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Abstract: Using ERA5 reanalysis data, we conducted an EOF analysis of summer precipitation in the
eastern part of southwestern China (ESWC) over the past 60 years. Our study aimed to investigate
the spatial distribution characteristics and interannual variability of summer precipitation in the
ESWC, as well as to reveal the possible physical mechanisms influencing its interannual variability.
The results indicate that, at the interannual scale, the first two modes of summer precipitation in
the ESWC exhibit a uniform pattern and a north–south dipole pattern, respectively. The maximum
and minimum time coefficients of the first mode correspond to the severe flood and drought events
in 1998 and 2006, respectively, indicating that their time coefficients reflect the typical events well.
The tri-pole sea surface temperature anomaly in the North Atlantic, along with the sea ice anomaly
near the Barents Sea, induces a quasi-zonal wave train in the upper troposphere. This wave train
propagates from the tropical and mid-latitude Atlantic, traverses the mid-high latitudes of Eurasia,
and reaches the eastern part of China. The wave train induces cyclonic (anticyclonic) anomalies in
the north (south) of the ESWC, facilitating the convergence of high-latitude dry and cold air with
warm and moist southwesterly winds from the tropical ocean. This convergence promotes increased
summer precipitation in the ESWC. We provided valuable insights into the interannual variability
of summer precipitation in the ESWC, shedding light on the physical mechanisms responsible for
these variations.

Keywords: eastern southwest China; interannual; causes of precipitation change; sea surface
temperature anomaly

1. Introduction

Weather and climate play a crucial role in human life, and precipitation as a key compo-
nent of weather and climate change has garnered significant attention from meteorologists.
The Yangtze River Basin (YRB) is known for its abundant precipitation. Numerous scholars
have examined the spatiotemporal variations of precipitation in the YRB, yielding substan-
tial achievements. Research findings indicate an increasing trend in summer precipitation
and extreme precipitation events in the YRB [1–3], with notable disparities in the spatial
distribution of extreme precipitation [4].

The ESWC, spanning from 27◦ to 32◦ N and 105◦ to 110◦ E, is situated in the upper
reaches of the YRB. The interannual variation characteristics of summer precipitation
in this region differ from those observed in the middle and lower reaches of the YRB.
The ESWC experiences significant interannual variation in summer precipitation, often
accompanied by frequent droughts and floods [5]. For instance, in 2020, June and July
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witnessed the highest precipitation levels in the ESWC since 1961, with frequent heavy
rain events covering a wide area [6]. Conversely, the prolonged drought in 2022 led to
severe wildfires in Chongqing, exerting a significant impact on society and people’s lives.
Consequently, understanding the causes of droughts and floods has become a subject of
great interest [7,8].

The interannual variation of precipitation is influenced by multiple factors. Southwest
China is affected by both the East Asian monsoon and the South Asian monsoon, although
their impacts on regional precipitation differ. Previous studies have indicated that the East
Asian monsoon has a greater influence on the eastern part of Chongqing compared to the
western part, while the western part is primarily affected by the South Asian monsoon.
There is a clear negative correlation between Chongqing’s precipitation and the intensity of
the East Asian monsoon. Specifically, the summer precipitation in Chongqing decreases
with the increasing intensity of the East Asian monsoon [9]. Ma et al. [10] observed a signif-
icant influence of the East Asian monsoon on precipitation in southwest China. During
severe droughts in the Sichuan Basin in summer, the East Asian monsoon weakens consid-
erably, and the East Asian monsoon trough and rain belt shift southward. Although the
East Asian monsoon and the South Asian monsoon are relatively independent systems [11],
their synergy also has a significant impact on summer precipitation in southwest China [12].
Additionally, the position change of the summer subtropical high is closely related to the
summer precipitation anomaly in the ESWC [5].

Precipitation in southwest China is also influenced by various external forcing factors,
such as surface thermal effects [13,14], Tibetan Plateau vegetation [15,16], snow cover [9,17],
intra-seasonal oscillations of the tropical atmosphere [18], and sea surface temperature (SST)
anomalies. The correlation between SST anomalies and summer precipitation in southwest
China has attracted significant attention from meteorologists. Numerous studies have
demonstrated that events like the El Niño Southern Oscillation (ENSO), the Western Pacific
warm pool, Indian Ocean SST anomalies, and South China Sea SST anomalies can influence
large-scale circulation systems such as the Asian monsoon, the Western Pacific subtropical
high, and the South Asia high, consequently affecting China’s weather and climate [19–25].
For instance, Li et al. [22] highlighted that elevated SST in the equatorial Middle East
Pacific and the Indian Ocean during spring enhances the intensity and southward shift of
the South Asia high and the Western Pacific subtropical high during summer, leading to
increased areal coverage of these high-pressure systems. Consequently, the intensity of the
East Asian summer monsoon and South Asian summer monsoon weakens, and upward
vertical motion is observed in the ESWC, promoting precipitation formation. Pang et al. [26]
discovered that the SST anomaly in the equatorial Middle East Pacific can modulate the
activity of the Western Pacific subtropical high, ultimately influencing summer precipitation
in the southwest region.

