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Abstract: Particulate matter (PM) pollution is a crucial environmental issue. Considering its adverse
health impacts, especially on children’s immune systems, Korean regulations require annual PM2.5

measurements in daycare centers. Therefore, we developed a low-cost PM2.5 sensor calibration
model for measuring the indoor PM concentrations in daycare centers using long short-term memory
(LSTM) algorithms. Moreover, we trained the model to predict the PM2.5 based on temperature and
humidity, and optimized its hyperparameters. The model achieved a high accuracy and outperformed
traditional calibration methods. The optimal lookback period was 76, which led to a high calibration
performance with root mean and mean squared errors, a coefficient of determination, and mean
absolute errors of 3.57 and 12.745, 0.962, and 2.7, respectively. The LSTM model demonstrated a better
calibration performance than those of the linear (r2 = 0.57) and multiple (r2 = 0.75) linear regression
models. The developed calibration model provided precise short-term measurement values for the
optimal management of indoor PM concentrations. This methodology can be applied to similar
environments to obtain new learning and hyper-parameters. Our results will aid in improving
the accuracy of low-cost sensors for measuring indoor PM concentrations, thereby providing cost-
effective solutions for enhancing children’s health and well-being in daycare centers and other
multiuse facilities.
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1. Introduction

Recently, particulate matter (PM) warnings have increased in South Korea, leading
to growing concerns regarding the harmful effects of PM10 and PM2.5 [1]. In particular,
PM2.5 pollution has become a substantial environmental issue and caused an increased
interest in the social costs associated with PM because of its severe health consequences.
According to the World Health Organization (WHO), Geneva, Switzerland, air pollution
contributes to approximately three million premature deaths globally, and approximately
70% of these deaths occur in southeast Asia and the Western Pacific. Globally, only 1 out
of every 100,000 individuals residing in cities lives under conditions that meet the WHO
air quality standards [2]. Furthermore, infants and young children have more vulnerable
immune systems than those of adults and are therefore susceptible to pollutants, owing to
their high air intake per unit of body weight [3].

A study investigating the impact of PM2.5 concentration on asthma hospitaliza-
tion rates elucidated that the probability of hospitalization increased by 1.05% for every
10 µg/m3 increment in the under 15 age group. Furthermore, the risk of hospitaliza-
tion increased significantly in the 0–4 age group, with a 1.60% increase in risk for ev-
ery 10 µg/m3 increment [4]. Thus, accurate and timely information regarding changes
in PM concentrations is urgently required to enable effective and timely responses to
these changes.
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The Ministry of Environment of South Korea has recently reinforced the PM10 and
PM2.5 standards for indoor air in five facility groups, including daycare and postpartum
care centers, indoor child playing and older adult care facilities, and medical institutions.
To protect vulnerable groups, the standards have been lowered from 100 to 75 µg/m3 and
from 70 to 35 µg/m3 for PM10 and PM2.5, respectively. Moreover, local governments have
been asked to strengthen the supervision and management of these facilities. Furthermore,
the Indoor Air Quality Control in Public-Use Facilities Act (2014) states that a measuring
network should be installed in multi-use facilities to determine the actual state of the
indoor air quality at all times. The indoor measurement network comprises national and
local government networks. The National Automatic Measurement Network operates in
14 public-use facilities, such as underground subway stations, underground commercials,
and daycare centers, whereas the local government network operates in 35 public-use
facilities, which primarily comprise underground stations. For the measurements, they
consider the characteristics of these facilities and the PM10, PM 2.5, CO2, CO, and NO2
concentrations. Based on these data, indoor air quality information (www.inair.or.kr
(accessed on 14 June 2023)) is provided to the users of the multi-use facilities and the
general public [5].

