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Abstract: Rayleigh–Taylor (RT) interfacial mixing plays an important role in nature and technology,
including atmospheric flows. In this work, we identify the physics properties of Rayleigh–Taylor
mixing through the analysis of unprocessed experimental data. We consider the fluctuations spectra
of the specific kinetic energy of each of the velocity components, and identify their spectral shapes,
by employing the group theory guided foundations and the rigorous statistical method. We find the
spectral shape parameters, including their mean values and relative errors, and apply the Anderson–
Darling test to inspect the residuals and the goodness-of-fit. We scrupulously study the effect of the
fitting window and identify, for each velocity component, the best fit interval, where the relative
errors are small and the goodness of fit is excellent. We reveal that the fluctuations spectra in RT
mixing experiments can be identified by a compound function, being a product of a power-law and
an exponential. The data analysis results unambiguously discovered the dynamic anisotropy and
the dynamic bias of RT mixing and displayed the necessity to improve the design of experiments on
RT mixing.

Keywords: Rayleigh–Taylor instability; interfacial mixing; self-similarity; fluctuations spectra; anomalous
scaling; goodness of fit

PACS: 47.20.Ma; 47.20.-k; 52.35.-g; 52.35.Py

1. Introduction

This paper was invited to contribute to Turbulence from Earth to Planets, Stars and Galax-
ies, the Commemorative Issue Dedicated to the Memory of Jackson Rae Herring, of the Atmosphere.
Dr. Jackson Herring provided very important contributions to our understanding and
modeling of realistic turbulent processes. This may include his earlier works on the growth
of uncertainty in decaying isotopic turbulence [1], the decay of two-dimensional homo-
geneous turbulence [2], and the strain-based Lagrangian-history turbulence theory [3].
This may also include his later investigations of the Lagrangian velocity correlations in
homogeneous isotropic turbulence [4] and the far-dissipation range of turbulence studies
of [5]. The research interests of Dr. Jackson Herring ranged broadly, from the use and
testing of closures in fluid turbulence, such as the Prandtl number dependence of Nusselt
number in direct numerical simulations [6], to the issues and problems of stably stratified
turbulence [7].

In as much as turbulence is considered to be the last unsolved problem of classical
physics, Rayleigh–Taylor interfacial mixing are its more complex counterparts [8]. To
better understand self-similar Rayleigh–Taylor mixing, bias free interpretation of data is
necessary [8–11]. Our work yields physics properties and anomalous scaling of Rayleigh–
Taylor mixing and identifies directions for advancements in experimental design based
on analysis of experimental data [12]. We are inspired by approaches developed by
colleagues [3,7,13–17].
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Rayleigh–Taylor instability (RTI) is a hydrodynamic instability that develops at the
interface between fluids of differing densities that are accelerated against their density
gradients [18,19]. First investigated by Lord Rayleigh in 1883, RTI is an ubiquitous element
of many natural and engineered processes. Of particular interest to modern science is the
nature of late-stage interfacial Rayleigh–Taylor (RT) mixing. The myriad of potential factors
and expected dynamics means that a bias-free, statistically sound method of data analysis
is needed to appreciate the full dynamical picture of RT mixing.

In the natural world, RT mixing is a critical factor for phenomena at a huge disparity
of scales, from microscopic to stellar scales. It is responsible for the fingering of interstellar
media in the matter pulled along the edges of black holes, and the accelerated ejection matter
in both core-collapse supernovae and solar flares. On the Earth, RT mixing is observed
in polar deep ocean convection currents, undersea volcano formation, the dispersion of
pollutants in the atmosphere, and in coastal boundary up-welling systems in the ocean. In
the industrial world the processes of, nano-fabrication, fossil fuel extraction, plasma fusion
and premixed combustion all exhibit interfacial RT mixing [8,9,11,17,20–23].

The late-stage of RT dynamics, interfacial RT mixing, is a continuing subject of active
research in contemporary science, mathematics, and engineering. RT mixing is uniquely
challenging to understand, as it exhibits incredibly complex behaviors and coupling of
scales. It is purported that interfacial RT mixing is self-similar, with the length-scale in
the acceleration direction growing quadratic with time. However, RT mixing remains a
phenomenon of incredibly complex, rich dynamics, evading accurate capture by simplistic
models [9,24].

In this work, we employ a rigorous data analysis method, guided by group theory,
to analyze the spectral behavior of an RT mixing experiment [12]. We consider the fluc-
tuations of the specific kinetic energy of each of three velocity components. We find that
the experimental data revealed properties of RT mixing in good agreement with group
theory results. The dynamics observed in experiments exhibit dynamic anisotropy and
the dynamic bias of self-similar RT mixing [12], and reveal the necessity of improving the
design of experiments on RT mixing [8,10].

The need for statistically rigorous data analysis is borne out of the extreme challenge
that RTI, and, in particular, RT mixing, presents to theory, simulations and experiments.
Experiments must contend with the vast array of scales that are significant to the dynamics,
and must tightly control the implementation of the flow, since even microscopic deviations
from the idealized case may rapidly grow into structures and deformations at later times.
Furthermore, the need for both highly precise and non-invasive diagnostics further restricts
the efficacy of experiments, upon which, for example, numerical simulations are highly
dependent for low-level subgrid assumptions [8,9,11,24].

To combat these difficulties, and advance understanding of RT mixing, rigorous data
analysis is required [25,25]. Substantial success has recently been achieved, with the
data analysis method employed in this paper characterizing the fluctuations spectra of
specific kinetic energy, density and mass flux in the direction of the acceleration for an RTI
experiment, which has evaded theory analysis for some time due to the inhomogeneity
in the fluid densities [26–28]. Careful data analysis found excellent agreement with the
group theory predictions [28]. It was also consistent with the group theory discovery that
RT mixing can keep order and, in fact, retain memory of deterministic conditions, even at
late times [9,24,28,29].

For isotropic homogeneous turbulence, accurate quantification of fluctuations spectra
in experiments and observations led to the discovery of anomalous scaling. Anomalous
scaling is the generic name for departures of the fluctuations spectra in realistic turbulent
processes from the canonical Kolmogorov’s scaling laws [13,17,30,31]. Such anomalies
are also observed in turbulent boundary layers, passive scalar mixing, buoyancy-driven
turbulence, turbulent convection, and compressible turbulence. The classical works find
that, in realistic turbulent processes, the spectral shapes of the fluctuations can be more
complex than Kolmogorov’s spectra [13,15,16,32,33]. As a function of the mode number, the
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spectral shape can have a distinct power-law dependence, can be described by a product
of a power-law and an exponential, and can also be expressed by a stretched exponential
function. Models, including anomalous scaling, accurately capture the properties of fluc-
tuations in experiments and observations. They assert that Kolmogorov turbulence, as
an ideal stochastic process, can be an extreme challenge to implement in realistic environ-
ments [13,17,25,34,35].

