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Abstract: Based on historical tropical cyclone (TC) tracking data and wind data from observation stations,
four comparison experiments were designed that considered TC translation speed similarity and five
new ensemble schemes in an improved Dynamical-Statistical-Analog Ensemble Forecast (DSAEF) model
for Landfalling Typhoon Gale (LTG), which was tested in terms of forecast capability in South China. The
results showed that the improved DSAEF_LTG model with the incorporation of TC translation speed
and a new ensemble scheme could improve the forecast threat score (TS) and reduce both the false alarm
ratio and the missing ratio in comparison with corresponding values attained before the improvement.
The TS of the new ensemble scheme model (DLTG_3) was 0.34 at threshold above Beaufort Scale 7,
which was 31% better than that of the unimproved model (DLTG_1). At a threshold above Beaufort
Scale 10, the TS of DLTG_3 indicated even greater improvement, reaching 0.25, i.e., 127% higher than
that of DLTG_1. The results of the experiments illustrated the marked improvement achievable when
using the new ensemble scheme. The reasons for the differences in the DSAEF_LTG model forecasts
before and after the introduction of TC translation speed and the new ensemble scheme were analyzed
for the cases of Typhoon Haima and Typhoon Hato.

Keywords: DSAEF_LTG model; landfalling typhoon gale; parameters improvement; South China

1. Introduction

Tropical cyclones (TCs), which include typhoons, are low-pressure vortices that occur
over the surface of a tropical or subtropical ocean and often cause heavy rainfall, strong winds,
and storm surges [1]. Annually, approximately 15 TCs affect China, of which approximately
seven make direct landfall, making China one of the countries in the world affected most seri-
ously by TC-related disasters [2]. Landfalling TCs accompanied by strong winds, which can
trigger storm surges and rainfall that can further aggravate heavy rainfall disasters, represent
a disaster-causing factor that cannot be ignored [3]. Super Typhoon Rammasun (2014), which
was the strongest typhoon ever recorded to make landfall in China [4,5], had characteristics
of multiple landings, rapid intensification, and maintained intensity. The maximum wind
speed near the TC center reached 72 m/s when it first made landfall in Wenchang, Hainan
Province [6]. Rammasun caused damage to 59 counties and many urban areas with direct
economic losses of approximately CNY 26.55 billion. Super Typhoon Meranti (2016) made
landfall in Xiamen (Fujian Province) on 15 September 2016. The actual instantaneous wind
force measured at the landing site is 63.7 m/s, and the average wind speed in the center
reached about 48 m/s. The typhoon caused 650,000 trees in Xiamen to fall down; six 220-V
large towers and 45 110-kV substations were destroyed; more than 800 houses collapsed;
and 5348 dams were damaged [7]. With the recent rapid economic development, growth in
number of buildings, and increase in population density in coastal areas of Southeast China,
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the impact of wind damage caused by TCs has become even more serious [8]. Therefore,
accurate and timely forecasting of TC-related wind is of considerable regional importance.
Additionally, owing to an insufficient understanding of the fine structure of TC gales and an
imperfect knowledge of the physical mechanisms of their evolution, TC gale forecasting re-
mains challenging, and its accuracy is inadequate to meet the needs of strategic developments
intended to prevent and mitigate TC-related damage [9].

The development of TC gale forecasting technology can be summarized as follows:
subjective forecasts, statistical forecasts, numerical forecasts, and the interpretation of nu-
merical forecasts [10]. Subjective forecasts mainly rely on the experience of forecasters and
developments in atmospheric sounding technology, as well as the application of satellite
cloud maps, radar images, and other information, which have improved the capability
of subjective forecasting of TC gales to a considerable extent. Based on historical data,
the statistical forecasting approach establishes connections between physical quantities
related to TC gales (e.g., wind speed and wind circle radius) and those factors that affect TC
gales. Common statistical methods include regression forecasting [11], objective similarity
forecasting [12], and climatology and persistence forecasting [13,14]. Numerical model
forecasting is an indispensable tool in current TC forecasting operations. Many forecasting
agencies have developed numerical forecasting products related to TC gales, and they
are gradually developing toward higher resolution and greater refinement [15,16]. The
interpretation of numerical forecast products, i.e., the localized and refined interpretation
of numerical forecast products to revise errors in numerical forecasts to a certain extent, can
be divided into categories of dynamical interpretation [17], statistical interpretation [18],
and artificial intelligence interpretation [19] according to the interpretation technique.

