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Abstract: Population growth has led to the intensification of average daily traffic (ADT), highlighting
vehicles as one of the major sources of heavy metal (HM) pollution in cities. The objective of this paper
is to conduct a spatial analysis of the HM pollution associated with road-deposited sediments (RDSs),
based on the ADT observed in the main roads of a Latin American megacity (Bogotá, Colombia). The
following risk indices were considered: Geoaccumulation Index (Igeo), Integrated Pollution Index
(IPI), Ecological Risk Index (ERI), Comprehensive Potential Ecological Risk Index (CERI), Hazard
Index (HI), and Carcinogenic Risk Index (CRI). The findings confirm that a size fraction < 250 µm
is the most suitable for studying the risk of HMs in the RDS from the indices considered. The best
HMs indicative of the relationship with ADT are Ni, Cu, and Pb. The Pb is the HM of most attention,
and Cr gains positions for its toxicity level during the evaluation of ecological, non-carcinogenic, and
carcinogenic risks, respectively. Finally, the linear regression models developed between ADT and
each of the risk indices considered have a better fit (R2 > 0.910) compared to the linear regression
models developed between ADT and HM concentrations (R2 > 0.322).

Keywords: heavy metal; megacity; road-deposited sediment; traffic intensity; urban pollution

1. Introduction

In urban areas, there was a direct association between population growth and the
increase in road surfaces and number of vehicles. This population growth led to the intensi-
fication of average daily traffic (ADT), highlighting vehicles as one of the largest pollution
sources (water, air, and soil) in cities. This was also evidenced by the report of a significant
relationship between ADT and concentrations of various pollutants present in road environ-
ments [1,2]. Urban pollutants were constantly emitted and transported within air masses
and tended to accumulate in road-deposited sediment (RDS) [3]. The RDS originated from
the accumulation of particles from natural (e.g., soil drag) and anthropogenic sources (e.g.,
vehicular traffic, industries, and construction), which generated a heterogeneous and com-
plex mixture of pollutants due to their various emission sources [4–6]. Thus, RDSs acted
as a sink for hazardous substances for both public health and the environment [7]. These
RDSs were able to reach surrounding environments and water bodies through processes
such as wind- and traffic-induced resuspension and surface runoff washing [8,9].

Studies have reported that urban RDSs are associated with high heavy metal (HM)
concentrations compared to those observed in urban and agricultural soils [10,11]. There
are studies that reported Pb, Cu, Zn, Cd, Cr, and Ni as those HMs of greatest interest in
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RDSs. This is due to their harmful effects, accumulation characteristics in the human body,
and environmental effects on water systems, soil, and air [12–14]. Thus, RDSs have become
a possible pollution indicator by HMs in urban environments [15].

In the HM analysis associated with RDSs, the activities developed at the study site from
land use, the means of transport involved, and the physical and chemical characteristics of
the sediment particles and metallic elements of interest were often considered [16]. Urban
studies were also carried out in which the possible relationship between ADT- and RDS-
associated MH concentration was reported (e.g., [17,18]). This was under the hypothesis
that ADT was possibly one of the main influential variables of the HM concentration
associated with urban RDSs [19]. Historically, the first HM reported in this context was Pb
for its use as an additive in gasoline. Over the years, the ban on Pb in gasoline limited its
use as a possible indicator of ADT. Although, due to its bioavailability, this HM remains
of great importance in studies on RDS [20,21]. As more studies are conducted, other HMs
(e.g., Cu and Zn) have been identified as possible indicators of the relationship between
their concentrations in the RDS and ADT [22,23].

As visualized, in the RDS collected in high traffic roads, there was a high HM
content [24]. This is probably due to the growing demand for new high-performance
materials for the automotive industry, which has generated a wide variety of components
such as steel, fiberglass, and plastic. Indeed, these materials are known for their high HM
content [25,26]. High-performance materials are frequently used in tires and brakes, which
due to their particular characteristics of use and wear (emission source), makes it difficult to
understand the behavior of HM concentrations in urban RDSs. Several studies have sought
to relate the origin of HMs in the RDS with the different parts of vehicles and elements of
highways and roads (e.g., type of pavement and road furniture), where the operation of
these systems plays an important role [27,28]. Moreover, studies have been conducted on
the spatiotemporal variation in the HM concentration in RDSs, where it was identified that
the highest concentrations were associated with the finest particles and the main vehicular
sources were fuel and lubricating oil leaks, brake and tire wear, and combustion gases [29].
It has also been reported that vehicular traffic may have contributed more than 50% of the
pollution in RDSs [30].

In recent years, an important variety of studies has been carried out worldwide us-
ing evaluation indices of geochemical background concentrations (e.g., Geoaccumulation
Index—Igeo and Integrated Pollution Index—IPI) (e.g., [31,32]). These studies have been
fundamental to adapt those indices to the integral analysis of HMs in the RDS, through
criteria such as the level of toxicity, persistence in the environment, and biological accu-
mulation. This has also allowed an ecological and public health risk assessment to take
place due to HMs associated with the RDS, with ecological risk, and non-carcinogenic
and carcinogenic risk indices [27,33]. In different studies, there were also joint evaluations
between indices. For example, Ecological Risk Index—ERI and contamination factor—CF
indices have been used to assess the risk to the biological community from exposure to
HMs associated with RDSs [34]. In addition, indices used for assessing human health risk
(e.g., Hazard Index—HI and Cancer Risk Index—CRI) have allowed the study of exposure
to the HMs associated with the RDS to take place through the following three pathways:
Ingestion—HIing, inhalation—HIinh, and dermal—HIder [35,36]. This has made it possible
to study both carcinogenic and non-carcinogenic risks by classifying the community by age
groups and exposure time [37]. It was also identified that the ingestion of RDS particles
was possibly the main route of exposure to HMs for the elderly and children due to the
amounts ingested and their low body weight [38,39].

The objective of this paper is to show a spatial analysis of the HM pollution associated
with RDSs from the ADT observed in the main roads of a Latin American megacity (Bogotá,
Colombia). We developed regression models between HM concentrations and ADT from
local and international reference information. The key aspects of the risk indices considered
for the spatial analysis of HM pollution are as follows: metal enrichment, environmental
risk, and risk to human health. In addition, we developed regression models between ADT
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and the risk indices considered. We also performed a comparative analysis between ADT,
HM concentrations, and the limit values established by international reference guidelines.
In the context of urban HM pollution, this study is relevant for the following aspects. (1) To
evaluate the usefulness of ADT as an indicator variable of the spatial variation in HM
concentrations in the RDS. (2) To enhance knowledge regarding the spatial variation in HM
concentrations in RDSs of megacities with high ADTs. (3) Analyze existing ecological and
human health risks from HM concentrations associated with RDSs of a high-altitude Latin
America megacity. (4) To argue that the use of risk indices to assess HM pollution levels
is a useful approach that can help policy makers and urban planners develop effective
strategies to reduce pollution levels.

