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Abstract: The noise-like behavior of the geomagnetic anomalies observed in Tlamacas station (volcano
Popocatepetl, Mexico), linked to the ionization produced by intensive radon release, are presented in
the experimental part of this study. The magnetic field perturbations produced by charge spreading
currents within the fair-weather electric field are considered in the theoretical model based on the
electrode. The electric charges are generated by the air ionization due to radon emanation. The
simulations demonstrated that the ionization of the air leads to magnetic field perturbations of about
0.001–0.1 nT in the ULF (ultra low frequency) range 10−3–10−1 Hz. Magnetic field perturbations can
be higher when the radon emanation occurs in a region with terrain irregularities.

Keywords: volcano Popocatepetl; electromagnetic noise; radon emanation; lithosphere-ionosphere coupling

1. Introduction

Seismological and volcanological studies are closely connected with the analysis and
monitoring of the physical fields of the Earth, as well as anomalous phenomena observed in
the atmosphere. These investigations, as a rule, have both theoretical and highly practical
character. In this relation, special attention should be paid to precursors of these phenomena.
Often the detection of temperature fluctuations in the soil or atmosphere, intense variations
in the magnetic field, and anomalous concentrations of radioactive elements, including
radon gas, allow for predicting earthquakes or volcanic eruptions.

Earthquakes and volcanic processes are often related to each other both in time and
in the region where they occur [1,2]. This is due to the fact that, in most cases, it is the
fluctuations of the Earth’s crust that provoke the weakening of its stability (rigidity) and
lead to the formation of channels for the rapid ascent of magmatic melts to the Earth’s
surface. These processes most often occur at the boundaries of lithospheric plates [3–5], but
often they can be observed in the intraplate space as well. These are so-called intraplate
deformations and intraplate volcanism [6–10]. Intraplate volcanism in the ocean is most
often explained in terms of the hot-spot hypothesis and has been described by many
authors [11–15]. Regarding continents, this phenomenon has also been widely described in
the scientific literature from different positions [16–22].

An important element determining the seismicity and volcanism of continents is heat
flow [23,24]. Studies of the relationship between the heat flux, atmospheric phenomena,
earth physical field anomalies, and other processes can serve as precursors to catastrophic
events, such as devastating earthquakes and volcanic eruptions. Among the precursors
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of earthquakes and volcanic eruptions, anomalies in soil radon concentrations are an
important component [25–29].

Mexico is an area where all these processes are very active. Many works are devoted
to their regional study [18,19,30–33]. One of the most famous seismic-volcanic structures in
Mexico is the Popocatepetl volcano.

The Popocatepetl volcano (Central Mexico, latitude, 19.065◦ N; longitude, 98.63◦ W,
5465 m elevation, Figure 1) is considered as a major geological hazard in Mexico, because its
sudden eruption threatens one of the world’s most populated areas (Mexico City, situated
about 70 km southeast) and the nearby population of Puebla (about 45 km west) and
Cuernavaca (about 60 km northeast), among others. A major eruption would have serious
consequences for the 30 million people living in communities on the flanks of the volcano,
and ash from such an eruption could also endanger aircraft using Mexico City international
airport [34,35]. It is also one of several active volcanoes that forms the Trans-Volcanic
Belt of Mexico (also known as the Neo-Volcanic Axes) and its existence is related to the
geodynamics of the North American and Cocos plates.
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Figure 1. Location of volcano Popocatepetl and Tlamacas observational site (https://www.cenapred.
unam.mx/reportesVolcanGobMX/ (accessed on 15 December 2022)).

Our earlier studies in the volcano Popocatepetl area (Figure 1) have shown the variety
of phenomena in the local geomagnetic field [36–40], and the radon [41,42] and temper-
ature [43] behavior associated with the volcano activity. The current study is devoted to
the possibility of the generation of geomagnetic noise provoked by the highly ionized
environment generated due to the enormous radon emanation.

2. Experiment and Results
2.1. Geomagnetic Field Measurements

Geomagnetic measurements in the volcano Popocatepetl area and observed effects
can be found in [36–40]. Here, we just briefly summarize the basic points of the applied
methodology and emphasize the principal phenomena, which are the object of our interest
in the present paper.