In this work, we investigate data on fluctuations in self-similar RT mixing in the
experiments [12,25]. The data are obtained through hot-three-wire anemometry probing.
We analyze the fluctuations of the specific kinetic energy of the three velocity components.
We employ and further develop the method [25] to identify, with statistical confidence,
the spectral shapes of the fluctuations of each of the following three quantities: the mean
values of the spectral shape’s parameters, their relative errors, and the goodness of fit.
To inspect the residuals, which should be χ2

2 distributed, the Anderson–Darling test is
employed [36]. We find the domains of the mode numbers, where the relative errors of
the spectral shape parameters are small and the goodness of fit is excellent. The data
analysis unambiguously identifies the dynamic anisotropy, and the dynamic bias, of RT
mixing in the experiments [12]. Group theory is employed to explain these properties
quantitatively and qualitatively, and to link them to other experiments on RT mixing and
realistic turbulent processes [9,16,17,24,32,33,37–39]. Our results demonstrate the need
for improvements in experimental design for studies in RT mixing, and may help chart
directions for future research [8,10,11,24,40,41].

2. Methodology and Foundations
2.1. Theory
2.1.1. Group Theory Methodology

Rayleigh–Taylor dynamics is governed by equations in the bulk, a boundary value
problem and an initial value problem. The equations in the bulk of each fluid are the laws
of conservation of mass, momentum and energy. They are nonlinear partial differential
equations in three-dimensional space and time, and are the Euler equations in the case of
ideal fluids. The equation of state closes the system of equations. The singular boundary
value problem consists of the boundary conditions at the nonlinear freely evolving unstable
fluid interface. These conditions are represented by a sub-set of non-linear partial differ-
ential equations. For ideal fluids, the mass flux, the normal component of velocity and
the pressure are continuous at the interface, whereas the tangential component of velocity
and the specific enthalpy may have a discontinuity. The boundary value problem is also
augmented with the boundary conditions at the outside boundaries of the domain. The
ill-posed initial value problem is represented by initial perturbations of the interfaces and
the flow fields [9,26,42].

The theoretical problem of Rayleigh–Taylor dynamics is intellectually challenging.
Success in solving the problem is achieved with the group theory approach, including
accurate analytical solutions for the scale-dependent early-time and late-time nonlinear dy-
namics, as well as for the self-similar Rayleigh–Taylor mixing in a broad range of conditions.
Particularly, the dynamics of Rayleigh–Taylor mixing can be captured within the frame-
work of the momentum model that has the same symmetries and scaling transformations
as, and is directly linked to, the governing equation [9,24,26,29,43–46].

Particularly, RT dynamics is driven by a specific, per unit mass, balance of the rate
of momentum gain µ̃ and the rate of momentum loss µ. The gain and loss of specific
momentum are associated with the gain ε̃ and dissipation ε of the specific energy as
µ̃ = ε̃/v and µ = ε/v, where v is the velocity of the parcel of fluid in the acceleration
direction. For constant acceleration with the magnitude g, the rate of momentum loss is
µ = Cv2/L and the rate of energy dissipation is ε = Cv3/L, where C is the drag value and
L is the length scale. The rates of gain of momentum and energy are µ̃ ∼ g and ε̃ ∼ gv. In
the regime of self-similar mixing, the length scale is L ∼ |h|, where h is the amplitude in
the acceleration direction increasing quadratic with time |h| ∼ gt2. The rates of loss and
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gain of momentum relate as µ ∼ µ̃ ∼ g, whereas the rates of energy dissipation and gain
are time-dependent with ε ∼ ε̃ ∼ g2t [9,24,26,29,43–46].

2.1.2. Scaling Laws and Sensitivity to Deterministic Conditions

In RT mixing, the invariant form of the scaling transformation is the rate of loss of
specific momentum µ ∼ v2/L ∼ v2

l /l, where v(vl) is the velocity scale at large (small)
length scale L(l). This leads to the velocity scaling vl/v ∼ (l/L)1/2, the Reynolds number
Re ∼ g2t3/ν, the viscous scale lν ∼ (ν2/µ)1/3 and the span of scales L/lν ∼ Re2/3, where
L ∼ gt2 and ν is the kinematic viscosity.

These properties depart from those of Kolmogorov turbulence [9,29,34,35,42,43]. Further-
more, in contrast to stochastic canonical turbulence, Rayleigh–Taylor mixing is sensitive to
deterministic (initial and flow) conditions [9,24,26,29,42].

To evaluate the sensitivity of fluctuations induced by the RT mixing process to those set
by the deterministic conditions, we consider two parcels of fluid involved in the flow with
a time delay τ̃ one after another. The invariance of the rate of momentum loss µ ∼ v2/L
leads to ballistic dynamics, v ∼ µt. The process-induced velocity fluctuations, ∼µτ̃, are
comparable to the fluctuations set deterministically by the parcels’ relative velocities,
∼(µ̃− µ)τ̃. The ratio of the velocity fluctuations and the mean velocity decays with time,
∼(τ̃/t). This suggests that RT mixing can re-laminarize, akin to accelerated turbulent
flows [15,24,29,37].

2.1.3. Fluctuations Spectra

In Rayleigh–Taylor mixing, [26,27,29] the invariance of the rate of momentum loss
leads the fluctuations of the specific kinetic energy v2 and the spectral density E(k)

v2 ∼
∫

E(k)dk ∼
∫

µk−2dk, E(k) ∼ µk−2. (1)

Since RT dynamics is anisotropic, the dynamics in the direction of the acceleration can
differ from those in the normal plane. Particularly, while in the mixing regime, the vertical
length scale can change self-similarly, h ∼ gt2, and the horizontal scale can remain nearly
invariable, λ ∼ const. In addition to the invariant quantity µ, the fluctuations of the specific
kinetic energy corresponding to the velocity components v2

⊥ in the direction normal to the
acceleration can be driven by the velocity scale

√
gλ. This leads to

v2
⊥ ∼

∫
E(k)dk ∼

∫
(gλ)k−1dk, E(k) ∼ gλk−1. (2)

In the experiments, [12], due to sensitivity of RT dynamics to deterministic conditions,
the fluctuations of the specific kinetic energy corresponding to the velocity components v2

⊥
in the directions normal to the acceleration can also be driven by the velocity scale Û. Here,
Û ∼ o(U), with U being the velocity of the co-flowing streams. The scale Û is set by the
accuracy of the velocity U, being the deterministic noise; which is within a few percent in
the experiments [12]. This provides:

v2
⊥ ∼

∫
E(k)dk ∼

∫
Û2k−1dk, E(k) ∼ Û2k−1. (3)

Finally, in the experiments [12], the fluctuations of the specific kinetic energy corre-
sponding to the velocity components v2

⊥ can also be driven by the interplay of the velocity
scale Û and the rate of momentum loss µ ∼ g, as

v2
⊥ ∼

∫
E(k)dk ∼

∫
Û
√

µk−3/2dk, E(k) ∼ Û
√

µk−3/2. (4)
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The spectral density in Equation (4) is the geometric mean of the spectral densities
of the kinetic energy velocity components, along with, and normal to, the acceleration in

Equations (2) and (3), with Ũ
√

µk−3/2 =
√
(µk−2)(Û2k−1).