PM measurement techniques include gravimetric, beta-ray, and light-scattering meth-
ods. In South Korea, the national PM air quality is assessed using gravimetric and beta-ray
methods. The gravimetric method quantifies the concentration of PM2.5 by weighing the
fine dust collected using filter paper. In contrast, the beta-ray method automatically mea-
sures the concentration by determining the amount of beta rays absorbed by the PM [6,7].
Although the gravimetric method is notably precise, it first collects PM for 24 h and then
requires a considerable amount of time to measure the weight at a constant temperature
and humidity. In contrast, the beta-ray method is less accurate than the gravimetric method,
but can produce measurements at hourly intervals. Light-scattering low-cost PM2.5 sensors
are a paradigm for solving the cost problem [8]. Morawska et al. [9] conducted a thorough
literature review and reported that low-cost sensors perform well in the laboratory, with a
high degree of linearity, but suffer considerable performance degradation when used under
natural conditions.

Real-time concentration measurements using low-cost sensors are crucial, because
indoor PM concentrations change dynamically depending on anthropogenic activity. Re-
cent technological advancements have made the distribution of portable and low-cost air
pollution sensors possible over wide areas for source and personal exposure estimations,
epidemiological investigations, air monitoring, and citizen science applications [10–15].
However, a general approach is used for sensor calibration in low-cost air pollution sensors,
which involves conducting step-by-step repeatability experiments in a controlled laboratory
environment, such as the standard calibration methods used in atmospheric chemistry
and meters. The second method involves calibrating the sensors through comparative
measurements at the same location via an automatic Federal Equivalent Method (FEM)
monitoring device, which has already been corrected for the national air quality standard
using the Federal Reference Method (FRM). To assess the applicability of these low-cost
sensors, their performance (accuracy, bias, and reproducibility, etc.) and calibration have
been evaluated by placing them at the same location as FEM monitoring devices [9,16–18].

In South Korea, a performance certification system has been implemented for PM2.5
low-cost sensor measuring instruments, which allocates a grade (ranging from 1–3, with an
out-of-grade option) based on the performance evaluation of the instrument. This system
provides PM meter quality information to users, enabling them to make accurate decisions
regarding their use [19].

In recent studies, long short-term memory (LSTM) has been used for air pollution
prediction, such as traffic volume and wind-power prediction via machine learning meth-
ods. The use of weather data, weather forecasts, and air measurement network data for
predicting more than 48 h air quality is being further explored [20–24].

www.inair.or.kr


Atmosphere 2023, 14, 1228 3 of 13

Castell et al. [12] installed low-cost sensors for NO2 monitoring in 17 Oslo kinder-
gartens and generated a detailed air quality map by merging the sensor data with urban
model data, thereby improving the map and providing information to the staff and parents
of the participating kindergartens. Park et al. [22] collected fine dust data from the Seoul
area from 2005 to 2016 and evaluated the performance of a fine dust prediction model
using linear regressions, reproducible neural networks, and LSTM. They found that LSTM
improved the performance of the root mean squared error (RMSE) by 500% compared to
the prior regressions. In a large building at Qatar University, Doha, a low-cost sensor-based
internet of things (IoT) system was used to measure the indoor air quality (CO2, CO, SO2,
NO2, O3, and Cl2) and evaluate its suitability and scalability [25].

Hagan et al. [26] evaluated the performance of low-cost electrochemical sensors for SO2
measurements in Hawaii and compared them with that of a regulatory-grade instrument
based on the FRM. To calibrate the sensors, they tested the performance of three algorithms:
linear and hybrid linear nonparametric regressions and k-nearest neighbor (k-NN). The
k-NN correction performed exceptionally well, with the RMSE, MAE, and coefficient of
determination (r2) being less than 7 ppb and 4 ppb and greater than 0.997, respectively.