2. Materials and Methods
2.1. Study Site

This study was conducted in the high-altitude megacity of Bogotá, Colombia, South
America (2600 m.a.s.l.; 4◦35′57” N–74◦04′51” W; see Figure 1). The population of the
megacity was approximately 9 million inhabitants, which increased to more than 10 mil-
lion inhabitants with the inclusion of its metropolitan area (5235 km2) [40]. The city
of Bogotá is the main economic, industrial, cultural, and political center of Colombia.
The urban area of the city is approximately 478 km2 and it has a high population den-
sity (17,700 inhabitants/km2) [41]. Bogotá is located near the equator. Thus, the climate
of the megacity is tropical mountain with a significant hourly temperature variation
(7–19 ◦C) [42]. On average, the annual climate characteristics of the megacity during the
study period were as follows: rainfall = 1050 mm, temperature = 13 ◦C, wind speed = 9.6 km/h,
and relative humidity = 75%. The megacity had a high motorization rate during the study
period (313 vehicles/1000 inhabitants). The vehicle fleet during the study period was
2.5 million vehicles, distributed as follows: passenger cars = 46%, pickup truck = 25%,
motorcycles = 22%, heavy trucks = 3%, taxis = 2%, and public transport buses = 2% [43]. Pri-
vate vehicles and motorcycles use mainly gasoline, taxis use natural gas and gasoline, buses
use natural gas and diesel, and heavy vehicles use mainly diesel [44]. During the study
period, there was a restriction on the circulation of vehicles in the megacity as a measure to
reduce traffic congestion. This vehicular restriction prevented about 40% of the passenger
cars of the megacity from circulating (between 6 and 9 a.m. and 3 and 7 p.m.) [45].

2.2. Calculation of ADT

We developed this study in the main roads of the Latin American megacity of Bo-
gotá (Colombia). We collected ADT information from the installation of 101 automatic
traffic-monitoring stations (vehicles/day) distributed throughout the megacity (Figure 1).
The District Secretariat of Mobility of the megacity under study administered this in-
formation (https://datos-abiertos-sdm-movilidadbogota.hub.arcgis.com/, accessed on
30 January 2019) [46]. In addition, we installed eight ADT monitoring stations at the access
tolls to the megacity. The National Institute of Roads of Colombia administered this infor-
mation (https://www.invias.gov.co/index.php/archivo-y-documentos/documentos-tecnicos/
6609-serie-historica-de-transito-promedio-diario-actualizada-tpd-2016-publicacion, accessed
on 30 January 2019) [47]. We also monitored ADT at the nine study sites established to
monitor HM concentrations. The ADT referred to the average daily number of vehicles
that traveled on each of the 118 selected roads during the period from 2010 to 2018. We
collected hourly ADT information (Monday to Friday) and then added it under a daily
time scale. We calculated the average daily ADT for each of the selected roads during the
study period. This significant number of monitoring stations obtained the adequate density
and spatial coverage when making use of geostatistical analysis methods [48]. In this study,
we used 118 ADT monitoring stations.

https://datos-abiertos-sdm-movilidadbogota.hub.arcgis.com/
https://www.invias.gov.co/index.php/archivo-y-documentos/documentos-tecnicos/6609-serie-historica-de-transito-promedio-diario-actualizada-tpd-2016-publicacion
https://www.invias.gov.co/index.php/archivo-y-documentos/documentos-tecnicos/6609-serie-historica-de-transito-promedio-diario-actualizada-tpd-2016-publicacion
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Figure 1. Location of ADT and HM monitoring stations in the megacity under study.

2.3. Calculation of HM Concentrations

The RDS of nine roads was collected to determine the associated HM concentration
(Pb, Zn, Cu, and Cd). The varied characteristics of ADT (570–13,500 vehicles/day) and
land use (residential, industrial, and commercial) supported the selection of these nine
roads. We collected RDS samples in dry weather at the side of the curb (0.50 m) at the same
time over a period of one year. On average, the sampling frequency was 10 days. However,
there were slight variations due to the occurrence of rainfall events that prevented the
collection of RDS dry. The sampling area had an area of 0.49 m2 (0.70 m × 0.70 m). We
ensured the dimensions of the collection area by placing a wooden frame with identical
dimensions to those of the sampling area on the surface. Moreover, we controlled the
sampling site to avoid repetition and to be close to previous RDS collection points. For
the RDS collection, we used a brush made of plastic fibers and a hand dustpan. Thirty-six
samples were collected for each study road (total samples = 324). The protocol for the
RDS collection was established, taking as reference the sampling systems reported by other
studies on this matter [49–51].

The HM concentration in RDSs was taken for a size fraction < 250 µm. This is because
studies have reported that this size fraction tended to show the highest HM concentrations.
The researchers attributed this behavior to a larger specific surface area and therefore
to a higher adsorption capacity of pollutants [52,53]. Lastly, the HM concentration asso-
ciated with RDSs was determined by means of inductively coupled plasma equipment
(ISO–11047) [54]. RDS samples were previously digested in a mixture of hydrochloric acid
and nitric acid (3:1; aqua regia, ISO-11466 method) [55]. The following HMs were analyzed:
Pb, Zn, Cu, and Cd.
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2.4. Information Analysis

In this study, we conducted a worldwide literature review restricting the search to
the period between 1980 and 2018. This literature review considered the total content of
documents included in the following scientific databases: Google Scholar, Springer, and
ScienceDirect. The keywords used in the search engines were as follows: heavy metals,
road sediment, and traffic intensity. We conducted this literature review to generate a
database that correlated the HM concentration in the RDS and ADT based on reference
studies worldwide and the HM concentrations observed directly in nine roads of the study
megacity. The variables considered in this database were as follows: ADT, particle size
fraction, and HM concentration. The MHs considered in this literature review were as
follows: Pb, Zn, Cu, Cd, Cr, and Ni. The RDS size fraction was considered representative of
the HM concentration, which was <250 µm [56].

The Shapiro–Wilk normality test (p–value < 0.050) [57] was applied to the data series
of each variable. Thus, Spearman’s correlation coefficient (rs) was used to study the
degree of association between the variables considered [50]. For significant correlations, we
proceeded to develop linear regression models [58] between ADT and the HM concentration
in the RDS (Pb, Zn, Cu, Cd, Cr, and Ni). Descriptive statistics were also used during the
information analysis [59]. All previous statistical analyses were executed using the free
software R V.3.5.3 [60]. Subsequently, with the linear regression models, we foretold
HM concentrations in the RDS using the ADT observed in each of the 118 monitoring
stations established throughout the megacity. We used the HM concentrations measured
directly on the nine roads of the megacity to validate the forecasts made with the linear
regression models previously developed. From the foretold HM concentrations, RDS
pollution concentrations in the study megacity were determined and interpreted.