2.1.4. Spectral Shapes in Experiments

Quantification of power-laws is a key objective of experimental diagnostics of canoni-
cal turbulence and RT mixing. Reliable identification of an exponent and a prefactor of a
power-law requires a substantial span of resolved scales; it is a challenge to achieve this in
experiments and simulations [10,15,26,41,42,45,46].

In this work, in order to analyze unprocessed raw data from the hot-three-wire
anemometry measurements of Rayleigh–Taylor mixing experiments [12,25], and to identify
the data-based properties of RT mixing, we apply a compound function represented by a
product of a power-law and an exponential

E(k) ∼ kα exp(βk) (5)

The compound function E(k) ∼ kα exp(βk) behaves as a power-law for scales k� kν

and as an exponential for scales ∼ kν, where kν is the wave-vector corresponding to the
viscous scale, with kν ∼ 1/lν. The signs of spectral shape parameters are α, β < 0, because,
in RT mixing with constant acceleration, larger velocities correspond to larger length
scales. The use of the compound function in RT spectra is discussed in detail in our earlier
works [25,25,28]. The compound function E(k) ∼ kα exp(βk) is applied in turbulence to
describe realistic spectra in experiments and observations [9,13,14,16,17,25,30–32].

2.2. Outline of Experiments

In this work, we analyze data in the experiments [12] to further understand the
properties of RT mixing. Our earlier works studied the fluctuations of the cross-stream
velocity component, the density and the mass flux [25,28]. Here we analyze the fluctuations
of each of three velocity components. We consider data from the pure Rayleigh–Taylor
setup A1S0 and we focus on data taken at very late times to ensure that the RT flow reaches
the self-similar mixing [12]. The Reynolds number of the mixing flow is estimated to be
∼3.4× 104 [12].

The details of the experiments, the experimental setups, the diagnostics and the data
can be found in the works [12,25,25,28].

2.2.1. Experimental Setup

For the purpose of completeness and the reader’s convenience, Figure 1 illustrates the
schematics of the experiments [12]. The flow is three-dimensional, with the (x, y, z) spatial
directions and with the (u, v, w) corresponding velocity components. In the pure RT setup
A1S0, the velocities of the co-flowing streams equal one another, U = U1 = U2, within a
few percent accuracy [12].

In Figure 1, as in the experiments [12], the x-direction is the direction of the co-flowing
streams. In the x-direction, the velocity component is u. We call it the stream-wise velocity.
The y-direction is the direction of the acceleration, which is the Earth’s gravity, and is
directed from the heavy (top) to the light (bottom) fluid. In the y-direction, the velocity
component is v. We call it cross-stream velocity. The z-direction is normal to the directions
of the acceleration and the co-flowing streams. In the z-direction, the velocity component is
w. We call it cross-tank velocity [28].
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Figure 1. Configuration of the experimental tank. The gas inflow is stream-wise (in the x-direction),
with the gravity driving the flow against the cross-stream direction (y-direction) and with both the
inflow and gravity being incident to the cross-tank (z) direction.

2.2.2. Characteristic Scales in the Experiments

Based on the experimental parameters in the setup A1S0 [12], we evaluated the wave-
vector kν = (g/ν2)1/3 as kν = (1.13 − 1.08) × 103 [m−1], and the viscous length scale
lν = 2π/kν as lν = (5.58− 5.84)× 10−3 [m]. The scales kν and lν were comparable to those
of the mode of fastest growth in RTI.

We evaluated the scales which were set by the deterministic noise; particularly, by
the 1% accuracy in the magnitude of the velocity of the co-flowing streams Û = 0.01
U = 6.30 × 10−3 [m/s], where U = U1 = U2 = 6.3 × 10−1 [m/s]. This yielded the
wave-vector k̂ν = Û/ν = (4.06− 3.79)× 102 [m−1] and the corresponding length scale
λ̂ν = 2π/k̂ν = (1.55− 1.65)× 10−2 [m].

We evaluated the scales which were set by the velocity of the co-flowing streams with mag-
nitude U = U1 = U2 = 6.3× 10−1 [m/s]. This included the wave-vector ǩν = U/ν = (4.06−
3.79) × 104 [m−1], the corresponding length scale λ̌ν = 2π/ǩν = (1.55− 1.66)× 10−4 [m],
and the corresponding time scale τ̌ν = ν/U2 = (3.91− 4.18)× 10−5 [s].

The largest horizontal length scale and vertical length scale corresponded to L = 31.5 [m]
and H = 1.2 [m], respectively. In this data set, the total sampling time was T = 5× 101 [s].
The horizontal length-scale L and the total sampling time T related as L = UT. The scale H
was the tunnel width and it was used to scale the lengths [12].

For further details, including the resolution and the level of instrumental noise, the
reader is referred to the works [25,25,28].

2.3. Method of Data Analysis

The data analysis method we employed was successfully applied in [28], predicated
on an earlier method in [25,25].

The method is derived from the statistically sound Whittle Maximum Likelihood
Estimation (MLE) technique but includes an Anderson–Darling test applying a newly
calculated test statistics. The method finds estimations of the model parameters, verifies
the goodness of fit and probes the effect of the range of wave-vectors on the estimation
values and statistical uncertainty in the fit parameters. By interrogating the effect of the
wave-vector range, it is possible to identify the most-likely parameters, the uncertainty in
the estimation, and the wave-vector range the model is valid for.
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2.3.1. Spectrum Fitting Method

The data analysis methodology is explained in detail in [28], as well as in [25,25].
For the convenience of the reader, herein we provide a brief overview of the spectrum
fitting method.

The analyzed data constitutes a time-series of measurements from the anemometer. To
analyze the spectral properties of the fluctuations, we constructed a Fast Fourier transform
(FFT) of the fluctuations. Assuming the real and imaginary components of the FFT represent
a pair of identical, independent, normally distributed random values, the residuals should
be chi-square distributed. MLE was employed to the fit parameters for a given fitting
window [47]. To verify the statistical validity of the fit, a goodness-of-fit score pAD was
computed [25,36,48–50]. The confidence intervals were computed by a Monte-Carlo method
from a previous work [28].

The process allows for rapid computation of the fit parameters yielding the lowest
uncertainties and their associated goodness-of-fit score.

2.3.2. Effect of the Fitting Interval

We approximated the data with a compound function S(k) ∼ kα exp(βk). The ex-
ponential component of this function exp(βk) is scale-dependent, and defines a natural
length scale ∼ |β|−1. The power-law component kα is scale-invariant, and a substantial
span of k values is required for confident parameter fitting and accurate fit evaluation. In
the realistic experimental data considered in our work, the range of k values is relatively
short, and the choice of the fit interval may influence the compound function parameters
α and β. In order to identify the best fitting interval, to ensure the accuracy of our results
and to preempt misinterpretations, we scrupulously investigated the dependence of the
compound function parameters α and β on the the left cut-off kl and the right cut-off kr of
the interval k ∈ [kl , kr] over which the fit was performed [25,28]. Such effects are known to
exist in realistic turbulent processes [14,16,17,32].