Sayahi et al. [27] conducted a study in Salt Lake City over a period of 320 d from 2016
to 2017. They evaluated the performances of low-cost fine PM sensors (Plantower PMS),
comparing them with that of a reference instrument (TEOM) at the same location. During
the winter, PMS-1003 overestimated the PM2.5 concentrations by a factor of 1.89 (compared
to TEOM (PM2.5 < 40 µg/m3)), whereas PMS-5003 overestimated the PM2.5 concentrations
by a factor of 1.47. Furthermore, one of the sensors exhibited a similar performance to that
of the reference instrument. This study emphasized that various correction factors and
seasonal and conditional calibrations are required for the same sensor model.

Zimmerman et al. [28] used low-cost sensors and reference equipment for measur-
ing the air quality (CO2, CO, NO2, and O3) at the Carnegie Mellon University Campus,
Pittsburgh, from August 2016 to February 2017. They calibrated the low-cost sensors using
linear and multiple linear regression analyses and machine-learning-based random forest
(RF) models of the data obtained in the laboratory and field. The RF model matched the
other calibration models for the CO measurement and performed substantially better than
the other models for the NO2, CO2, and O3 measurements. Furthermore, its accuracy and
precision improved over the 16-week testing period.

To understand the characteristics of fine dust, this study evaluated the performance
and calibration of low-cost fine dust sensors in the indoor environment of child daycare
centers, where FEM meters were installed. Furthermore, we used these results as basic data
for improving and managing future indoor air quality.

Our findings will aid in the development of indoor activity guidelines for the optimal
management of indoor PM concentrations.

2. Materials and Methods
2.1. Location and Design

To analyze the PM characteristics, we measured the PM10 concentration from 6 October
to 31 December 2018 (86 d) at a daycare center in Incheon Metropolitan City, South Korea,
where an indoor air quality measurement network was established (Figure 1). Furthermore,
we evaluated and calibrated a beta-ray absorption method (FEM) meter and low-cost PM
sensor. Table 1 represents the specific specifications and characteristics of the equipment
(low-cost sensor and FEM) used in this study.
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Figure 1. Particulate matter 2.5 (PM2.5)-measuring instrument in the daycare center.

Table 1. Specifications of the low-cost sensor and Federal Equivalent Method (FEM) meter.

Instrument Pollutant Equipment Measurement
Method

Measurement
Range

FEM meter Particulate matter 2.5
(PM2.5)

Thermo Scientific
(FH 62 C14)

Beta-ray absorption method
(ISO 10473 equivalent method) 0–500 µg/m3

Low-cost sensor PM2.5 Plantower PMS 7003 OPC laser 0–500 µg/m3

2.2. Evaluation and Calibration of Sensor Performance Data

The performance evaluation and calibration of the low-cost fine dust sensors were con-
ducted using repeatability experiments performed in laboratory chambers and comparison
measurements via automatic beta-ray meters, which were calibrated using the national
reference system in the environmental atmosphere. Based on the results of the comparative
measurements at the same location as a beta-ray meter in an indoor environment, multi-
ple regressions and recurrent neural networks (RNNs) were calibrated and used for the
performance evaluation and calibration of the low-cost fine dust sensors [26,28–30].

2.2.1. Multiple Regression Analysis

A regression analysis is a statistical method that predicts how explanatory variables (of
a response variable) affect a response variable, where changes in the response variable can
be interpreted with respect to the explanatory variable [31]. A multiple regression analysis
and the least squares method, which minimizes the sum-of-squares errors and predictor
variables, were used to derive a linear regression equation (Equation (1)) that predicted
the change in the dependent variable, owing to the changes in two or more independent
variables [32].

ŷ = b0 + b1 x1 + b2 x2 + . . .+bk xk
(1)

In addition, when Equation (2) is calculated for n data points, the regression equation
has the same matrix form as that in Equation (3).

y = [X]b (2)
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y1
y1
. . .
yn

=


1 x1,1 x1,2 . . . x1,k
1 x2,1 x2,2 . . . x2,k
...

...
... . . .

...
1 xn,1 xn,2 . . . xn,k




b0
b1
...

bk

 (3)

where x denotes the value describing the variable to be predicted as the kth ŷ predictor and
ŷ is a response variable associated with the predictors.