In this study, we used the following risk assessment indices for HM concentrations in
the RDS. (1) Metal enrichment: Indices used to assess the influence of anthropic activities
on the HM concentration in the RDS from geochemical background concentrations [15].
Thus, the Geoaccumulation Index—Igeo and Integrated Pollution Index—IPI [49] were
used. (2) Environmental risk: Indices that allowed an association to be made between
ecological and environmental effects with the HM toxicity based on guide concentrations
for soil quality. The Ecological Risk Index—ERI and Comprehensive Potential Ecological
Risk Index—CERI were then used [61]. (3) Risk to human health: Indices that allowed
an analysis of the risks to human health to take place through the three main pathways
of exposure (ingestion, dermal contact, and inhalation) and by age group (children and
elderly). The Hazard Index—HI (non-carcinogenic), for each metal and for the set of HMs,
and the Carcinogenic Risk Index—CRI [59] were used. Table 1 shows all the calculation
equations and valuation categories for the indices considered.

Additionally, we applied the inverse distance weighted (IDW) interpolation method
using ArcGIS V.10.2. Software [62] to analyze the spatial variation in the HM concentrations
(Pb, Cu, Cr, and Ni) and the risk indices considered. The choice of the IDW method was
made because it tended to spatially maintain local maximums (unsmoothed) compared to
other methods (e.g., Kriging) [63]. This made it possible both to identify the most critical
areas (sampling sites) under the context of this study and to estimate the spatial values
with respect to the weighting of the sampling roads as a function of their proximity [64].
Namely, we studied the spatial variation in the HM concentrations and indices considered
based on the ADT gauging roads. Lastly, the geographical information of the urban area of
the megacity was obtained from the IDECA open data portal (https://www.ideca.gov.co/,
accessed on 1 May 2019) [65].

https://www.ideca.gov.co/
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Table 1. Indices considered assessing the risk by HMs present in RDSs.

Type Index Equation Criteria Valuation Range

Metal enrichment

Igeo Igeo = log2 × [Ci/(1.5 × Bi)]

Ci = Reference HM concentration [mg/kg] Unpolluted
Igeo < 0

0 < IPI ≤ 1

Bi = Background concentration for each HM
[mg/kg] Unpolluted–Moderate

0 < Igeo < 1
1 < IPI ≤ 2

1.5 = Correction factor Moderate
1 < Igeo < 2
2 < IPI ≤ 3

IPI
IPI = [(Cf1) × (Cf2) × (Cf3)

× . . . (Cfn)]1⁄n

Cfi = Ci/Bi Concentration of the reference HM
for normalization [mg/kg]

Moderate–High
2 < Igeo < 3
3 < IPI ≤ 4

High
3 < Igeo < 4
4 < IPI ≤ 5

n = Number of HMs considered High–Extremely high
4 < Igeo < 5

IPI > 5

Extremely high Igeo > 5

Environmental risk ERI CERI = ∑Eri

CERI = Comprehensive potential Ecological
Risk Index. Eri = Potential ecological risk

factor for each HM.
Tri = Toxic factor of HM (Zn = 1, Cr = 2, Pb =

Cu = 5, Cd = 30)

Low ERI < 40
CERI < 150

Moderate 40 ≤ ERI < 80
150 ≤ CERI < 300

Considerable 80 ≤ ERI < 160
300 ≤ CERI < 600

High–Very high ERI ≥ 160
CERI ≥ 600

Risk to human health

HI HI = HQing + HQinh +
HQder HQ = Risk quotient on human health. ADDi =

Average daily dose by pathway of exposure
[mg/(kg × day)]. RfDi = Reference dose per

HM and pathway of exposure [mg/(kg ×
day)]

Non-significant risk HQ ≤ 1
HI ≤ 1

HQ
HQing = (ADDing)⁄RfDing
HQinh = (ADDinh)⁄RfDinh
HQder = (ADDder)⁄RfDder

Significant risk HQ > 1
HI > 1

CRI CRI = LADD × SF LADD = Average daily dose for life [mg/(kg
× day)]. SF = Emission toxicity gradient factor Non-significant risk CRI < 1 × 10−4

Note. Igeo = Geoaccumulation Index, IPI = Integrated Pollution Index, ERI = Ecological Risk Index, HI = Hazard
Index (non-carcinogenic), HQ = non-carcinogenic risk quotient by pathway of exposure, CRI = Carcinogenic Risk
Index, HQing = ingestion, HQinh = inhalation, and HQder = dermal contact.

3. Results and Discussion
3.1. Worldwide Comparative Analysis

The results of the worldwide literature review showed the following order of importance
according to the HM concentration associated with RDSs: Zn > Pb > Cu > Cr > Ni > Cd
(Table 2). The HMs analyzed in the study megacity showed the following order of importance
from the concentrations detected: Zn > Cu > Pb > Cd. Thus, we observed that both globally
and locally, the three HMs with the highest concentration in RDSs were in the following order
of importance: Zn, Pb, and Cu. We also evidenced that the average HM concentrations in the
megacity under study were within the worldwide range. Moreover, the findings confirmed a
size fraction < 250 µm as the most globally representative to study the HM concentration in
RDSs (see median in Table 2).

In this study, we performed a Spearman correlation analysis of the worldwide infor-
mation shown in Table 2 (Figure 2). This is representative of the size fraction of the HM
concentration in RDSs (<250 µm). The results showed a significant positive correlation
from medium to strong between the size fraction < 250 µm and the concentrations of Cr
(rs = 0.681) and Ni (rs = 0.763). In addition, we observed significant positive correlations
of weak to medium between the following concentrations of HMs: Zn–Cr (rs = 0.389)
and Cd–Ni (rs = 0.417). In order of importance, significant positive correlations from
medium to strong were evidenced between the following HMs: Cu–Ni (rs = 0.817), Cr-Ni
(rs = 0.810), Pb-Zn (rs = 0.790), Pb-Cd (rs = 0.737), Zn-Cu (rs = 0.723), Pb-Ni (rs = 0.702),
Zn-Cd (rs = 0.701), Pb-Cu (rs = 0.644), Zn-Ni (rs = 0.605), Cu-Cd (rs = 0.581), and Cu-Cr
(rs = 0.573). The results suggested that for the latter group of HMs (Cu, Ni, Pb, Zn, Cd, and
Cr), the pollution source was probably the same. Indeed, in the road environments, the
main source reported was vehicular traffic [66]. Other studies (e.g., [5,67]) reported that the
main sources of Zn, Pb, and Cd in road environments were associated with wear of engine
parts, road demarcation paint, pavement, and road equipment.
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Table 2. Worldwide and local results for the HM concentration in RDSs according to ADTs.