3. Data Analysis Results

In this section, we employed the spectrum fitting method to scrupulously analyze the
RT mixing data for fluctuations of the three velocity components in the experiments [12]. We
investigated the properties of the fluctuations of the specific kinetic energy for the stream-
wise u2 and cross-tank w2 velocity components, and we outlined those for the cross-stream
velocity component v2 studied in detail earlier [28]. We aimed to understand and answer
the following questions: Can RT mixing exhibit dynamic anisotropy at very late times?; Can
RT mixing be similar to isotropic and homogeneous canonical turbulence?; What are the
properties of RT mixing in the environment of the experiments [12]? These three questions
motivated and framed our study.

3.1. Stream-Wise Velocity
3.1.1. Spectral Properties of the Data

We first analyzed fluctuations of the kinetic energy of the stream-wise velocity compo-
nent u2 in the direction of the co-flowing streams of the heavy and the light fluids. In this
case, in the interval k ∈ [110, 3700], an MLE for compound spectra S(k) ∼ exp(α ln(k) + βk)
provided fit parameters α = −1.06± 0.06, β = −(2.14± 0.05)× 10−3. These results are
illustrated by Figure 2. The fitted periodogram found excellent agreement in k ∈ [110, 3700]
(shaded in magenta), whereas, on the right, a noise level of Snoise = 10−7 accurately
captured the large wave-number (k > 3000) data.

For the stream-wise velocity component u2 fluctuations spectra, Figure 3 presents the
dependence of the parameters α and β of the compound function S(k) ∼ kα exp(βk) on the
left and right cut-offs kl(r), and on the fitting window, k ∈ [kl , kr]. The Figure illustrates
how α and β varied for all the data (Figure 3a), and for the data in the fitting window with
the strictest values of relative errors and with high goodness-of-fit (Figure 3b).
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Figure 4 further illustrates the measures of the uncertainty in the estimations of the
compound function parameters and the goodness-of-fit, including the dependence of the
relative errors σα/α (Figure 4a) and σβ/β (Figure 4c) and the Anderson–Darling test score
pAD (Figure 4b) on the left and the right cut-offs kl(r) for all the data considered.

(a) Periodogram (b) Cumulative Distribution Function

Figure 2. (a) The estimated fluctuation spectra S(k) (black line) found tight agreement with the
periodogram of the streamwise (u2) velocity fluctuation spectra in the region considered (magenta).
(b) The Cumulative Distribution Function of the residuals closely followed that of the χ2

2 distribution.

(a) No restrictions

(b) σα/α < 7%, σβ/β < 3%, pAD > 0.5

Figure 3. Variations in the estimation of α (left) and β (right) as a function of the fit window for the
stream-wise velocity u2 fluctuations.
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(a) |σα/α%| (b) pAD% (c) |σβ/β%|

Figure 4. Measures of uncertainty in obtaining α (a), the uncertainty in the estimation of β (c) and the
goodness of fit score pAD (b) for stream-wise velocity u2 fluctuations.

3.1.2. Analysis of Residuals and Goodness of Fit

Applying the Anderson–Darling test between the empirical Cumulative Distribution
Function (CDF) of the observed residuals Yk and a χ2

2 distribution yielded a goodness of fit
value of pAD = 0.5073� 0.05, suggesting that the observed residuals were χ2

2 distributed,
and, thus, the fit was statistically valid. The uncertainties in the fit parameters were small
with σα/α = 5.52% and σβ/β = 2.43%, and the spectral fit was well-contained by the
data. The certainty in the fit was further justified in the near-perfect overlap between
the empirical CDF of the residuals Yk and the χ2

2 distribution. This result is illustrated
in Figure 2b.

3.1.3. Effect of the Left and Right Cut-Off

The α values for the stream-wise velocity estimations ranged from α = −0.5 to
α = −2.5 over the majority of the fit window, with very small outlier regions, in which
α > −0.5 and α < −5. For the vast majority of the fitting window, −1.5 < α < −1,
with divergences for the left cut-off, kl < 100 (for which α > −1), right cut-off, kr < 200
(with α varying from as high as α > 0 to as low as α < −5) and very large fit windows
kl > 400, kr > 4500 (with α > −1).

The estimations of β were somewhat more varied, ranging from β > −2× 10−3 down
to β < −5× 10−3. The estimated values were relatively stable for right cut-offs kr > 2000,
with the estimated β values being −2.5× 10−3 < β < −2× 10−3 in this region, except for
a central window region with kl > 100 and 2500 < kr < 3500), in which −2× 10−3 < β�
−1.75× 10−3. For right cut-offs below the region with kr < 2000 estimates, the values of β
varied wildly, being highly affected by the variations over the source and integral parts of
the spectrum, and with estimations ranging from β < −6× 10−3 up to β > 4× 10−3.

The uncertainty in estimating α was inverse to the width of the fit window, with the
lowest uncertainty σα/α < 6% being achieved for 20 < kl < 150 and kr > 3000. The
uncertainty was relatively symmetric about kl = 80, with the uncertainty increasing as the
left cut-off deviated from kl = 80 and as the right cut-off kr decreased. There were two
small regions for which the estimation for α should be discounted: the corner defined by
kr < 1000, kl < 200 and the corner defined by kr < 2000, kl > 350.

The uncertainty of β was similarly inverse to the fit window, with the minimum
uncertainty σβ/β < 2% being achieved in the region kl < 20, kr > 3500. The dependence
on the left cut-off kl was stronger than on the right cut-off kr for kr < 2000 and for kl < 200.
There was a small region, kl > 200, kr < 1250, for which constructing a fit was impossible,
with uncertainties starting at σβ/β > 50% and ranging to σβ/β ∼ 100%.

Overall, the goodness of fit value in the estimating the fit parameters was above the
threshold for rejection. The resultant range is presented in Figure 3b.
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3.2. Cross-Tank Velocities
3.2.1. Spectral Properties of the Data

We now consider the fluctuations spectra of the kinetic energy of the cross-tank
velocity component w2 in the direction normal to the acceleration and to the direction of
the co-flowing streams. In this case, for a broad interval k ∈ [150, 3700], the MLE fit of
the data with a compound function S(k) ∼ exp(α ln(k) + βk) with α = −1.49± 0.07 and
β = (1.30± 0.05)× 10−3 and with pAD = 0.6382� 0.05, which implied excellent goodness
of fit and confidence in the fit parameters. The estimated noise Snoise ∼ 10−7 captured
the behavior of the right of the periodogram (k > 4000). These results are illustrated
in Figure 5.

(a) Periodogram (b) Cumulative Distribution Function

Figure 5. (a) The estimated fluctuation spectra S(k) (black line) found tight agreement with the
periodogram of the cross-tank velocity (w2) fluctuation spectra in the region considered (gray).
(b) The Cumulative Distribution Function of the residuals closely followed that of the χ2

2 distribution.