Permanent geomagnetic observations were carried out with a 3-axial fluxgate magne-
tometer (GPS synchronized, 1 Hz sampling rate, designed at UCLA) at Tlamacas station of
Centro Nacional de Prevención de Desastres (CENAPRED), Long. 261.37◦ E, Lat. 19.07◦ N,
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4000 m elevation above the sea level (Figure 1), situated 4 km north from the volcano crater.
The total period of observations covers the period of the years 2003–2006. The first data
were affected by different gaps caused by regular power cuts at the station. The results
presented in the current paper are processed from the most reliable measurements related
to the 2005–2006 interval when a no-brake power system was installed at the station.

2.1.1. Methodology

Our study includes the analysis of the time variation in the signal and its dynamic
spectra. To distinguish the local volcano effects from the global ones, we used referent
data from Juriquilla station (Queretaro, Mexico (100◦26′48.81′′ W, 20◦42′14.87′′ N, 1946 m
elevation) integrated to the Mid-Continent Magneto-seismic Chain (McMAC) [44] equipped
with the same instrument. As well, to estimate Solar-Terrestrial coupling influence with
high geomagnetic activity such as geomagnetic storms, the equatorial Disturbance Storm
Time (Dst) index (taken from Kyoto geomagnetic site) is applied to the analysis.

2.1.2. Results

The phenomenon that is the subject of study in the present article is the following.
The noise background estimated by the spectral intensity of the geomagnetic field is much
higher in the Tlamacas (volcano) station in comparison with the referent Juriquilla station.
One can see (Figure 2, [39]) the obvious domination of more intensive orange colors in the
Tlamacas spectra contrary to the weaker green and blue in the Juriquilla spectra.
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Figure 2. (top panel) H—component signals, Tlamacas (blue line) and Juriquilla (black). (2nd and
3rd panel) Tlamacas and reference spectrogram dynamic spectra. (bottom panel) Disturbance Storm
Time (Dst) index of geomagnetic activity.

The noise contamination measured at the volcano area can vary with its intensity.
Figure 3 shows the changes in the magnetic field during the week 9–16 June 2005. The in-
crease in electromagnetic noise is emphasized from the 3rd to the 6th day of measurements.
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Generally, “crazy” elevated electromagnetic noise at the Tlamacas site is often ob-
served and can last from a dozen minutes—2 h up to several days, as is shown in the
abovementioned figure.

To understand the essence of the difference in the observed results, we must emphasize
the fundamental differences in the geographic location of the stations. The Juriquilla station
is situated in an urban environment; moreover, it is surrounded by a dense industrial
cluster with an increased electromagnetic background. The Tlamacas station, on the
contrary, is in an unhabitable place where any human-made electromagnetic activity is
absent naturally. All this would suggest the opposite effect. Thus, the explanation of the
unexpected discrepancy would require an alternative sizeable natural source. We propose
an increased radon emanation in the Tlamacas observation site as a reliable candidate for
the enhanced electromagnetic contamination of the geomagnetic field.

2.2. Radon-Related Measurements

Radon is a radioactive gas formed by the alpha decay of Radium. It belongs to the
uranium series and the half-life of radon (222Rn) is short and constant (3.8 days). Radon is
released from the ground surface and measured as the atmospheric radon concentration [45].
Variations in soil and atmospheric radon concentrations are an important component of
predicting earthquakes and seismogenic volcanic processes [46,47]. Numerous studies
highlight the presence of notable Rn anomalies in the soil, air, and groundwater around the
time of earthquake activity [48–50]. Radon concentration changes related to earthquake
occurrences have been observed in air emanating from the soil [51], in groundwater, and in
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the atmosphere [52]. Anomalous increases in the radon (222Rn) concentration in the soil,
groundwater, and atmosphere have been reported prior to large earthquakes [45,52,53].
It has been established that it is the activity of seismotectonic movements of the Earth’s
crust that causes increased radon content in the near-surface layer. Studies of radon
properties and the monitoring of its concentration are widely used in modern geological
and geophysical practice [54–56]. Our study consisted of the application of the technique
of periodic measurements of radon, taking into account different stages of activity of the
Popocatepetl volcano.

2.2.1. Methodology

Different measurement methods were used in various radon surveys in the area of the
volcano Popocatepetl [41]. Initial area mapping was performed with SARAD Scout portable
detectors. This instrument uses diffuse air passing through the instrument; therefore, it is
more appropriate for permanent Rn monitoring as was performed in our previous study
related to the radon behavior during volcano activity [40]. More precise studies were
performed with SARAD Radon monitor RTM 1688-2- and CR39-type SSNTD (Solid State
Nuclear Track Detectors).