Fraction
(µm)

ADT
(veh./day)

Concentration (mg/kg)

Pb Zn Cu Cd Cr Ni

America (12.8%)

Median <1000 52,787 93.5 317.3 163 0.10 81.25 40.0

Average <1200 61,513 108 320 143 0.00 95.0 45.0

Maximum <2000 130,000 200 414 236 0.50 203 58.7

Minimum <63 10,000 31.3 183.7 44.7 0.00 12.9 35.0

Asia (30.8%)

Median <250 19,851 134 316 170 2.00 127 49.9

Average <922 39,301 204 573 215 2.13 183 49.4

Maximum <2000 144,000 589 1585 510 4.00 530 86.0

Minimum <53 2400 40.0 51.4 24.0 0.30 58.1 20.0

Europe (41.0%)

Median <250 15,450 238 310 135 2.00 74.0 27.5

Average <580 30,855 413 809 194 5.32 96.1 30.6

Maximum <2000 120,000 2296 4892 771 22.0 232 67.9

Minimum <10 1800 1.50 80.0 21.5 0.10 13.0 7.50

Africa (7.70%)

Median <250 51,480 251 250 123 0.50 123 38.5

Average <1113 44,120 264 242 106 6.20 122 32.7

Maximum <2000 68,520 520 343 151 18.0 123 44.4

Minimum <200 5000 33.6 125 29.0 0.00 119 9.39

Oceania (7.70%)

Median <250 24,000 290 370 124 - 19.0 -

Average <483 19,266 351 564 127 - 19.0 -

Maximum <1000 25,000 511 1073 184 - 19.0 -

Minimum <200 8800 251 249 73.0 - 19.0 -

Total documents considered worldwide (n = 39, 100%)

Median <250 20,000 200 318 151 2.50 123 35.0

Average <755 37,157 308 646 1816 4.50 128 40.5

Maximum <2000 144,000 2296 4892 771 22.0 530 86.0

Minimum <10 1800 1.50 51.4 21.5 0.00 12.9 7.50

This study, Bogotá/Colombia (n = 9)

Median <250 7525 71.5 136 81.0 0.90 - -

Average <250 11,817 92.0 168 108 0.90 - -

Maximum <250 40,100 217 334 279 1.10 - -

Minimum <250 650 48.0 96.0 41.0 0.70 - -

Note. n = sample size, ADT = average daily traffic, and Veh. = vehicles.
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Figure 2. Spearman correlation coefficients between HM concentrations (mg/kg) and ADT
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The findings of the worldwide review showed significant medium to strong positive
correlations between ADT and the following HMs: ADT-Ni (rs = 0.598), ADT-Cu (rs = 0.554),
and ADT-Pb (rs = 0.543). In addition, we observed significant weak to medium positive
correlations between ADT and the following HMs: ADT-Zn (rs = 0.402) and ADT-Cr
(rs = 0.340). The results suggested that, in order of importance, the following HMs are the
best metallic elements to make the forecasts of HM concentrations in RDSs from the ADT
of the megacity under study: Ni, Cu, and Pb. The studies recognized Cu as a key indicator
of emissions from wear on vehicle brakes and tires. This shows that these vehicular
components contributed significantly to the HM pollution reported in RDSs [27,34]. In
addition, there were reports that one of the main sources of Ni in road environments was
vehicle exhaust emissions. Emissions from this HM increased by approximately five times
because of high exhaust system temperatures during vehicle acceleration. However, it was
not ruled out that its pollution source was also likely related to lubricant leaks and wear on
parts of the vehicle subjected to chrome plating processes [68,69].

3.2. HM Concentration Forecasts

The forecast of the HM concentrations in RDSs of each of the ADT monitoring sta-
tions established in the study megacity (n = 109) was made based on the correlations
calculated between the HM concentrations (size fraction < 250 µm) and ADT reported
by international reference studies (Figure 2). Different regression models were evalu-
ated, with the linear model providing the best fit between ADT and concentrations of Ni
(Ni = 0.0003 × ADT + 24.3; rs = 0.598), Cu (Cu = 0.0036 × ADT + 99.3; rs = 0.554), and Pb
(Pb = 0.0085× ADT + 176.7; rs = 0.543). The results hinted at this group of metallic elements
possibly being concentration indicators of other HMs (Zn, Cr, and Cd) from ADT (Figure 2).
Namely, from the observed correlations, Zn concentrations in RDSs could be foretold from
concentrations of Pb (Zn = 0.569 × Pb + 448; rs = 0.797), Cr from Ni (Cr = 3.61 × Ni-9.94;
rs = 0.811), and Cd from Pb (Cd = 0.0038 × Pb + 1.93; rs = 0.701).

Based on the calculated correlation coefficients (rs between 0.543 and 0.811), the results
suggested possible errors in the forecasts of HM concentrations from ADT (linear regression
models). Thus, we emphasize the importance of having a comprehensive vision in relation
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to the behavior of HM concentrations in RDSs. In urban environments, the study of the
behavior of HM concentrations in RDSs involved considering other related phenomena such
as the surface washing of RDS after rainfall periods, or processes of RDS resuspension by
high wind speeds and turbulence generated by vehicular traffic during dry weather [25,70].
From the joint evaluation of these urban dynamics, better adjustments could be obtained
in the linear regression models developed for the forecast of HM concentrations in RDSs.
The forecasts of the HM concentration (n = 109) were validated by the concentrations
observed in the study megacity (n = 9). The HMs considered for this validation were Pb
and Cu. This is because they have been reported to show a significant relationship with
ADT (e.g., [68,71]). The results initially showed that foretold concentrations of Pb and
Cu tended to be within the worldwide range (Pb: 1.50–2296 mg/kg and Cu: 21.5–1816;
Tables 2 and 3). The mean percentage errors of foretold Pb and Cu concentrations in relation
to observed concentrations were 8.98% and 10.4%, respectively.

Table 3. Observed and foretold Cu and Pb concentrations from ADTs.