For the cross-tank velocity w2 fluctuations spectra, Figure 6 presents the dependence
of the parameters α and β of the compound function S(k) ∼ kα exp(βk) on the left and
right cut-offs kl(r) and on the fitting window, k ∈ [kl , kr]. The Figure illustrates how α and β
varied for all the data (Figure 6a); and for the data in the fitting window with the strictest
values of relative errors and with high goodness-of-fit (Figure 6b).

Figure 7 further illustrates the measures of the uncertainty in the estimations of the
compound function parameters and the goodness-of-fit, including the dependence of the
relative errors σα/α (Figure 7a) and σβ/β (Figure 7c) and the Anderson–Darling test score
pAD (Figure 7b) on the left and the right cut-offs kl(r) for all the data considered.

(a) No restrictions

Figure 6. Cont.
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(b) σα/α < 7%, σβ/β < 3%, pAD > 0.5

Figure 6. Variations in the estimation of α (left) and β (right) as a function of the fit window for the
cross-tank velocity w2 fluctuations.

(a) |σα/α%| (b) pAD% (c) |σβ/β%|

Figure 7. Measures of uncertainty in obtaining α (a), the uncertainty in the estimation of β (c) and the
goodness of fit score pAD (b) for the cross-tank velocity w2 fluctuations.

3.2.2. Analysis of Residuals and Goodness of Fit

We applied the resultant fitted function to determine the observed residuals Yk, and
tested the null hypothesis that the residuals were χ2

2 distributed. Testing the hypothesis
between the empirical CDF of the residuals and the CDF of the χ2

2 distribution yielded a
goodness of fit value of pAD = 0.5382 � 0.05. Hence, the null hypothesis could not be
rejected. This confidence in the fit was corroborated by the tight visual agreement between
the empirical Cumulative Distribution Function (CDF) of the residuals and the CDF of the
χ2

2 distribution. This is illustrated by Figure 5b. In addition, the fitted function precisely
captured the behavior of the periodogram and the uncertainty in the fit parameters was
small, with σα/α = 2.96% and σβ/β = 3.98%. This is illustrated by Figure 5a. The resultant
fitted function was, thus, an accurate prescription of RT mixing dynamics.

3.2.3. Effect of the Left and Right Cut-Offs

The distribution of estimated α values varied from α < −3 to α > 0. The estimation of
α decreased as the right cut-off kr increased, and increased as the left cut-off kl increased,
with the dependence on the left cut-off kl being more significant than the dependence on
the right cut-off kr for kl < 350, kr > 1500 and for kr > 4000. For the small region kr < 1500
and for kr > 4000. For the small region kr < 1500, kl > 450, the estimations for α varied
greatly, due to the high sensitivity of the dynamics to the integral and inertial ranges. For
small left and right cut-offs kl < 400, kr < 1200, corresponding to only the integral and
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inertial ranges, the estimation provided α ∼ 0, over which range the velocity fluctuations
appeared almost entirely scale-independent.

The distribution of estimated β values ranged from β ∼ 0 to β < −6× 10−3, but only
varied from β ∼ 0 to β ∼ −3× 10−3 for kr > 1500. For kl > 200 (and kr > 1500), the
dependence on the left cut-off was significantly greater than on the right cut-off. In a similar
manner to the estimations for α, the fit yielded greatly fluctuating parameter estimations in
the region kr < 1500, kl > 450, even more so than in the rest of the kr < 1500 range. In the
regions wherein α was estimated as α ∼ 0, the MLE yielded β ∼ −3× 10−3, in agreement
with existing literature.

The uncertainty in the estimation of α was nearly independent of the left cut-off
kl , except in the regions kl < 100 (kl > 40), wherein the uncertainty in α decreased
(increased) with increasing kl . The uncertainty in α generally decreased with increasing
kr, in correspondence with the larger contribution of the near-dissipation and dissipative
regimes. For kr < 1500, kl > 100 and for 1500 < kr < 2000 and kl < 100, the uncertainty in
estimating α was σα/α ∼ 100%, and was excluded from consideration.

The uncertainty in estimating β had a more complex dependence on the left and right
cut-offs than the uncertainty in α. For the fixed left cut-off, kl , the uncertainty in estimating
β was minimized in the region 3000 < kr < 3500. For the right cut-offs kr greater than
(less than) the bounds of this region, the uncertainty was increasing (decreasing) in kr.
For the fixed right cut-off kr, the uncertainty in estimating β was increasing for increasing
left cut-off. Overall, the uncertainty gave the appearance of a minimum uncertainty at
kl = 0, kr = 3250, outward from which the uncertainty increased with distance from this
point, with a stronger dependence on the left cut-off kl than the right cutoff kr. There
existed regions, with kl > 400 and kr > 4750, and with kl > 400 and kr > 1500 m in which
the fit became untenable, with uncertainties of σβ/β ∼ 100%.

The goodness of fit score, as evaluated by the Anderson–Darling test, was much less
regular than for the other parameters and varied a great deal in nearly all regions. For the
region bounded by the line segment between kl = 0, kr = 3500 and kl = 280, kr = 5000, the
goodness of fit value was pAD < 0.05 < 0.10 and necessarily rejected. For kl > 100, kr >
3600 and kl < 100, kr > 3000, the goodness of fit pAD < 0.5. There was a large region
of pAD < 0.5 for kl > 170, 1600 < kr < 3400 and several small patches of uncertain fits
(pAD < 0.5) in the domain kl > 300, kr < 2000. For the rest of the domain, the goodness
of fit varied from 0.5 < pAD < 0.95, with various, seemingly uncorrelated, regions with
pAD > 0.75; commenting on these is, statistically, meaningless.

3.3. Cross-Stream Velocity

The properties of fluctuations of the kinetic energy v2 of the cross-stream velocity
component v in the direction of the acceleration g were scrupulously analyzed in our
earlier work [28]. We briefly outline the obtained results. In this case, for the compound
function S(k) ∼ kα exp(βk), the MLE yielded the fit parameters α = −2.04± 0.06 and
β = (1.02± 0.05)× 10−3 in the fitting interval k ∈ [100, 4000]. The fit had a goodness of fit
score pAD = 0.5699 � 0.05, confirming the validity of the fit. The presumed noise level
Snoise = 10−7 excellently captured the behavior of the data for k > 4000. The fit was in
excellent agreement with the periodogram of the data for the wave numbers considered
k ∈ [100, 4000].

4. RT Mixing Characteristics in the Experiments

In this section, we identify the physics features of RT mixing in the experiments [12],
from the results of our scrupulous data analysis guided by the group theory approach.

4.1. Flow Characteristics

To obtain the quantitative characteristics of RT mixing, we summarize our data analy-
sis results in Table 1. Table 1 presents the characteristic quantities for each of the fluctuation
spectra diagnosed in the experiments; namely, these are the estimated values of the pa-
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rameters α and β of the compound function S(k) ∼ kα exp (βk), the left kl and the right kr
cut-offs of the fitting interval k ∈ [kl , kr], and the span of scales lg(kr/kl), with lg = log10.