In this study, corrections were made using the temperature, humidity, CO2, and
holiday (no school) data measured at the daycare centers.

2.2.2. RNN and LSTM

RNNs can process long sequence information; however, their performance decreases as
the length of this sequence information increases. This is called the long-term dependency
problem. LSTM is a variant of the RNN model used to overcome this problem [8,33]. The
FEM meter and low-cost sensor measurements were corrected based on LSTM (Figure 2)
and an artificial neural network that recognized patterns in the time-series data.
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Figure 2. Long short-term memory (LSTM) architecture.

LSTM comprises four layers with a recursive architecture. The core of LSTM is a
continuous cell state called a conveyor belt that enters through the gate. The data from the
conveyor belt are transmitted without any changes. LSTM can add or delete information
through the input, forget, and output gates. The gates transmit information preemptively
and continue learning by removing previous data. The mathematical formula for LSTM,
which is calculated using the LSTM gate vector, is as follows.

ft = σ
(

W f ·[ht−1, xt] + b f

)
(4)

it = σ(Wi·[ht−1, xt] + bi) (5)

Ct = tan h(WC·[ht−1, xt] + bC) (6)

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (7)

ot = σ(Wo([ht−1, xt] + bo) (8)

ht = ot ∗ tanh(Ct) (9)
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where ft is a forget gate vector weight that remembers the previous cell state; it is an input
gate vector weight that obtains new information; ot is an output gate vector that selects
an output candidate; xt is the input vector; ht is the output vector; ct is a cell state vector;
W, U, and b are a parameter matrix and vector, respectively; and ft, it, and ot are the gate
vectors. σ and tanh are the sigmoid and hyperbolic tangent functions, respectively, which
are the two types of activation functions used in LSTM.

2.2.3. Sequence Data Generation

LSTM learns data using sequence data. Therefore, the stream of fine dust measurement
data was first converted into sequence data for use as input data. We used the Riding
Studio method to convert the time-series data stream into a sequential dataset (Figure 3).
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2.2.4. Outlier Removal

Outliers are observations that are out of touch with most data values and are likely to
distort the analysis results. Therefore, it is important to identify outliers before performing
data modeling or an analysis. We removed outliers using the Grubb test, which detects the
outliers in a dataset.

3. Results and Discussion
3.1. Measurement Results

Figure 4 presents the measurement results of the beta-ray absorption and light-
scattering methods. The statistical values of the measurement results are summarized
in Table 2. In the indoor environment of the daycare center, the average concentrations of
fine dust were 28.9 µg/m3 and 41.9 µg/m3 for the beta-ray absorption and light-scattering
methods, respectively. Generally, the light-scattering method exhibited a higher level of
measurement than that of the beta-ray absorption method. Light-scattering methods yield
higher values than those of beta-absorption methods. The beta-ray absorption equipment
was not operational during the device inspection and stabilization from 12 to 21 Novem-
ber 2018 (until 17:00). Thus, this period was excluded from the analysis, and corrections
were performed accordingly. Table 2 represents the statistical information for the data
sets sampled from the low-cost PM2.5 sensors and FEM (beta-ray) instruments. The data
(temperature, humidity, CO2, and weekdays) set is used to verify the accuracy performance
of the calibrated results.
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Table 2. Statistical results for the sensor and federal equivalent method (FEM) meter used in this study.