Sampling Site ADT
Observed Foretold Error (%)

Cu Pb Cu Pb Cu Pb

Av. Boyacá-Av. Primero de
Mayo 187,600 827 1983 716 1774 6.20 10.5

Av. Suba-CL 100 157,300 712 1692 611 1386 14.1 18.1

Av. Boyacá-Av. Jorge Gaitán
Cortés 55,200 324 712 295 639 8.91 10.2

Autopista Norte-CL 200 49,000 300 652 276 593 8.10 9.02

Av. Jorge Gaitán Cortés-Av.
Ciudad de Cali 26,900 216 440 191 393 11.6 10.7

KR 24-CL 80 14,200 168 318 150 297 10.4 6.48

KR 13-CL 59 12,500 162 302 144 283 10.9 6.31

CL 45-KR 13 6900 140 248 124 235 11.3 5.11

KR 7-CL 183 4200 130 222 114 212 11.9 4.33

3.3. HM Enrichment Risk

In the risk analysis of the metal enrichment of RDSs, we considered the foretold
concentrations of the following HMs: Ni, Cu, and Pb. Moreover, Cr concentrations were
considered because of their very strong correlation with Ni concentrations (rs = 0.811). The
Igeo index was calculated from the background concentrations in urban soils (worldwide
average) reported by Alekseenko and Alekseenko [72]. On average, the results showed
from the Igeo index that the RDS of the study megacity was not enriched (not polluted)
with Ni and Cr (Igeo < 1). These results were similar to those reported by Li et al. [64] and
Wei et al. [73] for the RDS of the Chinese megacities Chengdu and Beijing, respectively.
In contrast, the Igeo index for Cu and Pb suggested moderate to high (1 < Igeo < 4) and
moderate to extremely high (1 < Igeo < 5) metal enrichment in the RDS, respectively. The
concentrations of Cu and Pb in RDSs were between 21.5 and 771 mg/kg, and 48 and
217 mg/kg, respectively. Sager et al. [69] also reported high Igeo in RDSs (> 3.2) from the
cities of Budapest (Hungary) and Seoul (South Korea). The area of highest metal enrichment
by these two HMs was located southwest of the study megacity (Figure 3). However, Pb
enrichment of the RDS reached to cover a larger percentage area of the megacity (north,
center, and south) compared to Cu. This high Pb enrichment of the RDS coincided with the
location of the sampling stations with the highest ADT between 2932 and 188,000 veh./day.
Lastly, the decreasing order in the Igeo index was as follows: Pb > Cu > Ni > Cr.
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From the calculation of the IPI index, we conducted a comprehensive analysis in
the RDS that considered the following HMs together: Ni, Cr, Cu, and Pb. The results
showed an IPI index between 1.74 and 8.64 in the RDS. Namely, we evidenced a moderate
to extremely high degree of metallic pollution in the RDS. Gope et al. [74] reported that
IPI values >1 in the RDS hinted at a deterioration in the environmental quality of road
environments. This is possibly because the HM concentrations observed in the RDS were
above the limit of the background values for urban soils. On average, an IPI value = 3.36
was observed throughout the study megacity. However, there were specific areas of extreme
pollution (IPI: 5.22–7.48). These areas were in the center and south of the megacity (Figure 4).
According to the results of the IPI index, areas with an extreme pollution degree in RDSs
were associated with monitoring stations with high ADTs (90,000–188,000 veh./day). The
above results were consistent with those reported for the cities of Tehran (Iran) and Asansol
(India), where average IPI values of 2.5 and 3.7, respectively, were observed [10,74]. It was
also suggested that in urban areas, ADT was one of the main indicators of anthropogenic
pollution sources in RDSs [75]. Lastly, Cu and Pb were the main influential HMs in the
calculation of pollution degree with the IPI index (joint contribution > 80%).
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In this study, we developed linear regression models between ADT and the Igeo and
IPI indices. In other words, we normalized the HM concentrations under the rating scales
established by these indices. This normalization meant we could obtain a better fit of the
linear regression models between ADT and Igeo and IPI indices (R2 > 0.921) compared
to the models developed between ADT and HM concentrations (R2 > 0.322). The linear
regression models obtained were as follows: Igeo_Ni = 1× 10−5 ×ADT− 0.902 (R2 = 0.975),
Igeo_Cu = 2 × 10−5 × ADT + 1.259 (R2 = 0.935), Igeo_Pb = 2 × 10−5 × ADT + 1.763
(R2 = 0.921), Igeo_Cr = 1 × 10−5 × ADT − 0.477 (R2 = 0.971), and IPI = 4 × 10−5 × ADT +
1.615 (R2 = 0.989).

3.4. Environmental Risk

In the analysis of the environmental risk of HMs in RDSs, we considered the foretold
concentrations of the following HMs: Ni, Cu, and Pb. Cr concentrations were also con-
sidered because of their very strong correlation with Ni concentrations (rs = 0.811). The
results showed the following decreasing order in the Ecological Risk Index (ERI) according
to each HM: Pb > Cu > Cr > Ni. The RDS of the study megacity showed at most an ERI
index for Ni, Cr, and Cu of low (ERI < 27), considerable (ERI < 141), and considerable
(ERI < 160) risk, respectively (Figure 5). However, there are sectors of the megacity that
showed a high ERI for Pb (ERI = 355). These sectors were in the center and south of the
megacity. Indeed, we observed Pb concentrations of up to 217 mg/kg in these sectors.
These findings hinted at the occurrence of urbanization processes characterized by the
increase in unregulated anthropic activities and with high population densities. In the
cities of Ezhou (China) and Cairo (Egypt), a similar trend was reported, where Pb, Cu, and
Cr were the HMs that showed a higher ERI index, which was possibly due to their high
toxicity coefficient [76,77]. This trend suggested a large impact on the environment and
harmful effects on living organisms in areas surrounding the study roads. This elevated
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ERI for Pb in the RDS coincided with the location of monitoring stations with higher ADTs
(83,000–188,000 veh./day).
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Based on the calculation of the CERI index (Comprehensive Potential Ecological Risk
Index), we conducted an ecological analysis for the HMs considered in the RDS (Ni, Cr,
Cu, and Pb). The results showed values in the CERI index from 115 to 678 in the RDS of
the megacity under study. Namely, low to very high ecological risk from HMs associated
with the RDS was evident (Table 1). The results showed that ecological risk was mainly
associated with the Pb content in the RDS (average contribution = 45.4%), followed by
Cr (27.6%), Cu (21.6%), and Ni (5.52%) content. In urban residential sectors and with
high ADT, CERI index values of up to 471 (considerable risk) have been reported [59]. On
average, a value of CERI = 243 was observed throughout the study megacity (moderate
risk). However, there were specific areas with considerable ecological risk (CERI = 546).
These areas were in the center and south of the study megacity (Figure 6). According to the
results of the CERI index, these areas with a considerable degree of ecological risk in the
RDS were associated with monitoring stations with high ADTs (72,000–188,000 veh./day).