SARAD Radon monitor RTM 1688-2 is equipped with a proper pump to analyze air
samples; both SARAD Scout and RTM instruments use ionization chamber to calculate
radon (222Rn) concentration, which is measured by the short-living daughter products,
generated by the radon decay inside a measurement chamber. Directly after the decay, the
remaining 218Po nucleus becomes charged positively for a short period, because some shell
electrons are scattered away by the emitted alpha particles. Those ions are collected by the
electric field forces on the surface of a semiconductor detector. The number of collected
218Po ions is proportional to the radon gas concentration inside the chamber.

CR39 is a plastic polymer (polyally-diglycol-carbonated, or PADC) that belongs to
the class of polyesters. This material has the characteristic of being susceptible to alpha
particles resulting from radioactive decay of radon. The impacts of the particles with CR39
create damage on the surface of the detectors; the damage concentration is related to the
radon concentration. Damage tracks can be highlighted through a chemical attack carried
out using KOH 6.2 M, placed in an oven at a constant temperature of 60 ◦C for 18 h. During
this chemical attack, the detectors are thinned, and the tracks of the damage are enlarged.
After this process, the tracks are calculated using an optical microscope.

We used results obtained with CR39 detectors as a more confident presentation in the
current paper. Plastic glasses with suspended CR39 detectors inside were buried in 40 cm
deep holes in the 30 measurement sites during 15–17 April 2010 and recovered 9 May 2010.
The total deployment time of the detectors varied between 22 days 4 h and 24 days 6 h.

2.2.2. Results

The results of the different studies related to the radon concentration in the volcano
Popocatepetl area during 2007–2009 as well as the details of the applied methodology can
be found in the papers [40,41]. Their principal results in the focus of the present paper can
be reported as follows:

- The radon release in the Tlamacas Mountain (up to 5000 Bq/m3) is significantly higher
than in any other referent site;

- It is much higher than in the other areas of the volcano Popocatepetl;
- The origin of the radon in Tlamacas is caused by natural degassing in addition to the

radioactive soil deposits detected in other volcano sites;
- Tlamacas Mountain can be considered as a natural reactor and a powerful source of

ionization that modifies the atmosphere electricity vertical profile.

Further studies in the localization of Tlamacas Mountain [40] during 2010–2011
allowed us to confirm a stable high radon level (up to 6500 Bq/m3), prove the non-
homogeneous spatial character of its emanation, and estimate the typical spatial size
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of the active areas (about 50 m, as can be seen in Figure 4, [40]) which we also use as the
reference data for our simulation model.
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3. Air Ionization Produced by Radon and Large Hydrated Clusters Formation

It was established as early as 1986 [57] that natural radioactivity, where the main
component is 222Rn, is the main source of the atmospheric boundary-layer ionization from
the ground surface up to a 1 km altitude where the galactic cosmic rays start to prevail in
the ionization impact on the atmosphere. Radon emanation from the Earth’s crust is more
intensive in the vicinity of active tectonic faults and areas of volcano activity [58]. If the
average value of radon activity is nearly several tens of Bq/m3, in seismically active areas
it can reach incredible values of hundreds of kBq/m3 [59].

We can estimate the ion production rate and electron concentration for the registered
Tlamacas radon activity level at 6500 Bq/m3. During the decay of the radon, 222Rn releases
α-particles with energy Eα = 5.6 MeV. Because the energy of the atmospheric gas ionization
is in the range from 10 to 30 eV, each α-particle released by radon can produce on average
~3 × 105 electron–ion pairs. Then, in view of the ionization capacity of radon α-particles
of ~3 × 105 electron–ion pairs, the ion-production rate is ~1.95 × 109 m−3 s−1. According
to [60], the ionization by energetic α-particles in the dense near-ground atmospheric layer
has the track character. The track is the short cylinder with a length of the free-pass of an
α-particle in the atmosphere, which is nearly 4 cm, surrounded by short spurs of secondary
electrons producing the volumetric ionization because of the short distance between the
spurs. Modeling of the processes of ionization [60] gives the primary electron concentration
within the spur, Ne ≈ 1012 cm−3. The size and the lifetime of the track is determined by the
ambipolar diffusion from the primary track volume, so by the primary ions’ recombination
within this volume.

The primary ions enter into the series of plasmachemical reactions and are subject to
the final ion’s hydration. All this happens pretty fast—during nearly 1 s after the ionization
is “switched on”. The deposition of water vapor on ions leads to the drop in relative
humidity, air temperature growth, and the formation of condensation nuclei [61].