Ren et al. [20] have paid attention to the issue of using the combination of dynamical-
statistical methods based on similarity forecasts to improve the weather and climate fore-
casting. They have explored the physical basis of atmospheric similarity problems, starting
from the initial values of perfect model, proposing the concept of perfect initial value pertur-
bations, and then proposing the Dynamical–Statistical–Analog Ensemble Forecast (DSAEF)
theory. The DSAEF‘s principle is to use perfect models for forecasting and implement
through ensemble forecasting. Li et al. [21] summarized the advantages and shortcomings
of the above forecasting methods and showed that the DSAEF theory could provide new
ideas for TC gale forecasting by combining the dynamical model and statistical method.
Given that the maximum gale during TC affecting land could be used to predict the in-
tensity and extent of TC wind damage [22], Chen et al. [23] initially developed a DSAEF
model for a Landfalling Typhoon Gale (LTG) based on the DSAEF theory. To investigate the
forecast capability of this model, Li et al. [24] conducted the initial forecast application of
the DSAEF_LTG model based on 21 TCs that affected South China. The results showed that
the overall forecast performance of the DSAEF_LTG model at thresholds above Beaufort
Scale 7 and 10 had advantages over other numerical models (e.g., the CMA, ECMWF, JMA,
and NCEP models). However, the DSAEF_LTG model showed a high false alarm ratio
(FAR), and for a sideswiping TC with small-scale gales, the DSAEF_LTG model tended to
overpredict and failed to achieve satisfactory forecasting results.

The DSAEF_LTG model is in its early stage of development, and there are only three
similarity screening factors (i.e., TC track, intensity, and landfall time) considered in the
model. The ensemble scheme only has mean and maximum values, and other factors that
affect the typhoon potential maximum gale remain to be considered in the DSAEF_LTG
model. Jia et al. [25] and Su et al. [26] applied the DSAEF theory to the DSAEF Landfalling
Typhoon Precipitation (LTP) model, and their results showed that the incorporation of
translation speed similarity and an ensemble forecasting scheme could effectively improve
the threat score (TS) of model precipitation forecasts and reduce both the FAR and the
missing ratio (MR). Therefore, it is worthwhile investigating whether the abovementioned
factors and improvement methods, demonstrated as successful for the DSAEF_LTP model,
could also be applicable to the DSAEF_LTG model. To this end, this study conducted an
experiment to try to improve the DSAEF_LTG model for South China by introducing the TC
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translation speed similarity and ensemble forecast improvements to verify the applicability
of the abovementioned improvement methods.

2. Data and Methods
2.1. Data

Historical observed wind speed data were obtained from the National Meteorological
Information Center of the China Meteorological Administration (CMA). The data comprised
hourly 2-min average wind data at 10-m height from 1980–2018. To ensure data continuity,
stations with accumulated missing measurements for more than one year were excluded,
and stations at a height above the mean of 894.7 m were excluded to reduce their influence
on the TC gale separation results. Finally, data recorded at 140 stations in South China
(Guangdong, Guangxi, and Hainan provinces) were retained (Figure 1). It should be noted
that the TC potential maximum gale for each station is expressed as the maximum hourly
2-min average wind speed during the period of influence of a single TC.
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Figure 1. Distribution of the 140 observation stations (red dots) in South China (Guangxi, Guangdong,
and Hainan provinces) considered in this study.

Historical TC track information was obtained from the best track dataset of the
Shanghai Typhoon Institute of the CMA (https://tcdata.typhoon.org.cn) accessed on
1 May 2022, and the data included TC position and intensity at 6-h intervals for the
period from 1960–2018. The forecast track and intensity data of the target TCs considered
in our experiment were obtained from the expert revised track forecast information based
on the numerical forecast model of the CMA.

2.2. Methods
2.2.1. DSAEF_LTG Model

The DSAEF_LTG model adopts the biggest advantage, predicted TC track, of the
numerical model as the dynamic part by discriminating the similarity of physical factors
affecting LTG and using the gale of the most similar TCs to obtain ensemble LTG forecast
of the target TC. It has four main steps: (1) Obtaining the forecast track of the target TC;
(2) Establishing the generalized initial values based on the TC track, TC intensity, and
other relevant TC characteristics; (3) Using the generalized initial values to determine
the similarity between the target TC and historical TCs; and (4) Generating an ensemble
prediction of the potential maximum gale of the target TC. A flow chart of the DSAEF_LTG
model can be found in Li et al. [24]. Table 1 lists the physical meanings and values of the
nine characteristic parameters involved in the above forecasting process. The forecasting
procedures and details of the parameters can be summarized as follows. First, the observed
track of the target TC before the initial time (P1) and the forecasted track of the target TC

https://tcdata.typhoon.org.cn
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are combined to form the complete track of the target TC. Then, the objective TC track
similarity area index (TSAI) is calculated between the target TC and all historical TCs
within the established similarity area [27] (P2) and arranged in ascending order. A smaller
TSAI value indicates greater similarity between the two types of tracks. In this step, P1–P4
jointly determines the track similarity between the target TC and the historical TC. Based on
TC track similarity, historically similar TCs with large differences between the target TC and
the historical TC are removed using the conditions from P5–P6 in turn. Finally, the ensemble
scheme (P9) is used to assemble the historical TC wind fields corresponding to the selected
best similar TCs (the number is determined by P8) to obtain the potential maximum gale
forecast results for the target TC. For a single TC, each parameter has multiple values, and
different parameters can be combined as a scheme. Therefore, the random combination of
parameters can generate 302.4-million forecast schemes under ideal conditions.