Finally, we developed linear regression models between ADT and the ERI and CERI
indices. Namely, we normalized the HM concentrations under the valuation scales estab-
lished by these indices. This normalization allowed a better fit of the linear regression
models to be obtained between ADT and ERI and CERI indices (R2 > 0.910) compared
to the models developed between ADT and HM concentrations (R2 > 0.322). The lin-
ear regression models developed were as follows: ERI_Ni = 1 × 10−4 × ADT − 8.11
(R2 = 0.982), ERI_Cu = 7 × 10−4 × ADT + 19.9 (R2 = 0.939), ERI_Pb = 1.7 × 10−3 × ADT +
35.3 (R2 = 0.931), ERI_Cr = 1 × 10−4 × ADT + 38.9 (R2 = 0.911), and CERI = 3.1 × 10−3 ×
ADT + 102.3 (R2 = 0.983).
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3.5. Human Health Risk

From the average daily dose of a pollutant, the average HM doses through the fol-
lowing three pathways of exposure were calculated: ingestion, dermal, and inhalation
(Table 4). The findings showed that the doses acquired by the population of children were
frequently compared to those of the elderly population. This was probably due to the low
body weight and high ingestion rates of the child population, which could be prevented
through good body hygiene practices [39]. The results showed that Cr and Pb contained in
the RDS exceeded the risk quotient on human health considered safe (HQ < 1.0) by dermal
contact and ingestion in the children population, respectively. However, Cr was in the
environment under different physicochemical forms, where Cr (VI) was the most toxic.
Previous studies have estimated that, on average, Cr (VI) could be as high as 30% of total
Cr [78]. In this study, we considered the maximum value of 30% for Cr (VI) over total Cr
for the calculation of the HI-total index (joint evaluation of HMs). Thus, overestimates to
which the human health risk assessment for multiple metallic elements (HI-total) could
lead to were adjusted. In fact, further studies for the bioavailable fraction of Cr are required
to provide accurate results regarding the risks on human health in the study megacity.

The findings revealed specific areas in the study megacity where there was a potential
risk to the child population from Pb ingestion associated with the RDS (maximum value
of HQing = 2.28). These areas exceeded the risk limit for ingestion (HQing > 1.0) and
were in the center and south of the megacity (Figure 7). The ADT associated with these
study areas was between 77,000 and 180,000 veh./day. Although within the analysis of
the elderly population no potential risks were observed for ingestion, dermal contact, and
inhalation of RDS with HMs (HQ > 1.0), there were study areas with values close to 1.0 for
dermal contact with Cr present in the RDS (HQder = 0.904). In the children and elderly
populations, risk due to exposure to RDS with Pb had the following order of importance
according to the exposure pathway: ingestion > dermal contact > inhalation. In the elderly
population, this sequence changed for Cr: dermal contact > ingestion > inhalation. The
above findings for the children and elderly populations were consistent with those reported
worldwide (e.g., [5,59]). On average, when jointly assessing the risk from exposure to
RDS with Pb (ingestion, dermal contact, and inhalation), no non-carcinogenic risk was
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observed in the child population (HI = 0.925). However, non-carcinogenic risk was close
to the recommended limit value (HI = 1.0). Ingestion, dermal contact, and inhalation of
Pb-containing RDSs in the child population contributed a non-carcinogenic risk of 95.9%,
4.09%, and 0.01%, respectively (Table 4). The decreasing order in the HI index for each of
the HMs was as follows: Pb > Cr > Cu > Ni.

Table 4. Hazard ratio (HQ) and hazard index (HI) for each HM and for the set of HMs (HI-total) in
the RDS (children and elderly).

HM Statistic
HQ

Ingestion
HQ

Dermal
HQ

Inhalation HI

Children Elderly Children Elderly Children Elderly Children Elderly

Ni

Mean 0.012 0.002 0.017 0.012 3.32 × 10−13 2.65 × 10−13 0.029 0.014

Median 0.011 0.002 0.015 0.011 2.98 × 10−13 2.38 × 10−13 0.026 0.013

Max 0.025 0.005 0.035 0.025 6.92 × 10−13 5.52 × 10−13 0.059 0.030

Min 0.008 0.002 0.011 0.008 2.17 × 10−13 1.73 × 10−13 0.019 0.009

Cr

Mean 0.265 0.052 0.571 0.417 7.76 × 10−10 8.06 × 10−10 0.251 0.141

Median 0.236 0.047 0.508 0.371 6.90 × 10−10 7.17 × 10−10 0.223 0.125

Max 0.574 0.113 1.238 * 0.904 1.68 × 10−9 1.74 × 10−9 0.544 0.305

Min 0.166 0.033 0.359 0.262 4.87 × 10−10 5.06 × 10−10 0.158 0.088

Cu

Mean 0.037 0.007 0.013 0.010 1.04 × 10−12 1.08 × 10−12 0.051 0.017

Median 0.032 0.006 0.012 0.008 8.94 × 10−13 9.24 × 10−13 0.044 0.015

Max 0.095 0.019 0.034 0.025 2.66 × 10−12 2.75 × 10−12 0.130 0.044

Min 0.019 0.004 0.007 0.005 5.31 × 10−13 5.49 × 10−13 0.026 0.009

Pb

Mean 0.887 0.175 0.038 0.028 2.46 × 10−11 2.55 × 10−11 0.925 0.203

Median 0.763 0.150 0.033 0.024 2.11 × 10−11 2.20 × 10−11 0.796 0.174

Max 2.278 * 0.449 0.098 0.072 6.32 × 10−11 6.57 × 10−11 2.376 * 0.521

Min 0.434 0.086 0.019 0.014 1.20 × 10−11 1.25 × 10−11 0.453 0.099

HI-total (Children) HI-total (Elderly)

Mean Median Max Min Mean Median Max Min

1.42 1.19 3.10 0.654 0.374 0.321 0.892 0.218

Note: * = risk exists.

In relation to the non-cancer risk assessment as a whole for the HMs considered (HI-
total; Figure 8), it could be observed that the Pb contained in the RDS from areas with high
ADT (>13,3000 veh./day) generated the highest risks for both children (HI-total = 3.10) and
the elderly (HI-total = 0.892) (Table 4). Although, for the elderly population, the HI-total
value was close to the recommended limit (HI ≤ 1.0). On average, HI for Pb represented
in the child population about 75% of HI-total, followed by HI-Cr (19%), HI-Cu (4%), and
HI-Ni (2%). It was reported that one of the main sources of Pb in children’s blood was
the ingestion of contaminated soil and sediments, and that was a recurrent problem in
industrialized cities [79]. In contrast to the results obtained using the Igeo index for Cr,
where its concentrations in the RDS were close to the background values of urban soils
(see Table 1 and Figure 3), the findings showed that this HM had an elevated risk on
human health due to its high toxicity (HI). The evaluation of this HM in the RDS should
raise further concern because there are several studies that have reached similar findings
regarding elevated risk from Cr in road environments with elevated ADTs [5].
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In this study, we developed linear regression models between ADT and the HI index
for each HM and the set of HMs considered (ingestion + contact + inhalation). That is, we
normalized HM concentrations under the valuation scales established by this index. This
normalization allowed a better fit of the linear regression models to be obtained between
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ADT and the HI index (R2 > 0.921) compared to the models developed between ADT
and HMs concentrations (R2 > 0.322). The linear regression models developed were as
follows: HI_Pb = 2 × 10−5 × ADT + 0.334 (R2 = 0.971), HI_Cr = 3 × 10−6 × ADT + 0.180
(R2 = 0.919), HI_Cu = 6 × 10−7 × ADT + 0.0164 (R2 = 0.911), HI_Ni = 1 × 10−7 × ADT
+ 0.008 (R2 = 0.901), and HI-total = 2 × 10−5 × ADT + 0.436 (R2 = 0.992). On the other
hand, the results of the carcinogenic risk index (CRI) suggested that Cr was the HM of
greatest attention. However, the concentrations of this HM in the RDS did not represent a
carcinogenic risk (CRI < 1 × 10−4). The maximum value in the CRI index (1.066 × 10−6)
was associated with the study road with the highest ADT (188,000 veh./day).