Sensor PM2.5 FEM PM2.5 Temperature Humidity CO2

Count 2203 1960 2208 2208 2171
Mean 41.9 28.9 15.9 47.1 403.2

Standard
deviation 26.0 18.2 3.2 19.4 77.2

Minimum 3.5 1.8 5.9 14.9 302.0
25% 20.2 15.1 14.0 33.7 346.7
50% 36.0 24.2 16.0 42.8 385.0
75% 60.2 38.2 18.3 57.0 444.0

Maximum 153.0 94.2 26.6 99.7 862.3

3.2. Calculation of Correction Factor
3.2.1. Linear Regression

Using the hourly measurement data obtained from the beta-ray absorption method
as a reference, a scatter plot was generated by averaging the 1 min data obtained from
the light-scattering method. The resulting scatter plot is illustrated in Figure 4. A linear
regression analysis of the data yielded a regression formula similar to Equation (10). The
correlation coefficient (R) and r2 between the beta-ray absorption and light-scattering
methods were 0.76 and 0.57, respectively. The comparison tests between the light-scattering
method sensor used in this study and similar sensors tested using the FEM equipment
in the field exhibited slightly higher performances, with PMS1003 at R2 = 0.73–0.97 and
PMS3003 (r2) (Figure 5) [34]. Additionally, the comparison analyses between the PM2.5
sensors located at the same position as the FEM equipment had r2 values in the range of
0.33–45 [33].

FEM = 1.10 × Sensor + 9.17 (10)

3.2.2. Multiple Linear Regression

A multiple regression analysis was performed to determine the influence of environ-
mental factors (temperature, humidity, CO2, and holiday information, etc.) on the FEM and
light-scattering fine dust concentrations in the daycare centers. The r2 for each influencing
factor is indicated in Table 3, and the regression equation is as follows.

FEM = −7.783 + 0.564 × Sensor + 1.363 × Temperatuer + (−0.228×
Humidity + 0.033×CO2 + (−7.369)× weekday

(11)
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Table 3. Summary of multiple linear regression analysis for the sensor and federal equivalent method
(FEM) meter.

Classifier Coefficients Standard Deviation t p-Value

Intercept −7.783 3.123 −2.492 0.013
PM2.5 0.564 0.012 48.561 0.001

Temperature 1.363 0.101 13.480 0.001
Humidity −0.228 0.021 −10.906 0.001

CO2 0.033 0.006 5.309 0.001
Weekday −7.369 0.677 −10.889 0.001

The relationship between the FEM and light-scattering fine dust concentrations was
significant, with a modified r2 of 0.75. It was at the Tier II level, as suggested by the US
Environmental Protection Agency’s “Air Sensor Guidebook”. The multiple regression
analysis correction results based on the correction formula are illustrated in Figure 6.
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Figure 7 exhibits the low-cost sensor and reference equipment measurements corrected
using the multiple regression analysis.
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Figure 7. Comparison between the reference monitor data (green) and statistically averaged sen-
sor (blue) using multiple linear regression (MLR) model (orange) through example time series
and regressions.

3.2.3. RNN

For training the data, the hourly measurement data from 6 October to 31 December 2018,
were considered as a single instance, resulting in 1675 instances. Generally, deep learn-
ing models require separate sets of training and testing data to evaluate the prediction
performance of an algorithm. However, this method is susceptible to overfitting, which
occurs when a model is overly optimized for training data and therefore performs poorly
when applied to new data. Consequently, a cross-validation process was used to evaluate
the model performance in the first round and was then applied to the testing dataset for the
final evaluation. The final training dataset comprised 64%, 16%, and 20% training, valida-
tion, and testing data, respectively. TensorFlow version 1.10 and Keras version 2.2.2 were
used to implement the prediction and calibration models, and the results were generat-
ed accordingly.

The input data, including the FEM and sensor measurements, temperature, humidity,
and CO2, were diverse. Therefore, normalization was performed to convert all the training
data into values between 0 and 1 and achieve accurate learning [34]. The values of the
LSTM network parameters are crucial for obtaining a good calibration and prediction
model. The LSTM parameters used in this study are listed in Table 4.

Table 4. Long short-term memory (LSTM) parameter settings.