The large, hydrated clusters still conserve their electric charge, so the layer of so-called
“atmospheric plasma” is formed [59], for which the behavior can be considered within the
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framework of the dusty plasma theory [62]. So, one of the possible sources of the registered
emission, the near-ground atmospheric plasma instability, can be considered.

4. Model

The proposed qualitative model for the generation of geomagnetic noise assumes the
presence of active zones emanating radon during the degassing process in the volcano
area. The increased radon release produces high ionization in a near-surface air layer, as
mentioned in Section 3. Thus, there are the regions where the description of the electric
processes differs from these processes in the free atmosphere well above the surface. Near
the surface, it is important to take into account the turbulent exchange, the presence of
radioactive substances, the properties of the surfaces, and the motion of aerosols. The
presence of the Earth–air interface results in the appearance of a sort of electrode layer,
where the conductivity depends on the value of the electric field.

Here are some results of the simulations of the classical electrode effect, i.e., without
the turbulence. Consider the light ions. The basic equations are [63,64] as follows:

∂n+

∂t
+
→
∇ · (n+b+

→
E) = q(

→
r , t)− αn+n−;

∂n−
∂t

+
→
∇ · (n−b−

→
E) = q(

→
r , t)− αn+n−;

∆ϕ = − e(n+ − n−)
ε0

;
→
E = −

→
∇ϕ + E0

→
e z.

(1)

Equation (1) shows the drift equations for the motion of positive and negative ions
considered jointly with the Poisson equation for the quasi-static electric field E. Here, n+,
n− are the concentrations of the positive and negative ions, respectively; b+ > 0, b− < 0 are
their mobilities; E is the electric field; ϕ is the electric potential; E0 < 0 is the fair-weather
electric field; q (r, t) is the intensity of the generation of the ions due to the ionization; and
α is the coefficient of recombination. The OZ axis is directed vertically perpendicular to the
surface z = 0.

There is evidence in the literature that the stationary electrode effect leads to the
variation in the electric field near the Earth’s surface. Moreover, the concentrations of the
positive and negative ions differ from each other there because at the boundary z = 0 the
positive ions move downwards (n+(z = 0) 6= 0), whereas the negative ones move upwards
(n−(z = 0) = 0).

The electrode effect is more sizeable in mountain regions than in the flatlands, because
the air is rarefied and the mobilities of ions are higher there. Moreover, the constant electric
field E0 is higher too. Our earlier measurements of the values of the atmosphere electric
field at the Tlamacas station confirmed this. When the ionization of the air is excited by the
radon emanation, the source q (r, t) can be large enough and non-stationary. Due to this,
the electrode effect also causes a high non-stationary density of electric currents:

→
j = e(n+b+

→
E − n−b−

→
E) (2)

These electric currents produce magnetic fields in the ultra low frequency (ULF) range
(f = 0.001–1 Hz).

We have performed the simulations of Equation (1) adding the boundary conditions
(Figure 5):

ϕ(z = 0) = 0,
∂ϕ

∂z
(z = Lz) = 0,

n−(z = 0) = 0, n+(z = Lz) = 0
(3)
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The intensity of generation of the ions is

q(
→
r , t) = q0 · exp(−(z/z0)

4 − (ρ/ρ0)
4 − ((t− t1)/t0)

4) (4)

The region of the simulations is 0 < z < Lz, where Lz >> z0. In Figure 6, the typical
results of the simulated equations are shown. The used parameters are q0 = 1011 ions/m3/s
and z0 = ρ0 = 50 m; the ion mobilities are b+ = 10−3 m2/s/V and b− = −2 × 10−3 m2/s/V;
the recombination coefficient is α = 10−13 m3/s; and t1 = 50 s and t0 = 30 s. The fair-weather
field is taken as E0 = −500 V/m, which is somewhat higher than at the sea level (the site
altitude is about 4 km above the sea level).
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The goal of the simulations is to demonstrate the principal possibility of excitation of
the essential different concentrations of the positive and negative ions in the near-Earth
layer, the corresponding densities of the electric currents, and the nonzero values of the
induced ULF magnetic field. In Figure 6, the results of the simulations are depicted at the
time t = 50 s. The part (a) shows the spatial distribution of the concentration of positive ions,
(b) is that corresponding to negative ions, parts (c) and (d) are the distributions of the radial
and vertical components of the electric current density, and (e) shows the distribution of
the azimuthal component of the induced magnetic field Bϕ.