Based on the linear regression models developed to forecast HM concentrations, ADTs,
and guidelines for human health protection, we proceeded to suggest ADT limits in the
megacity under study. Guidelines on HM concentrations in urban residential land from
Argentina and Catalonia (Spain) were considered as those with the greatest flexibility for
the establishment of ADT limits. Furthermore, we considered the guidelines of Catalonia
(Spain), Germany, and Canada as those with the highest requirement for the establishment
of ADT limits. In this analysis, we considered the concentrations foretold at the 109 ADT
monitoring stations and those observed at the nine direct monitoring stations. The linear
regression models obtained were the following, with origin at zero: Pb = 0.0114 × ADT
(rs = 0.489), Cu = 0.0052 × ADT (rs = 0.538), and Ni = 0.0006 × ADT (rs = 0.687). Table 5
shows the limiting ADTs (lower and upper) suggested for human health protection by
HMs in the RDS. The results showed that 43.6% of the analyzed roads exceeded the upper
ADT limit for Pb (43,860 veh./day; Figure 9), and 31.7% of the roads exceeded the upper
ADT limit for Cu (59,615 veh./day). This suggested that Pb was the HM that, despite being
removed from gasoline, continued to evidence the greatest relative importance to vehicular
traffic and impact on human health. Lastly, we observed roads with values higher than
2.50 times in relation to the Pb limit concentration established by more flexible reference
guidelines (Argentina).

Table 5. Suggested ADT limits for the protection of human health on urban residential land (Pb, Cu,
and Ni).

Guideline Argentina and
Catalonia, Spain

Germany and
Catalonia, Spain

Canada and
Catalonia, Spain

Pb Cu Ni

Lower limit (mg/kg) 500 310 470

Upper limit (mg/kg) 60 60 50

Suggested ADT limits (veh./day)

Upper ADT limit 43,860 59,615 783,300

Lower ADT limit 5263 11,538 83,300
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4. Conclusions

The results of this study on the spatial variation in HM concentrations associated
with the RDS from the ADT in a Latin American megacity allow us to draw the following
conclusions.

1. The findings confirm that a size fraction < 250 µm is the most suitable to study risks
of metallic enrichment (Igeo and IPI indices), ecological risks (ERI and CERI indices),
and risks on human health (HI and CRI indices) due to the HMs associated with RDSs.
This is under the hypothesis that ADT is the main indicator variable for the presence
of HMs in the RDS < 250 µm. Thus, the best HM indicators of the above relationship
are Ni, Cu, and Pb. These metallic elements can also serve as a basis for interventions
aimed at reducing HM contamination levels in road transport systems.

2. From the indices used in this study, the following order of significance in the risk de-
gree from HMs present in the RDS can be established: metallic enrichment (moderate
to high) > ecological (moderate) > non-carcinogenic (non-significant) > carcinogenic
(non-significant). However, the non-carcinogenic risk in the child population is signif-
icant and is mainly associated with the potential ingestion of RDSs.

3. The results show the following sequences in the risk degree for the main HMs consid-
ered in this study. Metal enrichment risk: Pb > Cu > Ni > Cr. Ecological risk: Pb > Cu
> Cr > Ni. Non-carcinogenic risk: Pb > Cr > Cu > Ni. Carcinogenic risk: Pb > Cr > Cu
> Ni. Thus, Pb is the HM of greatest attention, and Cr gains positions for its toxicity
level during the evaluation of ecological, non-carcinogenic, and carcinogenic risks,
respectively.

4. In the study megacity, we suggested the following ADT limits (lower and upper) for
human health protection for Pb, Cu, and Ni in the RDS: 5263–43,860, 11,538–59,615,
and 83,300–783,300 veh./day, respectively. Indeed, these limits in ADT tend to vary ac-
cording to the type of risk analyzed (metallic enrichment, ecological, non-carcinogenic,
and carcinogenic).
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5. The findings show that the linear regression models developed between ADT and
each of the risk indices considered have a better fit (R2 > 0.910) compared to the lin-
ear regression models developed between ADT and HM concentrations (R2 > 0.322).
Indeed, this improvement in the fit of the linear regression models developed is asso-
ciated with the normalization of HM concentrations from the rating scales established
by each of the risk indices considered. In addition, this also suggests the importance
of considering other variables (e.g., land use and climate) when developing future
studies on the relationship between traffic intensity, risk indices, and HM pollution.
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3. Rybak, J.; Wróbel, M.; Krzyżyńska, R.; Rogula-Kozłowska, W.; Olszowski, T. Is Poland at Risk of Urban Road Dust? Comparison

Studies on Mutagenicity of Dust. Environ. Pollut. 2022, 314, 120337. [CrossRef]
4. Mitchell, G.; Oduyemi, K.; Akunna, J. Road Deposited Sediment: Implications for the Performance of Filter Drains Servicing

Strategic Trunk Roads. Water Sci. Technol. 2019, 80, 747–761. [CrossRef]
5. Aminiyan, M.M.; Baalousha, M.; Aminiyan, F.M. Evolution of Human Health Risk Based on EPA Modeling for Adults and

Children and Pollution Level of Potentially Toxic Metals in Rafsanjan Road Dust: A Case Study in a Semi-Arid Region, Iran.
Environ. Sci. Pollut. Res. 2018, 25, 19767–19778. [CrossRef]

6. Sofia, D.; Lotrecchiano, N.; Trucillo, P.; Giuliano, A.; Terrone, L. Novel Air Pollution Measurement System Based on Ethereum
Blockchain. J. Sens. Actuator Netw. 2020, 9, 49. [CrossRef]

7. Zhao, H.; Li, X.; Wang, X.; Tian, D. Grain Size Distribution of Road-Deposited Sediment and Its Contribution to Heavy Metal
Pollution in Urban Runoff in Beijing, China. J. Hazard. Mater. 2010, 183, 203–210. [CrossRef]