Table 1. Parameters of the DSAEF_LTG model.

Parameters Description Number of Values

Initial time (P1)
1: 1200 UTC on Day1, 2: 0000 UTC on Day 1, 3: 1200 UTC
on Day 2, 4: 0000 UTC on Day 2. (Day 1: the day of TC gale
occurring on land; Day 2: the day before Day 1)

2 × 2 = 4

Similarity region (P2)

Parameters of TSAI with rectangular shape. Its southeastern
vertex (C) can be the TC position at 00, 12, 24, 36, or 48 h
prior to the initial time, and the northwestern vertex (A) can
be the TC position at 00, 06, or 12 h prior to the maximum
lead time. The 1st–15th values are combinations of C and A.
The 16th–20th values are based on the first value, i.e., C
represents the TC position at the initial time and A
represents the TC position at the maximum lead time.
Further details regarding the 16th–20th values can be found
in Jia et al. [25]

20

Threshold of the segmentation ratio of a
latitude extreme point (P3)

A parameter of the TSAI:
1: 0.1; 2: 0.2; 3: 0.3 3

The overlapping percentage threshold of
two TC tracks (P4)

A parameter of the TSAI:
1: 0.9; 2: 0.8; 3: 0.7; 4: 0.6; 5: 0.5; 6: 0.4 6

Seasonal similarity (P5)

A parameter indicating the TC landfall date:
1: entire year; 2: May–November; 3: July–September
4: same landfall month as the target TC
5: within 15 d of the target TC landfall time

5

Intensity similarity (P6)

Four categories
1: average intensity on the first windy day
2: maximum intensity on the first windy day
3: average intensity on all windy days
4: maximum intensity on all windy days
Five levels
1: all grades; 2: the target TC intensity is the same grade or
above that of the historical TC; 3: the same grade or below;
4: only the same grade
5: the same grade or one grade different

4 × 5

Translation speed similarity (P7)

Three categories:
1. Average TC translation speed on the first windy day *
2. Minimum average TC translation speed on the first
windy day *
3. Average TC translation speed on all windy days *
Two Grading criteria:
1. mean *; 2. K-means clustering*
Five levels:
1: all grades *; 2: the target TC intensity is the same grade or
above that of the historical TC *; 3: the same grade or
below *; 4: only the same grade *; 5: the same grade or one
grade different *

30
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Table 1. Cont.

Parameters Description Number of Values

Number (N) of analog TCs screened for
the ensemble forecast (P8) 1–10 for 1, 2, . . . , 10, respectively 10

Ensemble forecast scheme (P9)

1. mean;
2. maximum;
3. 90th percentile *;
4. fuse *;
5. probability matching mean (PM) *;
6. equal difference-weighted mean (ED-WM) *;
7. TSAI-weighted mean (TSAI-WM) *.

7

Total number of schemes 4 × 20 × 3 × 6 × 5 × 20 × 30 × 10 × 7 302,400,000

* New methods in this study.

2.2.2. Two Improvements of the DSAEF_LTG Model

Previous studies [28,29] showed that TC translation speed is one of the important
factors affecting the maximum gale of a TC. Therefore, it is meaningful to explore the
role of TC translation speed similarities for model improvement through experimentation.
The steps of adding the TC translation speed similarity factor to the DSAEF_LTG model
are as follows. First, the selectable translation speed indicators are determined. Based
on 198 translation speed and maximum single-station gale data affecting TCs in South
China, the correlation coefficients between six TC translation speed indicators and the
maximum single-station process gale of a TC were calculated (Table 2). It can be observed
that the correlation coefficients of the first day’s average TC translation speed, the first day’s
minimum TC translation speed, and the average TC translation speed are >0.12, and they
pass the 0.1 significance level. Consequently, they are identified as the TC translation speed
indicators introduced into the model. The second step is to set five levels of relationship in
TC translation speed between the target TC and the historical TC (i.e., all levels, same level
and above, same level and below, same level only, and maximum difference of one level) to
filter similar historical TCs. To ensure that the five TC translation speed level relationships
are not duplicated or cover all the level relationships, the three translation speed indicators
are divided into seven grades. The third step is to determine the grading criteria of the
TC translation speed indicators. Here, average segmentation sorted the TC translation
speed first and then divided them into seven continuous intervals with the same sample
amount, and the K-means clustering algorithm is used to count the TC translation speed
of different levels of the cut-off points. The results are shown in Table 3. Finally, the TC
translation speed similarity factor is successfully introduced into the DSAEF_LTG model.
Speed similarity can be used in the DSAEF_LTG model by the newly added p7 [30].