We further evaluated the characteristic scales set by the exponential decay factor
1/|β| of the compound function S(k) ∼ kα exp (βk). Table 2 presents the value 1/|β|, the
corresponding wave-vector k∗ = 1/|β|H and the length scale l∗ = 2π/k∗ of the fluctuations
spectra of each of the velocity components.

We also provide, here, for the reader’s convenience, the characteristic scales in the
setup A1S0 in the RT mixing experiments Table 3 presents the scales set by the acceleration
g, including the values of the wave-vector kν and the length scale lν. It also provides the
scales set by the deterministic noise Û, including the values of the wave-vector k̂ν and the
length scale l̂ν. The deterministic noise was due to the inaccuracy of the magnitude of the
velocity of the co-flowing streams, Û = 0.01 U, in the experiments [12].

Table 1. Characteristics of the fluctuation spectra for each of the velocity components, including the
parameters α and β of the compound function S(k) ∼ kα exp (βk), the left kl and the right boundaries
kr of the fitting interval, and the span of scales lg(kr/kl).

Quantity α β kl H kr H lg(kr/kl)

〈u2〉 −1.06± 0.06 (−2.14± 0.05)× 10−3 110 3700 1.53
〈w2〉 −1.49± 0.07 (−1.30± 0.05)× 10−3 150 3700 1.39
〈v2〉 −2.04± 0.06 (−1.02± 0.05)× 10−3 100 4000 1.60

Table 2. Characteristic scales set by the exponential decay factor β, including the value 1/|β|, the
corresponding wave-vector k∗ = 1/|β|H and the length scale l∗ = 2π/k∗ in the fluctuations spectra
for each of the velocity components.

Quantity 1/|β| k∗, [m−1] l∗, [m]

〈u2〉 4.67× 102 3.89× 102 1.61× 10−2

〈w2〉 7.69× 102 6.41× 102 9.80× 10−3

〈v2〉 9.80× 102 8.17× 102 7.69× 10−3

Table 3. Characteristic scales in RT mixing experiments in the setup A1S0 set by the acceleration g
(kν and lν) and by the deterministic noise Û (k̂ν and l̂ν).

kν, [m−1] lν, [m] k̂ν, [m−1] l̂ν, [m]

1.11× 103 5.71× 10−3 3.93× 102 1.50× 10−2

4.2. Anomalous Scaling

According to our data analysis results, the fluctuations spectra in RT mixing in
realistic fluids can be represented by a product of a power-law and an exponential,
S(k) ∼ kα exp(βk). In the compound function S(k), the power-law kα captured the self-
similar dynamics at relatively large scales, whereas the exponential exp(βk) described
the scale-dependent dynamics at small scales. These results were consistent with our
theoretical foundations, and with the classical works, Equations (1)–(4) [9,13,14,17,26].

4.3. Dynamic Anisotropy

The results of our data analysis unambiguously exposed the dynamic anisotropy of
RT mixing in realistic environments, such as the experiments in [12], and were in good
agreement with the group theory results. The dynamic anisotropy was revealed in the
different values of the power-law exponents α and the exponential decay factors β in the
spectral shapes S(k) of the kinetic energy fluctuations in distinct velocity components. See
Tables 1 and 2, Figures 2a and 5a, Equations (1)–(4) and Ref. [28].



Atmosphere 2023, 14, 1178 14 of 20

Our data analysis found the following properties of fluctuations spectra of the velocity
components v2, u2, w2, see Tables 1 and 2 and Ref. [28]. In these spectra, the self-similar
spectral part ∼ kα was the steepest, α ∼ −2, for the cross-stream velocity v2 in the direction
of the acceleration. Furthermore, it was the most gradual, α ∼ −1, for the stream-wise
velocity u2 in the direction of the co-flowing streams. The scale-dependent spectral part
∼ exp(βk) had the smallest magnitude of the exponential decay factor, |β| = 1.02× 10−3,
and the smallest associated length scale, l∗ ∼ 7.69× 10−3 [m], for the cross-stream velocity
v2. It had the largest magnitude of the exponential decay factor, |β| = 2.14× 10−3, and the
largest associated length scale, l∗ ∼ 3.89× 10−2 [m], for the stream-wise velocity u2. These
results were consistent with our theoretical foundation in Equations (1), (3) and (4), and
highlighted a number of relevant physics properties of RT mixing [12].

The fluctuations of the cross-stream velocity v2 in the direction of the acceleration were
discussed in detail in our recent work [28]. They are defined by the acceleration g. This
is illustrated by the exponent α of the power-law, with the experimental value α = −2.04
being within 2% of the theoretical value α = −2. This is also illustrated by the characteristic
length scale l∗ = 7.69× 10−3 [m], which was set by the exponential decay factor |β| = 1.02,
and which was close, within 30%, to the length scale lν set by the acceleration g, and by the
kinematic viscosity ν. See Tables 1–3, Equation (1), Section 2.1.2.

The fluctuations of the stream-wise velocity u2 in the direction of the co-flowing
streams were set by the deterministic experimental conditions. This was revealed by the
exponent α of the power-law, with the experimental value α = −1.06 being close, within
6%, to the theoretical value α = −1. This was also revealed by the characteristic scale of
length l∗ = 1.61× 10−2 [m], which was defined by the exponential decay factor |β| = 2.14,
and which was within 3% of the length scale l̂ν, determined by the deterministic noise; the
velocity scale Û and the kinematic viscosity ν. See Tables 1–3, Equation (3).

Recalling that, in the RT mixing experimental setup A1S0, the reported accuracy of
the velocity magnitudes of the co-flowing streams, U = U1 = U2, was within 4%; the data
analysis, thus, suggested that even the slightest shear caused by a small deterministic noise
(Û = 0.01 U) was sensed by RT mixing flow at very late times. The strong sensitivity of RT
mixing to the deterministic conditions was consistent with the theoretical foundations and
was also observed in other experiments [12,24,39].

The fluctuations of the cross-tank velocity w2 (which was in the direction normal to
the acceleration and to the velocity of the co-flowing streams) were set by the combined
effects of the acceleration and the deterministic conditions. This was evidenced by the
exponent α of the power-law, with experimental value α = −1.49 being within 0.07%
of α = −3/2, which was the mean of the theoretical values of α = −2 and α = −1 of
the cross-stream and stream-wise velocities, respectively. This was further confirmed by
the characteristic length scale l∗ = 9.80× 10−3 [m] set by the exponential decay factor
|β| = 1.30, which was within 20% of a length scale 1.18× 10−2 [m], which was the mean of
the length scales l∗ = 7.69× 10−3 [m] and l∗ = 1.61× 10−2 [m] for v2 and u2, respectively.
See Tables 1–3, Equation (4). Note also that the power-law exponent for the w2 fluctuations
α = −1.49 was the closest (within 12%) to the exponent−5/3 for the canonical Kolmogorov
turbulence [34,35,42].

