower.
Figure 8 is the same as Figure 7 but for the daily extreme temperatures (BM method).

Figure 7. Comparison between the daily rainfall return-level maps for return period of 10 years.
Return-level maps for the observed data (a) and for the ERA5 data (b).
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Figure 8. Comparison between the daily max temperature return-level maps for a return period of
10 years. Return-level maps for the observed data (a) and for the ERA5 data (b).

A general and unquestionable underestimation is evident for the ERA5 data with
respect to observations, both for precipitation and temperature. For the extreme daily
rainfall, differences between observations and reanalysis even higher than 200 mm are
clearly visible in several zones (mainly in the southeast). The general behaviour of the
rainfall is similar with the eastern part of the region most affected by extreme precipitation.
A poor agreement is noticeable in the southeastern part of the region, the most affected by
heavy rain based on observations, where the reanalysis failed to correctly reproduce the
high rainfall values.

As usual, a separate comment applies to the northeastern part of Calabria where,
as already said, there is a general lack of weather stations (see Figure 1); for this reason,
we cannot obtain useful information using the POT method application in this area. Fur-
thermore, for the daily extreme temperature, no useful information can be drawn on the
northeastern part of the region, due to the lack of stations. The areas most affected by
extreme daily temperatures (based on observations) are the Tyrrhenian ones, as already
seen in Section 4.2. The ERA5 fields fail to correctly identify this behaviour, except for
the southwestern side of the region, instead showing a greater predisposition to extreme
temperatures in the southeastern area (not confirmed by observations).

This general underestimation is not surprising, and it is in agreement with previous
works ([50–52]) that have attempted to use ERA5 fields for highly localised climatic studies.
To further highlight this aspect, also providing a more quantitative result, we show, in
Figure 9, a punctual comparison (only for the Crotone station) between the return levels
obtained using both the observed data and ERA5 reanalysis. In this case, we show the
return levels computed considering both the original datasets (OBS and ERA5) and the
EVT results.

Figure 9a refers to extreme precipitation and shows the return level of the observed
data (black dotted points) and the return level of the POT method (black solid line) applied
on the observations. In the same plot, we present the results from ERA5 data (blue dotted
points) and the return level of the POT method (blue solid line) applied on the reanalysis.
Dotted lines indicate the error confidence intervals.
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Figure 9. (a) Comparison between the observed and ERA5 return levels for daily precipitations
for the Crotone station. (b) Comparison between the observed and ERA5 return levels for the daily
temperature maxima.

The discrepancy between the plots and the general ERA5 underestimation with respect
to observations is evident, although the application of the POT method provides, also on
the reanalysis, valuable results (see blue dotted points vs. blue solid line). Similar findings
can be seen in Figure 9b for the temperature daily maxima. Here, the differences, in terms
of temperature values, appear more pronounced, and also in this case, the application of
the BM method seems to work quite well.

Regarding the ERA5 underestimation of the extreme values, the reanalysis does
not seem capable of well grasping the localised dynamic characteristics influencing the
temperature and rainfall fields in the region. Regular gridded modelled data represent
a valid and promising tool for these types of analysis, even irreplaceable in the vast
worldwide areas not sufficiently covered by observations, and the EVT technique also
applied to ERA5 seems to work well. However, the fact that the reanalysis unequivocally
underestimates the observed extreme values prompts us to perform our further EVT
analyses only considering the observational dataset as a reference.

4.2. 50 and 100 Years Return Levels

We present in this section, the 50- and 100-year return levels by applying the EVT
to the whole observational dataset. This probabilistic approach allows us to identify
the Calabrian areas that are likely the most affected by daily extreme precipitation and
maximum temperatures in the future. We show the return-level maps obtained from the
application of the POT (for rain) and the BM (for temperature) methods for each available
station. The analyses were conducted for the fixed return periods of 10, 30, 50 and 100 years.
Since the return-level maps for 10 and 30 years were already presented in Section 4.1.2
(Figures 5b,d and 6b,d), we report in this section only the maps referring to the 50- and
100-year-return periods.