Table 2. Correlation coefficients of six TC translation speed indicators with a single-station TC
potential maximum gale.

TC Translation Speed Indicator Single-Station TC Potential Maximum Gale

Average TC translation speed on the first windy day 0.1254 *
Maximum TC translation speed on the first windy day 0.0531
Minimum TC translation speed on the first windy day 0.1809 *

Average TC translation speed on all windy days 0.1201 *
Maximum TC translation speed on all windy days 0.1077
Minimum TC translation speed on all windy days 0.0390

* Significant correlation at the 0.1 level (bilateral).

The ensemble scheme directly affects and determines the forecast results of the DSAEF_LTG
model. The mean and maximum ensemble schemes of the original DSAEF_LTG model tend
to lead to high FAR and MR scores, indicating the need for new ensemble schemes to be
introduced into the model. Referring to the studies of Jia et al. [25] and Ma et al. [31] on the
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DSAEF_LTP model, this study introduced five new ensemble schemes into the DSAEF_LTG
model: the 90th percentile, Fuse, probability matching mean (PM), equal difference-weighted
mean (ED-WM), and TSAI-weighted mean (TSAI-WM) schemes (Table 4).

Table 3. Grading criteria for three types of TC translation speed indicator.

TC Translation Speed Indicator Method TC Translation Speed of Cut-Off Points (km/h)

First day’s average translation speed
Average segmentation 12.79 14.82 17.16 19.63 22.38 26.37 12.79

K-means clustering 6.83 11.42 15.51 19.39 23.7 28.34 6.83

First day’s minimum translation speed
Average segmentation 8.19 11.38 12.97 15.19 18.02 20.48 8.19

K-means clustering 1.73 5.82 10.22 15.47 21.63 28.02 1.73

Average translation speed
Average segmentation 12.95 15.22 17.96 20.1 22.7 26.08 12.95

K-means clustering 11.79 16.18 20.1 23.62 27.61 31.9 11.79

Table 4. New ensemble schemes introduced into the DSAEF_LTG model.

Name Computational Procedure

90th percentile

For each station, Gale (i), i = 1, 2, . . . , m, where m is sorted from minimum to
maximum. Gale (r) is the potential maximum gale ranked r.
d = 1 + (m − 1) × 0.9
The integer part of d is r and the decimal part is f
Gales = Gale(r) + [Gale(r + 1)− Gale(r)]× f

Fuse

Calculation rules of forecast potential maximum gale at each station:
If Max(Gale(i)) ≥ 24.5m/s, Gales = Max(Gale(i));
If the 90% percentile values of Gale(i) ≥ 17.2 m/s, Gales = the 90% percentile
value of Gale(i);
If the 75% percentile values of Gale(i) ≥ 17.2 m/s, Gales = the 75% percentile
value of Gale(i);
If the median value of Gale(i) ≥ 10.8m/s, Gales = the median value of Gale(i);
If none of the above happen, Gales = the 10% percentile value.

Probability matching mean (PM)

All gale data for m members of 140 stations were arranged in ascending order
(containing gale data for 140 × n stations). The data were divided into 140 equal
parts from 140 × n maximum to minimum, and the median of each part was
retained as glm(k), k = 1, 2, . . . , 140.
Averaging Gale(i) over each station, ranking the average values from largest to
smallest, and recording the position of each value in the series.
Corresponding to the glm(k) of each station based on the k of each station, and
glm(k) is the predicted gale for this station, gale = glm(k).

Equal difference-weighted mean (ED-WM)
The weight of the potential maximum gale for the selected similar TC, the
similarity rank I of which is: W(i) = (2×m−i)×2

(3×m−1)×m (i = 1, 2, . . . , m),
Gales = ∑m

i=1 W(i)× Gale(i).

TSAI-weighted mean (TSAI-WM).

A(i) = 1
TSAI(i) (i = 1, 2, ..., m), the weight of the potential maximum gale for the

selected similar TC whose similarity rank i is: W(i) = A(i)
∑m

i=1 A(i) ,
Gales = ∑m

i=1 W(i)× Gale(i).

2.2.3. Other Methods

(1) TC track similarity area index (TSAI)

The TC TSAI [25] determines the similarity of two TC tracks by calculating the geometric
area they enclose. The smaller the TSAI value, the greater the similarity of the tracks.
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(2) Evaluation methods

To evaluate the DSAEF_LTG model performance in TC potential maximum gale
forecasting, the TS, FAR, and MR are used, which can be calculated as follows:

TS =
hits

hits + misses + f alse alarms
(1)

FAR =
f alse alarms

hits + f alse alarms
(2)

MR =
misses

hits + misses
(3)

where hits represents the number of stations with correct forecasts (the number of stations
with a gale of a certain level both observed and forecast), misses is the number of missed
stations (the number of stations with a gale of a certain level observed but not forecast),
and false alarms is the number of stations with a false forecast (the number of stations with a
gale of a certain level forecast but not observed). The values of the above three scores are in
the range of 0–1. A TS value closer to 1 indicates a higher hit rate and a better forecasting
effect; a FAR score closer to 1 indicates a greater number of false alarms; and an MR score
closer to 1 indicates more missed alarms.