4.4. Dynamic Bias

Our data analysis unambiguously revealed the dynamic bias of RT mixing dynamics
in realistic experimental environments; thus, achieving good agreement with the group
theory results. See Tables 1 and 2, Figures 2a and 5a, Equations (1)–(4) and Ref. [28].

Particularly, our data analysis exposed the sensitivity of the late time RT dynamics
to the deterministic (the initial and the flow) conditions. This property of RT mixing is
explained by group theory foundations, which have also explained similar observations in
other RT mixing experiments with Reynolds numbers up to 3.2× 106 for a broad range of
setups and conditions [9,11,24,39,41].
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While for any initial conditions the RT flow is expected to evolve toward a mixing
regime with self-similarly growing amplitude in the acceleration direction, the RT dynam-
ics in the normal directions can be scale-dependent and influenced by the deterministic
conditions. We call this sensitivity to deterministic conditions dynamic bias. In our data
analysis, the dynamic bias of RT mixing is revealed in the values of the power-law exponent
α and the exponential decay factor β of the specific kinetic energy of the stream-wise u2

velocity component. It is also revealed in the span of scales of fluctuations of the velocities
(v2, u2, w2). See Tables 1–3, Figures 2–4.

For the velocity component u2, the exponent was α = −1.06 and the exponential decay
factor was |β| = 2.14, with associated length-scale l∗ = 1.61× 10−2 [m]. These experimental
values were in good agreement with the theoretical values set by the velocity scale Û and
the kinematic viscosity ν, with α = −1 and l̂ν = 1.50× 10−2 [m]. They evidenced that
the stream-wise dynamics in the direction of the co-flowing streams was influenced by
the deterministic noise caused by the 1% uncertainty of the velocity magnitude of the
co-flowing stream Û = 0.01 U, U = U1 = U2. See Tables 1 and 3, Equation (3).

The other indicator of the dynamic bias of RT mixing was the relatively short span of
scales. The experimental values of lg(kr/kl) for the velocity components (v2, u2, w2) were
(1.60, 1.53, 1.39), respectively. This experimental span of scales was substantially, ∼ 3-fold,
shorter than the span of scales predicted for canonical turbulence. The latter depended on
the Reynolds number as lg(Re3/4) and was estimated as lg(Re3/4) ≈ 3.40 for Re = 3.4× 104.
The short span of scales diagnosed in the experiments revealed that, in RT mixing, the
velocity fluctuations are deterministic rather than stochastic in nature [9,24,30,34,35].

4.5. Analysis Method and Data Interpretation

Since RT mixing is sensitive to deterministic bias and is statistically unsteady,
some discussion is required on the effect of the data analysis method on data interpre-
tations [9,10,14,24–27,29,45].

To obtain physics properties of RT mixing in realistic environments, we analyzed raw
unprocessed data and we applied compound functions to describe the fluctuations spectra
of the diagnosed quantities. In the compound function S(k) ∼ kα exp(βk), the power-law
kα captures the self-invariant part of the spectrum at relatively large length scales, k� kν,
and the exponential exp(βk) captures the scale-dependent part of the spectrum at relatively
small length scales, k ∼ kν.

To precisely evaluate the exponent α (the exponential decay factor β), one needs to
grasp accurately, and with ample statistics, the dynamics at relatively small (large) length
scales, with k ∼ kν (k� kν). An appropriate choice of the fitting interval k ∈ [kl , kr], and its
left (right) boundaries kl(kr), is further required to enable a relatively broad span of scales
lg(kr/kl) of the function S(k), with small enough kl and with large enough kr. Hence, on
the maps of α(kl , kr) and β(kl , kr), accurate estimates of values α and β are expected to be
located in the top left part in the plane (kl , kr). This was fully consistent with our results.
See Figures 3b and 6b and Ref. [28].

The goodness of fit is the most important aspect of the data analysis. Our previous
work quantified goodness of fit by using the standard Kolmogorov–Smirnov (KS) test and
the pKS score. Here, we employed the Anderson–Darling test and the parameter pAD, and
we compared the residuals with the χ2

2 distribution. We believe the Anderson–Darling
test was more statistically suitable in our case, since the maximum likelihood estimator
was computed from the same data set used to verify the fit without re-sampling. The
goodness of fit analysis in our present work was consistent with that in the previous work;
the dependence of the parameter pAD on the fitting window was qualitatively similar to
that of the parameter pKS. See Figures 4b and 7b, Ref. [28] and Refs. [25,36,48,49].

The dependence of the parameter pAD on the fitting interval in the plane (kl , kr) suggests
that, in order for the residuals to be distributed according to the fitting technique assumptions,
the statistical analysis should account for a significant number of modes on the left and on the
right ends of the periodogram. Furthermore, in the regions k ∈ [kl , kr], where the parameters α



Atmosphere 2023, 14, 1178 16 of 20

and β of the fitting function S(k) ∼ kα exp(βk) were precisely identified, the fit was excellent
and the goodness-of-fit parameter value was high, pAD > 0.5. A high precision and a high
goodness of fit appear closely interrelated. We made a remarkable observation that, in
statistically unsteady RT mixing, similarly to statistically steady processes, an old-school
approach to quantify a value with small relative errors and with ample statistics works
well. To our knowledge, such observations have not been discussed before. See Figures 2–7
and Ref. [28].

4.6. Summary of Properties of RT Mixing

Our analysis of the data of fluctuations of each of the three velocity components iden-
tified important physics properties of RT mixing in realistic environments: the anomalous
scaling, the dynamic anisotropy, and the dynamic bias. Specifically, the following were
identified: (i) In RT mixing the fluctuations spectra differ substantially from the spectra of
canonical Kolmogorov turbulence; (ii) In RT mixing, the fluctuations of the specific kinetic
energy unambiguously exhibit dynamic anisotropy; (iii) RT mixing dynamics remain sen-
sitive to deterministic conditions, even at very late times. These outcomes are consistent
with group theory foundations and with other experiments. See Tables 1 and 2, Figures 2–7,
Equations (1)–(4) [9,15,17,23,24,29,30,37,39,44–46,51].

4.7. Analysis Outcomes for Design of Experiments

We, herein, discuss the relevance of our data analysis to the design of experiments on
RT mixing in fluids [10,12,19,24,39,41,52].

Traditionally, analysis of data is viewed as a tool for establishing fidelity of a theory
by comparing theoretical predictions with experiments. The underlying assumptions are
such that the theory is mathematically rigorous and physically accurate, whereas in the
experiment, the conditions and parameters closely resemble theoretical assumptions, the
diagnostics are accurate and non-intrusive, and the data have ample statistics [9,30,42].

The phenomena of Rayleigh–Taylor instability and RT mixing open new venues for
data science, well beyond traditional considerations. Since RT dynamics is highly sensitive
to deterministic (the initial and the flow) conditions, in addition to fidelity of the theory,
one can employ the analysis of data for systematic control of experimental conditions, and
for methodical improvement of experimental design [9,10,24].