Hyperparameter Value

Learning rate 0.001
Batch size 128

Number of iterations 2000

To obtain a highly accurate calibration and prediction model, it is important to deter-
mine the hyperparameter values and select an optimizer that minimizes the cost function.
In this study, we used Adam, Adamax, and RMSprop for optimization, which exhibited
a good performance. The hyperparameters for configuring the model to calibrate the
measured values of the low-cost PM sensors based on the FEM data are listed in Table 5.
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Table 5. Long short-term memory (LSTM) model hyperparameters.

Model Parameters Root Mean Squared
Error (RMSE) R-Squared

Layer
2_Layer 5.198 0.930
3_Layer 3.569 0.962
4_Layer 3.626 0.958

Optimizer
Adam 5.198 0.930

Adamax 5.408 0.900
RMSprop 4.529 0.933

Node
32_Node 5.198 0.930
64_Node 3.827 0.950

128_Node 3.574 0.962

The LSTM model was evaluated using an evaluation algorithm based on the difference
between the predicted and actual values. Generally, the mean squared error (MSE), RMSE,
and square root of MSE are used to measure the error between the two values. Because the
prediction can also produce negative results, the RMSE is more suitable than the MSE for
measurement. Thus, the RMSE was used as an error measurement tool in this study, and
RMSE values close to zero indicated a better performance.

RMSE =

√
1
n

n

∑
i=1

(Yi − Xi)
2 (12)

Lookback is a coefficient that determines how much past time interval data should
be used for training compared to the reference time of the training data. In this study,
the minimum RMSE value over the past 76 h of data collection was determined to be the
optimal lookback for calculating the optimal lookback value (Figure 8).
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(LSTM) model.

Figure 9 compares the FEM measurements with the low-cost sensor measurements
predicted using the LSTM–RNN model. The FEM measurements and the predicted and
calibrated values exhibited no significant differences.
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Figure 10 compares the FEM data with the low-cost sensor measurements calibrated
using the LSTM model. The r2 was 0.962, which was more accurate than that of the
regression analysis (r2 = 0.76).
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Thus, more accurate values could be obtained using this model by correcting the
measured low-cost sensor fine dust data in real time and monitoring these data. The
use of low-cost IoT-sensor-based indoor environmental measurement instruments is an
economical and user-friendly solution for indoor environment management. However,
there are concerns regarding the reliability of the measured values, instability owing to
environmental conditions, periodic sensitivity, fatigue testing, and sensor replacement
cycles, which have been identified as limitations of low-cost sensors. Therefore, further
research is required to address these issues and improve the overall effectiveness of low-cost
sensor-based indoor environmental measuring instruments.

4. Conclusions

In this study, the performance of a low-cost fine dust sensor was evaluated with
respect to PM reference measuring equipment by measuring the fine dust in the indoor
environment of a daycare center for 3 months (October–December 2018). Furthermore,
we developed a correction model based on an LSTM algorithm to improve the accuracy
of low-cost sensors for measuring the PM concentrations in daycare centers. The optimal
hyperparameters were analyzed, and the performance of the LSTM model was compared
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with those of the linear and multiple linear regression models. The LSTM model was
trained using the data collected via the low-cost sensors and FEM methods. The optimal
lookback period was determined to be 76, which resulted in a high calibration performance,
with an RMSE, r2, MSE, and MAE of 3.57, 0.962, 12.745, and 2.7, respectively. The LSTM
model demonstrated a better calibration performance than that of the linear (r2 = 0.57) and
multiple linear regression models (r2 = 0.75).

These results suggest that LSTM-based correction methods and optimized hyperpa-
rameters can be applied to low-cost sensors for measuring short-term changes in the indoor
PM concentrations of daycare centers. Furthermore, the calibration model developed in this
study can be used to obtain precise short-term measurements of indoor PM concentrations.
If the measurement environment of a low-cost PM sensor differs, the methodology used
in this study can be similarly applied to obtain new learning and hyperparameter values.
Our findings will aid in the development of indoor activity guidelines for the optimal
management of indoor PM concentrations.
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