3. Experimental Design
3.1. Target TC

The target TCs in this study included training samples and independent samples that
were used to perform simulation tests and forecast tests, respectively, and their inclusion
criterion was that they must have caused severe gale impact (maximum gale: ≥17.2 m/s
for at least one station) in South China, i.e., the target TCs included but were not limited to
those making landfall in South China. Ultimately, 24 TCs that occurred during 2011–2018
were identified based on the selection criterion, 16 of which from 2011–2015 (Figure 2a)
were selected as the training sample, and the remaining eight from 2016–2018 (Figure 2b)
were used as the sample for the independent forecast test.
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Figure 2. Tracks of (a) the 16 TCs from 2011–2015 selected as the training sample and (b) the eight
TCs from 2016–2018 used as the sample for the independent forecast test.

3.2. Improvement Experiments

Four experiments were designed in this study. The first experiment considered the
original DSAEF_LTG model without TC translation speed similarity and ensemble scheme
improvement (hereafter, DLTG_1). The second experiment involved the model with trans-
lation speed similarity only (hereafter, DLTG_2). The third experiment involved the model
with the incorporation of an improved ensemble scheme represented by the above five new
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ensemble schemes (hereafter, DLTG_3). The fourth experiment involved the model with
both translation speed similarity and the five new ensemble schemes (hereafter DLTG_4).
The procedure used to determine the best scheme was as follows. First, the best forecast
scheme was selected as the optimum one from the training sample when first screening out
the forecast schemes common to all 16 TCs, and then selecting the best forecast scheme from
the common solution based on certain criteria (e.g., TS maximum). Because the number
of similar regions could be limited by the short track of the target TC, or by the number
of similar TCs corresponding to the location of the target TC being too small, some TCs
could not realize all the forecast schemes. Therefore, the number of common schemes of
the 16 training samples was often fewer than the maximum number of schemes possible.

Considering that the TC potential maximum gale of the training samples is concen-
trated from the Beaufort Scale 6–8 (figure omitted), the TS of the TC potential maximum
gale greater than the Beaufort Scale 6 and 8 is denoted as TS6 and TS8, respectively, and
the maximum value of their sum (TS6 + TS8; hereafter, TSsum) is used as the selection
criterion for the best forecast scheme in their simulation experiment for more effective
selection. However, the experiment for independent samples focused on Beaufort Scale
7 and 10 because Beaufort Scale 7 is related to TC scale and Beaufort Scale 10 is a critical ref-
erence for TC defense [32]. The meteorological department in China issues early warnings
for government guidance and public awareness based on information from observation
stations affected by TC gales at thresholds of Beaufort Scale 7 and 10. Additionally, because
the forecast performance of the DLTG_1 model (compared with dynamical models such
as the CMA, ECMWF, JMA, and NCEP models) has been fully compared and tested by
Li et al. [24], and because the independent samples used in this study included two more
cases than used in [24], the experiments in this study were conducted to compare the
forecast performance of the improved DSAEF_LTG model (i.e., DLTG_2, 3, and 4) with the
unimproved model (DLTG_ 1) for comparative assessment of forecasting capability.

4. Results

The scatter plots presented in Figure 3 show the TSs of the schemes of the four experi-
ments for the 16 training samples. Each black dot in the figure represents a single scheme,
and the horizontal and vertical axes correspond to the TS6 and TS8 values, respectively. The
red dot represents the maximum value of TS6 + TS8, which is considered the best forecast
scheme. DLTG_1 has the fewest schemes, whereas the number of schemes involved in the
improved models increase, and DLTG_4 (adding both translation speed similarity and the
five new ensemble schemes) has the greatest number of schemes. The maximum value of
TSsum for DLTG_2 is 0.8891, which is higher in comparison with that for DLTG_1 (0.8451),
while the maximum value of TSsum for both DLTG_3 and DLTG_4 is 0.9284 (TS6 = 0.4134,
TS8 = 0.5148), but note that the number of DLTG_4 partial schemes is better than that of
DLTG_3 in TS8, i.e., higher than 0.5148. It indicates that compared with the experiment
adding only the new ensemble schemes, the experiment that incorporates both translation
speed similarity and the new ensemble schemes failed to produce further improvement in
the maximum value of TSsum.