8. Smichowski, P.; Gómez, D.R. An Overview of Natural and Anthropogenic Sources of Ultrafine Airborne Particles: Analytical
Determination to Assess the Multielemental Profiles. Appl. Spectrosc. Rev. 2023, 1, 1–27. [CrossRef]

9. Celo, V.; Yassine, M.M.; Dabek-Zlotorzynska, E. Insights into Elemental Composition and Sources of Fine and Coarse Particulate
Matter in Dense Traffic Areas in Toronto and Vancouver, Canada. Toxics 2021, 9, 264. [CrossRef]

10. Ali-Taleshi, M.S.; Squizzato, S.; Feiznia, S.; Carabalí, G. From Dust to the Sources: The First Quantitative Assessment of the
Relative Contributions of Emissions Sources to Elements (Toxic and Non-Toxic) in the Urban Roads of Tehran, Iran. Microchem. J.
2022, 181, 107817. [CrossRef]

11. Al-Swadi, H.A.; Usman, A.R.A.; Al-Farraj, A.S.; Al-Wabel, M.I.; Ahmad, M.; Al-Faraj, A. Sources, Toxicity Potential, and Human
Health Risk Assessment of Heavy Metals-Laden Soil and Dust of Urban and Suburban Areas as Affected by Industrial and
Mining Activities. Sci. Rep. 2022, 12, 8972. [CrossRef]

12. Dixit, R.; Wasiullah; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; et al.
Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental
Processes. Sustainability 2015, 7, 2189–2212. [CrossRef]

13. Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and Environmental Effects of Heavy
Metals. J. King Saud Univ.-Sci. 2022, 34, 101653. [CrossRef]

https://doi.org/10.1016/j.compenvurbsys.2021.101676
https://doi.org/10.1016/j.tra.2022.01.018
https://doi.org/10.1016/j.envpol.2022.120337
https://doi.org/10.2166/wst.2019.319
https://doi.org/10.1007/s11356-018-2176-y
https://doi.org/10.3390/jsan9040049
https://doi.org/10.1016/j.jhazmat.2010.07.012
https://doi.org/10.1080/05704928.2023.2166522
https://doi.org/10.3390/toxics9100264
https://doi.org/10.1016/j.microc.2022.107817
https://doi.org/10.1038/s41598-022-12345-8
https://doi.org/10.3390/su7022189
https://doi.org/10.1016/j.jksus.2021.101653


Atmosphere 2023, 14, 1033 19 of 21

14. Qu, J.; Li, Z.; Wu, Z.; Bi, F.; Wei, S.; Dong, M.; Hu, Q.; Wang, Y.; Yu, H.; Zhang, Y. Cyclodextrin-Functionalized Magnetic Alginate
Microspheres for Synchronous Removal of Lead and Bisphenol a from Contaminated Soil. Chem. Eng. J. 2023, 461, 142079.
[CrossRef]

15. Ermolin, M.S.; Fedotov, P.S.; Ivaneev, A.I.; Karandashev, V.K.; Fedyunina, N.N.; Burmistrov, A.A. A Contribution of Nanoscale
Particles of Road-Deposited Sediments to the Pollution of Urban Runoff by Heavy Metals. Chemosphere 2018, 210, 65–75.
[CrossRef]

16. Bezberdaya, L.A.; Kasimov, N.S.; Chernitsova, O.V.; Tkachenko, A.N.; Lychagin, M.Y. Heavy Metals and Metalloids in Soils,
Road Dust, and Their PM10 Fractions in Sebastopol: Levels, Sources, and Pollution Risk. Eurasian Soil Sci. 2022, 55, 1871–1890.
[CrossRef]

17. Lloyd, L.N.; Fitch, G.M.; Singh, T.S.; Smith, J.A. Characterization of Environmental Pollutants in Sediment Collected during Street
Sweeping Operations to Evaluate Its Potential for Reuse. J. Environ. Eng. 2019, 145, 04018141. [CrossRef]

18. Kim, H.S.; Kim, K.-R.; Kim, W.-I.; Owens, G.; Kim, K.-H. Influence of Road Proximity on the Concentrations of Heavy Metals in
Korean Urban Agricultural Soils and Crops. Arch. Environ. Contam. Toxicol. 2017, 72, 260–268. [CrossRef]

19. Gorka, R.; Kumar, R.; Yadav, S.; Verma, A. Health Implications, Distribution and Source Apportionment of Heavy Metals in Road
Deposited Dust of Jammu City in Northern India. Chemosphere 2022, 308, 136475. [CrossRef]

20. Tang, Z.; Chai, M.; Cheng, J.; Jin, J.; Yang, Y.; Nie, Z.; Huang, Q.; Li, Y. Contamination and Health Risks of Heavy Metals in Street
Dust from a Coal-Mining City in Eastern China. Ecotoxicol. Environ. Saf. 2017, 138, 83–91. [CrossRef]

21. Dietrich, M.; Krekeler, M.P.S.; Kousehlar, M.; Widom, E. Quantification of Pb Pollution Sources in Complex Urban Environments through
a Multi-Source Isotope Mixing Model Based on Pb Isotopes in Lichens and Road Sediment. Environ. Pollut. 2021, 288, 117815. [CrossRef]
[PubMed]

22. Botsou, F.; Sungur, A.; Kelepertzis, E.; Kypritidou, Z.; Daferera, O.; Massas, I.; Argyraki, A.; Skordas, K.; Soylak, M. Estimating
Remobilization of Potentially Toxic Elements in Soil and Road Dust of an Industrialized Urban Environment. Environ. Monit.
Assess. 2022, 194, 526. [CrossRef] [PubMed]

23. Ibañez-Del Rivero, C.; Fry, K.L.; Gillings, M.M.; Barlow, C.F.; Aelion, C.M.; Taylor, M.P. Sources, Pathways and Concentrations of
Potentially Toxic Trace Metals in Home Environments. Environ. Res. 2023, 220, 115173. [CrossRef]

24. Shahab, A.; Zhang, H.; Ullah, H.; Rashid, A.; Rad, S.; Li, J.; Xiao, H. Pollution Characteristics and Toxicity of Potentially Toxic
Elements in Road Dust of a Tourist City, Guilin, China: Ecological and Health Risk Assessment. Environ. Pollut. 2020, 266, 115419.
[CrossRef] [PubMed]

25. Jeong, H.; Choi, J.Y.; Lee, J.; Lim, J.; Ra, K. Heavy Metal Pollution by Road-Deposited Sediments and Its Contribution to Total
Suspended Solids in Rainfall Runoff from Intensive Industrial Areas. Environ. Pollut. 2020, 265, 115028. [CrossRef] [PubMed]

26. Böckin, D.; Tillman, A.-M. Environmental Assessment of Additive Manufacturing in the Automotive Industry. J. Clean. Prod.
2019, 226, 977–987. [CrossRef]
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