5. Discussion

It is well-known that earthquakes (and, in general, seismic phenomena) are the trigger
that leads to volcanic eruptions [65–68]. At the same time, it is not quite clear how this
mechanism works nor how to predict the results of its activity. One of the most prob-
able factors that can be used for the target prediction of catastrophic seismological and
volcanological processes is the analysis of geophysical fields (first the geomagnetic field)
and the concentrations of the radioactive elements in the near-surface layer of the earth
crust (geosphere), the hydrosphere, and in the atmosphere. The relationship between these
geophysical strata of the earth is quite obvious.

Seropian et al. indicate that earthquake-induced dynamic processes triggered by
seismic waves can be divided into three categories—volatile processes, resonance processes,
and hydrothermal system triggering. Volatile processes can be associated with an eruption
mechanism through bubble nucleation and growth, advective overpressure associated with
bubble rise, and falling crystal roofs facilitating vesiculation [65]. In a resonance process,
seismic waves can induce sloshing in the reservoir [69], which represents the movement of
magma in its reservoir. Finally, hydrothermal systems are also generally well connected
to the underlying magmatic reservoir [70]. All the processes noted above are reflected
in one way or another in magnetic field anomalies because they are associated with the
redistribution of the internal structure of the object, which is the source of the magnetic
anomaly. Or, as in the case of the hydrothermal system, there is a variation in the magnetic
field characteristic due to changes in the interaction of the magmatic reservoir with the
non-magnetic underlying rocks.

On the other hand, high-precision magnetic field measurements may have broader
relevance in the study of the Earth’s magnetosphere. Thus, Archer and coauthors [71]
predict qualitative characteristics of ionospheric and ground-based magnetic observations
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based on magneto-hydrodynamics and global magnetosphere-ionosphere modeling. The
analysis of dynamical plasma waves in the ultra low frequency (ULF) range (~0.1–100 mHz)
is key to studies of such effects. This analysis reveals the features of processes, such as
magnetosphere-ionosphere (MI) coupling [72] and geomagnetically induced currents [73].

The three-axial fluxgate magnetometer was used in the magnetic field monitoring de-
scribed in our paper. Its main characteristics are described in Section 2.1. Geomagnetic field
measurements. The use of high-precision equipment in combination with the development
of an original modeling technique allowed the study of magnetic field perturbations in the
order of 0.001–0.1 nT in the ULF range of 10-3–10-1 Hz to be realized.

The presented work discusses the possibility of using the monitoring of magnetic
anomalies and variations in the concentration of radioactive radon gas in the area of the
active volcanic system of Popocatepetl.

The simulated values of the induced magnetic fields are within the interval 10−3–10−1 nT.
The modest magnitudes of the magnetic field obtained in the current model should not
be misleading. They can raise to the values 1–10 nT, when the constant electric field is
E0 > 1 kV/m, which can be observed in the mountain regions due to the high altitude
above the sea level and the essential non-uniformity of the Earth’s surface there. So, our
simulations only demonstrate the principal possibility of generation of magnetic field
perturbations due to the near-Earth electrode effect.

The proposed generation mechanism is not unique. The presented model calculates
only the part of the electromagnetic noise caused by the radial spread of the charged parti-
cles (ions and charged aerosols) produced in the active zones with the normal (Gaussian-
like) distribution of the charged particles. High ionization in the atmosphere [60], caused
by radon release, changes the atmosphere electric field profile in the conception of the
lithosphere-atmosphere coupling proposed by the mentioned authors. Thus, any hetero-
geneity in the ground surface becomes a source of micro-discharges. These discharges
provide a much larger contribution to the noise component of the electromagnetic field
than the model considered in this article. Now, the calculation of such a model does not
seem technically feasible. In any case, the proposed model is fairly realistic. More inputs
are awaited for further developments.

6. Conclusions

The analysis of the geophysical fields in the area of the Popocatepetl volcano revealed
some features of their influence on the atmosphere during the formation and development
of the large volcano-seismogenic structure. It was found that the noise-like behavior of
geomagnetic anomalies can be caused by the ionization following intense radon emission.
The perturbation of the magnetic field created by charge outflow currents within the electric
field was calculated. It was shown that electric charges are generated by air ionization as a
result of radon emanation. The modeling has shown that air ionization leads to magnetic
field perturbations in the order of 0.001–0.1 nT in the ULF range of 10−3–10−1 Hz. It was
found that the relief features can produce magnetic field perturbations if radon is emanated
from mountainous regions with irregular relief.
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