Table 5 lists the parameter values of the best scheme in each of the four experiments. As
shown by the TC translation speed similarity taken for DLTG_2 and DLTG_4, the level of
which in DLTG_2 is set to the same level and below, while in DLTG_4, any TC translation
speed indicator is taken and the level is set to all levels; the TC translation speed similarity
factor in DLTG_4 cannot filter the historical TCs and thus influence the final best similar TC
results. Comparing the ensemble forecast scheme (P9) and the number of best similar TCs in
the four experiments, the P9 taken before the ensemble scheme improvement (DLTG_1 and 2)
has the maximum values, and that taken after the ensemble scheme improvement (DLTG_3
and DLTG_4) has the probability matching mean (PM); the number of best similar TCs for
the latter is increased by one relative to the former. Further comparison between DLTG_3
and DLTG_4 reveals that the parameter values of both are similar, and that there is only a
difference in the value of the translation speed similarity: DLTG_3 is without the parameter



Atmosphere 2023, 14, 888 9 of 15

of translation speed similarity, and the translation speed similarity parameter in DLTG_4
includes all categories, all grading criteria, and all levels. Thus, the result indicates that the
translation speed similarity parameter does not work as in DLTG_2. It can be assumed that
the parameters of DLTG_3 and DLTG_4 take the same values, which further explains the
existence of the same TSsum maximum for DLTG_3 and DLTG_4.
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indicates the best scheme with the maximum TSsum (TSsum = TS6 + TS8).

Table 5. Parameter values of the best scheme in the four experiments.

Parameter DLTG_1 DLTG_2 DLTG_3 DLTG_4

Initial time 3 (1200 UTC on Day 2) 3 3 3

Similarity region

20: shifting A1B1C1D1 (the
16th scheme) to the right by
the distance of D1D2 and
downward by the distance
of B1B2.

16 or 17: (ABCD: the first kind of
parameter value of the original
similarity region; and
A1B1C1D1, a square with side
length of 2000 km, is the 16th
scheme of the similarity region.
The midpoints of B and B1 are
taken as B2, and the midpoints
of D and D1 are taken as D2,
which makes A2B2C2D2 the
17th scheme.

17 17

Threshold of the
segmentation ratio of a

latitudinal extreme point
2 (0.2) 3 (0.3) 2 (0.2) 2 (0.2)

Overlapping percentage
threshold of two TC tracks 5 (0.5) 6 (0.4) 6 (0.4) 6 (0.4)

Seasonal similarity 1 (entire year) 1 or 2 (entire year or
May–November) 1 or 2 1 or 2

Intensity similarity
2/5 (maximum intensity on

the first windy day/the same
grade or one grade different)

1/5 (1: average intensity on the
first windy day/the same grade

or one grade different)
1/5 1/5

Translation speed
similarity /

2/2/3 (minimum TC translation
speed on the first windy

day/K-means clustering/the
same grade or below)

/

1–3/1–2/1
(all categories
/all grading

criteria/all levels)
Number (N) of analog TCs

screened for the
ensemble forecast

2 2 3 3

Ensemble forecast scheme 2 (maximum) 2 7 (probability
matching mean (PM)) 7

In summary, the results of the training sample simulations show that the TSsum of the
best scheme was improved either by adding the translation speed similarity or the new
ensemble schemes to the original model alone, or by introducing both improvements. The
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TSsum of the best scheme and the parameter values for DLTG_3 and DLTG_4 indicate that
the TC translation speed similarity has no effect on the simulation results when the two
improvements are introduced simultaneously, i.e., it fails to realize further enhancement of
the simulation capability of the model based on the ensemble scheme improvements.

After obtaining the best schemes for the four training experiments, the four schemes
were used to forecast eight individual typhoon cases from 2015–2018, and the forecast
results were compared. In the process of finding the best scheme for each experiment
mentioned above, it was found that the parameters of the best schemes of DLTG_3 and
DLTG_4 take similar values, and that the TSsum of the best scheme was the same for
both. In the tests with independent samples, DLTG_3 and DLTG_4 demonstrated the same
forecast skill, while the results produced by adding the TC translation speed similarity
and the new ensemble forecast schemes were the same as those obtained using only the
new ensemble forecast schemes without the superimposed improvement effect, which
further indicates that the TC translation speed similarity improvement effect cannot be
highlighted at this time. For convenient description, the TSs of TC potential maximum gale
greater than Beaufort Scale 7 and 10 are denoted TS7 and TS10, respectively. Similarly, the
FAR and MR scores of TC potential maximum gale greater than Beaufort Scale 7 and 10
are denoted as FAR7 and FAR10, and as MR7 and MR10, respectively. Above Beaufort
Scale 7, the introduction of either the TC translation speed similarity (DLTG_2) or the new
ensemble forecast schemes (DLTG_3) can improve the TS of the model (Figure 4), and the
improvement of DLTG_3 is greater than that of DLTG_2, i.e., the TS of DLTG_1, DLTG_2,
and DLTG_3 is 0.26, 0.3, and 0.34, respectively. This improvement is greater than 31% over
the original scheme (DLTG_1). The same comparison results were produced for the case
above Beaufort Scale 10. Although the TS decreased in all experiments at Beaufort Scale 10,
in comparison with the TS at Beaufort Scale 7, the improvement in the TS for DLTG_3 (0.25)
was greater, i.e., an increase of 127% over DLTG_1. This indicates that the DLTG_3 test
demonstrated better forecast capability in terms of TC potential maximum gale in more
extreme cases. It was also found that the improved model reduced the FAR and MR scores,
i.e., the improvement of DLTG_3 (and 4) was greater, where FAR7 and FAR10 were reduced
by 0.1214 and 0.2611, respectively, and MR7 was reduced by 0.072. The above analysis
indicates that the improved model produces a better forecast and has lower FAR and MR
scores as the Beaufort Scale of the TC potential maximum gale increases, reflecting the
advantages of the improved model in terms of forecasting TC extreme gales.
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Figure 4. Comparison of the values of the TS, FAR, and MR of the DSAEF_LTG model for the
four experiments.