Figure 10a,b show the return levels at 50 and 100 years, respectively, for the extreme
daily rainfall. The figures clearly show two distinguished regions in which the rainfall
extreme events have different features. The southeastern part of the region represents the
area most affected by extreme daily precipitation, unlike the northwestern part. The be-
haviour, in terms of precipitation patterns, is very similar for all the return level periods.
Observing Figure 1, we can see how the stations are well-distributed over the region except
for the northeastern part; in this area, there are no predicted extreme precipitation values;
however, we cannot truly quantify the role of the EVT theory, simply because of the lack of
observational data as already mentioned in the previous sections.
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On the other hand, the fact that the most intense precipitation in Calabria occurs in the
southeastern part of the region is a further confirmation of previous work results ([16,18]).
A sensible intensification of the extreme rainfall is evident as the return periods increase
in qualitatively agreement with the increasing incidence expected by the climate projec-
tions. The Aspromonte and the areas windward the mountain range are the most affected
zones for daily extreme precipitation. For the 50-year-return period, extreme values up to
500 mm/day are predicted in this zone, and the daily extreme precipitation assumes even
greater values (up to 600 mm/day) if a return period of 100 years is considered.

Figure 10. Return-level map of extreme rainfall for a fixed return period for all of the Calabria stations.
Return-level map for a return period of 50 years (a) and 100 years (b).

Figure 11a,b show the return levels 50 and 100 years, respectively, for the extreme daily
temperatures. As already seen for the return periods of 10 and 30 years (Figure 6b,d), these
probabilistic projections suggest that the areas most affected by extreme daily temperatures
will be the Tyrrhenian flat areas. The central part of the region seems not to be affected by
daily extreme temperature, also because it is in the central areas that the main mountain
ranges of the region are distributed, while the lack of observations in the northeastern
part does not permit extracting very useful information for this area in applying the EVT.
Furthermore, for temperatures, an intensification of the daily extreme is visible as the return
periods increase in agreement with the ongoing global warming.

Heatwaves with maximum daily temperatures up to 40 ◦C are expected in the next
100 years and the southern part of Calabria is the one mainly affected; it is even more
interesting to note how, in the same areas, differences of maximum daily temperatures of
about 2 ◦C are visible, considering the 50- and 100-year-return periods. The maps obtained
at 50 and 100 years (Figures 10 and 11) represent a great advantage of EVT theory, namely
to be able to provide a forecast of the return value exceeding the time scale imposed by the
dataset (in our case of 31 years).
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Figure 11. Return-level maps of extreme temperatures for fixed return periods for all of the Calabria
stations. Return-level maps for a return period of 50 years (a) and 100 years (b).

The values shown in the maps refer to the most probable RL; however, each has a confi-
dence interval highlighted by the dotted lines in the return level plot (see Figures 3d and 4d).
The error for each station is impossible to be shown in a single map; thus, we decided
to report two further figures showing the precise RL values and the related confidence
intervals for all the stations listed in Table 1 (Figures 12 and 13). It is important to highlight
that these results are strongly conditioned by the choice of the stations.

From the box-plots, it is easy to see how the representative stations of zones 7 and
8 are those more prone to an intensification of extreme daily precipitation events over
the years, i.e., the areas on the southern Ionian side, where values between 350 and 400
(450 and 500) mm/day are predicted for the return period of 50 (100) years. Considering
instead temperatures, the future incidence of heat waves is more likely in the representative
stations of zones 4 and 6, i.e., the southern Tyrrhenian side and the eastern part of the
region, respectively, where maximum daily temperatures between 36 and 37 (36 and 38) ◦C
are predicted for the return level of 50 (100) years.

Figure 12. Return levels (daily precipitation) and respective dispersion intervals for the representative
stations listed in Table 1 (Z1–Z8) obtained at 50 (a) and 100 (b) years.
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Figure 13. Return levels (daily maximum temperatures) and respective dispersion intervals for the
representative stations listed in Table 1 (Z1–Z8) obtained at 50 (a) and 100 (b) years.

5. Summary and Conclusions

In this work, we presented a statistical study on the daily precipitation and temper-
ature extremes in Calabria, southern Italy, applying the extreme value theory (EVT) on
a long-term series (31 years) of regional observations. For the precipitation, we adopted
the peak-over-threshold method, while for the temperature, the block-maxima approach
was considered.

Both datasets (observations and reanalysis) present certain limitations. The first, re-
garding the observations, is related to the lack of stations in a specific area (the northeastern
part of the region) and only affects the procedure (inverse distance) adopted for generating
the maps. A further limitation is related to the time series (or limited to 30 years) and can
affect the statistical uncertainty leading to an increase of the confidence interval in the
return level plot.