For instance, the experiments [12,53] are designed to study the coupling of RT and
KH dynamics and the late stages of RT mixing in a large domain. The pure RT dynamics
is achieved in the setup A1S0, when the velocities of the co-flowing streams are the same,
within a few percent, as U1 = U2 = U with |Û/U| ≈ 10−2, where |Û| ≈ |U1 −U2|. The
slight distinctions of the velocities of the co-flowing streams are assumed to have negligible
effect on the late time RT mixing [12,53,54].

Our data analysis results unambiguously found that even that tiny a distinction may
strongly influence the flow characteristics. Particularly, it may lead to significant, in several
folds, departures in the parameters of the spectral shapes of the velocity components.
This was illustrated by the values of α and β in the spectral shapes S(k) ∼ kαeβk for the
fluctuations of the cross-stream and stream-wise velocity components, with α = −2.06,
β = −1.06× 10−3 for v2 and with α = −1.06, β = −2.14× 10−3 for u2; see Table 1 and
Figure 2 and Ref. [28]. The strong sensitivity of RT dynamics to the deterministic noise
is consistent with the group theory results [9,26,29] and with experiments [24,41]. It also
indicates a need in new approaches for experimental design [10].

Particularly, accurate probing and quantification of properties of RT mixing requires
non-intrusive diagnostics of fast events, and ultra-high performance in space–time reso-
lution, bandwidth, and data-acquisition rate, along with tight control of the initial and
experimental conditions [10,17,24]. These requirements can be implemented in integrated
experimental systems. The systems should incorporate state-of-the-art technology in mo-
tion control, precision mechanics, optical imaging, image processing, and digital signal
processing, as well as data analysis methods [10,28]. For simultaneous measurements in
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space and in time of the interface dynamics and the flow fields, the experimental diagnostics
may include, for example, particle image velocimetry, planar laser-induced fluorescence
and holographic particle image velocimetry. By employing these diagnostic capabilities, one
can accurately implement and diagnose RT mixing and can provide data suitable for a direct
comparison with the group theory approach and numerical simulations [9,10,17,24,55–57].

4.8. Analysis Outcome for Numerical Simulations

Rayleigh–Taylor mixing is successfully modeled in numerical simulations employing
various methods [55,56,58–60]. Traditionally, visual inspection is used to analyze smoothed
post-processed numerical data, but our data analysis methodology can provide numerical
simulations with a number of advantages, expanding the predictive modeling capabilities
of simulations.

Our methodology can be applied to analyze both raw and processed numerical data. It
can employ a broad class of fitting functions (e.g., a power-law, an exponential, a compound
function) to study fluctuations spectra, structure functions, amplitude growth and growth
rate, and other quantities. It can identify the fitting function parameters, including their
mean values, relative errors and goodness-of-fit. It can investigate the dependence of
the results on the fitting window and self-consistently identify the best fit interval. It
can be used for both in-fly diagnostics and in-depth analysis of numerical data. We urge
that high quality numerical simulations consider these advantages and incorporate our
methodology [55,56,58–60].

4.9. Spectral Shapes in Turbulence and in RT Mixing

Compound functions kαeβk are regularly employed in analysis of data from a broad
range of realistic turbulent processes [13–17,32,33]. Success was found in the seminal
works [13,14], which investigated the fluctuations spectra of isotropic, homogeneous turbu-
lence at large, finite Reynolds numbers. With regards to physics, compound functions kαeβk

describe processes in which self-similar kα and scale-dependent eβk dynamics interplay.
Rayleigh–Taylor mixing is anisotropic, inhomogeneous, non-local, and statisti-

cally unsteady, and is sensitive to deterministic conditions. Its properties depart from
those of isotropic, homogeneous, local, statistically steady and stochastic Kolmogorov
turbulence [9,24,40,41,44]. Rayleigh–Taylor mixing possesses a complex interplay of self-
similar and scale-dependent dynamics. Hence, compound functions can be applied to
analyze RT spectra, as in other physics processes.

The present work finds that, in addition to the shape kαeβk of fluctuations spectra,
a thorough analysis of data is expected to include estimates of relative errors of fitting
function parameters, evaluations of goodness of fit, and investigations of effects of fitting
intervals on results. We urge numerical simulations and experiments of realistic turbulent
processes and of Rayleigh–Taylor mixing to consider these findings and incorporate our
methodology.

5. Discussion

We analyzed the fluctuations of three velocity components measured in a RT ex-
periment, by a hot-three-wire anemometer, using a group theory-guided data analysis
method. The analysis elucidated some key features of the fluctuations spectra in realistic
Rayleigh–Taylor instabilities.

We expounded the theoretical framework underpinning the aforementioned statis-
tical method for diagnosing the physics and mathematical properties of RT mixing. The
method employs a maximum likelihood estimate to estimate the best fit of the parameters
and the standard errors associated with the fit parameters. To evaluate the goodness-
of-fit, the Anderson–Darling test [25,36] is employed, including a new test statistic [28],
(Sections 4.1 and 4.2). By applying the method over all potential left and right cut-offs of the
fitting interval, the effects of the fitting interval, left and right cut-offs, and the noise level
on the model fit are investigated (Section 4.3). Group theory establishes the foundation for
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the method (Sections 2.1.1–2.1.3), justifying the functional form of the power density spec-
trum S(k) ∼ kα exp(βk) we have, herein, applied to analyze the time series (Section 2.1.4,
Equation (5). Such forms have been applied in works on classical turbulence [13,14,26,29].

By optimizing each of the fit conditions, including the relative errors of the fit param-
eters, the goodness-of-fit, and the span of scales, we have identified the optimal fitting
interval and determined the associated fit parameters (Section 5). We have further identified
the resultant properties of RT mixing (Tables 1 and 2, Figures 5–7, Equations (1)–(4)).

The results of the data analysis indicate that RT mixing may depart substantially
from canonical Kolmogorov turbulence, exhibiting dynamic isotropy, anomalous scaling
properties, vastly different spectral properties, and the dependence of late-time dynamics
on the deterministic conditions [9,11,13–17,24,26,27,32,34,35,37,39,41,44,51].

The data analysis method employed, herein, and the results of our investigation
are applicable to future research in fluids, plasmas, and other materials which exhibit
RT mixing, or other turbulence-adjacent phenomena. They may assist in informing new
research at various scales [8,22].

6. Conclusions

This work investigated the properties of fluctuations in Rayleigh–Taylor mixing, based
on analysis of experimental data. For fluctuations of the kinetic energy of each of three
velocity components, we studied the fluctuations’ properties at large and at small scales.
We found, with statistical confidence, that the spectral shapes of the fluctuations spectra
in RT mixing experiments are at least as complex as compound functions, represented
by a product of a power law and an exponential. The properties of the spectral shape
parameters unambiguously identify the dynamic anisotropy and dynamic bias of Rayleigh–
Taylor mixing in realistic environments, in agreement with group theory foundations, in
conformity with experiments on high Reynolds number RT mixing and on accelerated
turbulent flows, and in consistency with the anomalous properties of turbulent flows in
realistic environments.
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