This study also investigated the performance of the four experiments for each TC
in the independent forecast sample. At the threshold of Beaufort Scale 7 (Figure 5a), the
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improved model increased the TSs for all TCs in comparison with the original model,
except for Typhoon Khunan. DLTG_2–4 improved the forecasting capability for sideswip-
ing TCs (e.g., Talas and Doksuri), with the greatest improvement in TS7 for Typhoon
Talas (from 0–0.3333). The introduction of the TC translation speed similarity greatly weak-
ened the forecasting capability of the model for Typhoon Sarika and Typhoon Haima, which
had a TS7 that decreased by 0.1618 and 0.2069, respectively. The TS7 of most independent
samples improved after adding the new ensemble schemes, except that of Typhoon Nida
and Typhoon Khanun, for which the TS7 decreased slightly (≤0.05). On the comparison
between the TC translation speed similarity (DLTG_2) and adding the new ensemble
schemes of DLTG_3 (and 4), the TS of DLTG_3 (and 4) lagged behind that of DLTG_2 for
three typhoons, and the TS7 of DLTG_3 (and 4) exceeded that of DLTG_2 for the remaining
five typhoons. At the threshold of Beaufort Scale 10 (Figure 5b), only Typhoon Hato and
Typhoon Mangkhut produced TSs in the four experiments, and it can be seen that the
TSs of the improved model were greatly enhanced; specifically, DLTG_3 (and 4) exceeded
DLTG_1 and DLTG_2 for both typhoon cases. In summary, the results demonstrate that the
ensemble scheme improvement has a greater impact on model performance.
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Figure 5. Comparison of the TS in the four DSAEF_LTG model experiments for each TC in the
independent forecast experiments: (a) Beaufort Scale 7 and (b) Beaufort Scale 10.

To analyze the reasons for the large differences in forecast capability after the in-
troduction of the TC translation speed similarity factor and the new ensemble schemes,
the cases of Typhoon Haima and Typhoon Hato with the largest TS differences between
DLTG_3 (and 4) and DLTG_2 at Beaufort Scale 7 and Beaufort Scale 10, respectively, were
examined. Typhoon Haima had the largest TS increase in the DLTG_3 (and 4) test in
comparison with the DLTG_2 test at Beaufort Scale 7. Figure 6 shows that the observations
of maximum gale during Typhoon Haima (Figure 6a) were mainly distributed in eastern
Guangdong Province, and that the extreme center was located off the coast of Chaoshan.
None of the experiments forecasted a gale greater than Beaufort Scale 10 at Chaoshan.
However, for other levels of gale, the potential maximum gale of DLTG_1 (Figure 6b)
produced more stations with a gale between Beaufort Scale 7 and Beaufort Scale 10 in the
central coastal area of Guangdong Province, and the FAR of the gale extreme center was
high. For DLTG_2 (Figure 6c), a similar TC (8926) made landfall in the south of Hainan
Island, for which use of the ensemble forecast scheme resulted in a gale in a region that
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deviated severely from the observations. The overall forecast had severe FAR and MR
scores. It can be seen from Figure 6d that this TC was also one of the most similar TCs
in DLTG_3 (and 4), but it did not cause the gale in Hainan Province, and the MR score
of the wind field was also improved in comparison with that of DLTG_1. Moreover, the
distribution of the gale between Beaufort Scale 7 and Beaufort Scale 10 fitted more closely
to the observations in eastern coastal areas of Guangdong province, mainly because the
probability matching mean (PM) ensemble method was used to adjust and redistribute the
gale field of the three similar TCs, thereby making it more reasonable.
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Figure 6. Distribution of potential maximum gale (m/s) during Typhoon Haima according to
(a) observations; (b) DLTG_1; (c) DLTG_2; and (d) DLTG_3 (and 4). Black solid line is the observed
track, black dashed line is the forecasted track, and colored solid line is the best similar TC track. (The
first two digits of in the figure stand for the last two numbers of the year, and the last two digits stand
for the number of the typhoon in that year. For example, “8926” stands for typhoon No. 26 in 1986).