The main findings from this work can be summarised as follows:

• The proposed EVT methods were suitable to describe the precipitation and tempera-
ture extremes over the study area.

• The reanalysis fields showed a systematic underestimation of daily precipitation and
temperature extremes with respect to the observations.

• Extreme precipitations over Calabria mainly affected the southeastern part of the
region; values up to 500 mm/day were predicted for the 50-year-return period in
this area.

• Extreme temperatures, instead, mainly affected the Tyrrhenian side of the region
with values up to 40 ◦C predicted for the 100-year-return period in this area and in the
southern part of the region.

In order to perform punctual statistical investigations, the region was divided in
eight climatic zones, in agreement with the spatial subdivision adopted by the Calabrian
Regional Civil Protection; from each of these zones, one station was selected and taken
as representative of the area. To assess the reliability of the method, we first reported the
diagnostic plots (i.e., the probability density function, the probability plot, the quantile
plot and the return level plot) for each selected station, considering both the empirical (the
directly observed values) and the theoretical (the EVT results) data.

The analysis of the diagnostic plots confirmed that the proposed methods are appro-
priate to describe the considered extreme weather events over the study area. In order to
qualitatively compare the areas most affected by such extremes, again considering both
empirical and theoretical data, we reported the regional maps of daily precipitation and
temperature extremes in terms of fixed return periods (10 and 30 years). Furthermore, in
this case, a good agreement was obtained between the two datasets, thus, confirming the
reliability of the EVT applied on the long-term observations.

An evident zonal gradient of extreme precipitation over Calabria was found, with the
south-eastern part of the region most affected by such events, in agreement with several
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previous studies. The flat areas of the region, in particular the Tyrrhenian ones, were
instead the most affected by extreme daily temperatures and possible heatwaves.

The possible use of reanalysis in studying the daily extremes was also investigated,
comparing the results obtained considering the observations with those derived by ERA5.
Although the use of modelling products represents a great opportunity, mainly in areas
not covered by observations, our comparisons show how the ERA5 fields are not suitable
for reproducing the occurred extreme values, as they showed a systematic and substantial
underestimation of both the daily precipitation and temperature extremes.

The assessed reliability of the theory applied on the observations allowed us to perform
a probabilistic analysis aimed at identifying the areas most likely to be affected by daily
extreme precipitation and maximum temperatures in the future; with this aim, we reported
the return-level maps for the fixed periods of 50 and 100 years for both precipitation and
temperature. A general intensification of extreme rainfall events is expected in future
years, in agreement with climate projections, with values up to 500 mm/day for the 50-
year-return period in the south-eastern part of Calabria. Considering the temperature,
heatwaves with maximum daily values up to 40 ◦C are expected in the next 100 years,
mainly in the Tyrrhenian and southern part of the region.

The unequivocal increase of the Earth’s surface temperature and the predicted ex-
acerbation of instability and convective atmospheric conditions in the future emphasise
the importance of performing studies, such as the one presented, devoted to the anal-
ysis of the environmental variables most connected to the risks deriving from extreme
meteorological phenomena.
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Appendix A

In this Appendix, the diagnostic-plots for the seven stations/zones not presented in
Section 2.1 are reported for both precipitation and temperature extremes.

http://www.cfd.calabria.it
http://www.cfd.calabria.it


Atmosphere 2023, 14, 553 20 of 24

Figure A1. Diagnostic plot for Castrovillari station. (A1) Rainfall diagnostic plot. (A2) temperature
diagnostic plot.

Figure A2. Diagnostic plot for Montalto Uffugo station. (A1) Rainfall diagnostic plot. (A2) tempera-
ture diagnostic plot.

Figure A3. Diagnostic plot for Nicastro station. (A1) Rainfall diagnostic plot. (A2) temperature
diagnostic plot.
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Figure A4. Diagnostic plot for Reggio Calabria station. (A1) Rainfall diagnostic plot. (A2) temperature
diagnostic plot.

Figure A5. Diagnostic plot for Acri station. (A1) Rainfall diagnostic plot. (A2) temperature diagnos-
tic plot.

Figure A6. Diagnostic plot for Palermiti station. (A1) Rainfall diagnostic plot. (A2) temperature
diagnostic plot.
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Figure A7. Diagnostic plot for Serra San Bruno station. (A1) Rainfall diagnostic plot. (A2) temperature
diagnostic plot.
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