Typhoon Hato was the strongest TC to make landfall in Guangdong Province in 2017,
and it caused exceptional gale damage to the western coast region of the Pearl River Estuary,
with wind speeds of up to Beaufort Scale 15 recorded in the city of Macau [33]. The gale
observations of Typhoon Hato (Figure 7a) were mainly distributed along the western coast
of the Pearl River Estuary, with the extreme center located off the coast of Macau, similar to
the forecast gale of DLTG_1 near the time of landfall (Figure 7b). The morphology is close
to the observations, but there is a false alarm station at Beaufort Scale 10 on the left side
of the typhoon track. In DLTG_2 (Figure 7c), the false alarm station at Beaufort Scale 10
remains on the left side of the typhoon track, but the distribution of stations at Beaufort
Scale 7 on the right side of the track is closer to the track, which is more consistent with the
observations. For DLTG_3 (and 4) (Figure 7d), the forecast of a gale greater than Beaufort
Scale 10 near the time of landfall on the left side of the typhoon track is the same as the
observations, and the FAR7 is improved substantially. It can be seen that the DLTG_2 test
that adopted the ensemble scheme of the maximum method inevitably led to the false
potential maximum gale greater than Beaufort Scale 10; the DLTG_3 (and 4) test identified
one more similar typhoon case (8903) in comparison with DLTG_2, and after adopting the
probability matched average ensemble method, the forecast magnitude of the gale at some
stations was reduced, which made the adjusted gale field distribution more reasonable and
improved the TS at the threshold of Beaufort Scale 10.
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5. Conclusions

In this study, four experiments were designed by adding TC translation speed similar-
ity and five new ensemble methods to the DSAEF_LTG model. The best forecast scheme
in these experiments was determined by selecting 16 TCs that affected South China dur-
ing 2011–2015 as training samples and conducting independent sample forecast tests for
eight TCs that affected China during 2016–2018, to test the forecast effects of the best scheme
for each experiment. The derived conclusions are as follows.

(1) The training sample experiments showed that the introduction of TC translation
speed similarity or improvement of the ensemble scheme separately showed marked
improvement effects, and that the TSsum reached 0.8891 and 0.9284, respectively,
which exceeded that of the unimproved model (0.8451). However, when the two
improvements were introduced simultaneously, the introduction of the TC translation
speed similarity did not produce an improvement effect. Further analysis of the model
parameter values revealed that introduction of TC translation speed similarity has
no impact on the results when simultaneously adding a new ensemble scheme in the
DSAEF_LTG model.

(2) The results of the independent sample forecasting experiments showed that the
DSAEF_LTG model can be improved by adding TC translation speed similarity or
by adding new ensemble schemes; the TS was 0.26 for a gale greater than Beaufort
Scale 7, and the TS was 0.34 when adding a new ensemble scheme, i.e., 31% higher
than that of the original ensemble scheme. Moreover, the FAR and MR scores also
decreased in comparison with those realized before the model improvement. The
improved TS of the ensemble scheme reached 0.25, i.e., 127% higher than the TS of
the original scheme, reflecting the advantage of the model for extreme typhoon gales
greater than Beaufort Scale 10.

(3) The results of the independent sample forecasting experiments also showed that
when TC translation speed similarity and new ensemble schemes are introduced
simultaneously, the forecasting effect is the same as that when the TC translation speed
similarity is introduced alone, with a TS of 0.35 (0.25) for a gale at the threshold of
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Beaufort Scale 7 (Beaufort Scale 10). The ensemble scheme improvement can adjust the
gale fields of multiple similar TCs, which makes the forecast results more reasonable.
This potentially explains why the model performs better after the ensemble scheme
improvement than after the introduction of TC translation speed similarity.

This study considered South China as the target research area, which is a region
affected frequently by TCs. Based on the DSAEF_LTG model improvement test, it can be
seen that adopting a reasonable ensemble scheme and increasing the generalized initial
similarity factor simulation is an important approach for improving the model simulation
capability. The effects of different model improvement methods on the results were shown
to vary, and when multiple improvement methods were introduced simultaneously, some
methods had limited improvement effect and did not demonstrate the effect of superim-
posed improvement, which should be investigated further in the future. Furthermore, the
current physical similarity factors considered in the DSAEF_LTG model still lack inherent
TC features, such as a TC scale. Therefore, future research will continue to improve the
model to enhance the forecasting capability of the DSAEF_LTG model in terms of the
potential maximum gale.
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