The ESWC is situated in close proximity to the Qinghai–Tibet Plateau and Sichuan
Basin in the west, the Yunnan–Guizhou Plateau and Qinling Plateau in the north and south,
resulting in a unique topography and significant land–sea–air interactions. It experiences a
subtropical monsoon climate and is located at the convergence of different climatic zones,
making it prone to frequent summer droughts and floods [27]. Understanding the causes
of summer precipitation changes in the ESWC holds great practical significance. Therefore,
this study utilizes ERA5 reanalysis data to analyze the interannual variation characteristics
of summer precipitation in the ESWC over the past 60 years and investigates the potential
factors influencing its interannual variability. The findings aim to provide a theoretical
foundation for improving summer drought and flood prediction techniques in the ESWC.

2. Data and Methods
2.1. Data

The data used in this paper mainly include monthly ERA5 reanalysis data from 1961
to 2020 [28]. Major physical quantities include precipitation, sea temperature, sea ice
concentration, geopotential height, temperature, zonal wind, meridional wind, vertical
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velocity, and vertical integral of one-way (north and east) water vapor flux. The horizontal
resolution is 0.25◦ × 0.25◦, and in the vertical direction is divided into 37 layers.

2.2. Methods

In this paper, two-dimensional wave activity flux [29] is used to analyze the relation-
ship between Atlantic SST anomalies and the inter-annual variation of summer precipitation
in ESWC. The specific formula is as follows:

W =
1

2
∣∣U∣∣

[
u(ψ′2x − ψ′ψ′xx) + v(ψ′xψ′y − ψ′ψ′xy)

u(ψ′xψ′y − ψ′ψ′xy) + v(ψ′2y − ψ′ψ′yy)

]
(1)

where ψ′ represents the perturbed flow function, u and v are the basic flow, respectively,
and the subscript represents the partial derivative of the perturbed flow function with
respect to the x and y directions, respectively. The direction of the two-dimensional wave
flux is consistent with the direction of the Rossby wave group velocity, that is, the direction
of wave energy propagation.

3. Results
3.1. Interannual Variation Characteristics of Summer Precipitation

In order to examine the spatial distribution and interannual variation characteristics
of summer precipitation in the ESWC, an EOF decomposition of summer precipitation
spanning the past 60 years was conducted. As depicted in Figure 1, the first mode of
precipitation exhibits a variance contribution of 52.90%, while the second mode contributes
17.96%. These larger variance contributions indicate a significant convergence of summer
precipitation in the ESWC. The first mode represents a uniform pattern, reflecting the most
representative spatial distribution pattern of summer precipitation. The area with large
precipitation values is predominantly located in the central and eastern parts of the region,
particularly in the southeastern area of Chongqing, suggesting that this region is highly
susceptible to variations in summer precipitation. On the other hand, the second mode
displays a north–south dipole pattern, with positive values in the southeast and negative
values in the northwest. More specifically, when there is increased precipitation in the
southeast, there tends to be reduced precipitation in the northwest, and vice versa.

The direction of the corresponding feature vector can be determined from the positive
and negative values of the time coefficient of the feature vector (Figure 1b,d). The magnitude
of the time coefficient indicates the degree of typicality of the spatial distribution pattern of
summer precipitation in the ESWC for a given year. Analyzing the time coefficient of the
first mode (PC1) of summer precipitation in the ESWC reveals that out of the 60-year period
from 1961 to 2020, 27 years exhibit positive time coefficients while the remaining 33 years
have negative time coefficients. PC1 effectively captures the precipitation characteristics
of representative years, where positive index years correspond to higher overall summer
precipitation in the ESWC, and vice versa. Notably, the region experienced historically rare
extreme climatic events in the summer of 1998 and 2006, characterized by flood and drought,
respectively, which align with the maximum and minimum values of PC1. Additionally,
the recent heavy precipitation year (2020) also corresponds to relatively large PC1.

By examining the time coefficient of the second precipitation mode (PC2), it can be
seen that positive PC2 years primarily indicate increased summer precipitation in the
southeast and reduced precipitation in the northwest of the ESWC. Precipitation gradually
decreases from the southeast to the northwest. Conversely, negative PC2 years show an
increasing precipitation gradient from the southeast to the northwest. The years 1961 and
1969 correspond to the maximum and minimum values of PC2, respectively.
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Figure 1. The spatial distribution patterns and time coefficients of the first mode (a,b) and the second
mode (c,d) of summer precipitation in the ESWC.

To further show the reliability of the aforementioned analysis, we present the difference
values between the maximum and minimum time coefficients of the first two modes in
the EOF analysis of summer precipitation in the ESWC (Figure 2). It is evident that the
difference in precipitation distribution is consistent with the patterns observed in the
two modes (Figure 1), namely, the region-wide consistent type and the north–south reverse
type. In the first mode, the area exhibiting large differences in precipitation distribution
during typical years (Figure 2a) is located in the central and eastern parts of the region,
with a maximum difference of 713.10 mm. Conversely, in the second mode, the difference
in precipitation distribution during typical years (Figure 2b) gradually decreases from the
southeast to the northwest of the region, with a maximum difference of 950.37 mm.
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3.2. Causes of Interannual Variation in Summer Precipitation

Previous studies have demonstrated that the inherent mechanism of changes in two-
dimensional elements can be simplified to analyze the time coefficient of its modes [30–32].
In Section 3.1, we compare and analyze the spatial distribution patterns and time coefficients
of the first and second modes of summer precipitation in the ESWC. The first mode of
precipitation exhibits a variance contribution of 52.90%, indicating its dominant role in
the summer precipitation model in the ESWC. Building upon the findings presented in
Section 3.1, this section utilizes PC1 to investigate the circulation anomaly configuration
associated with the increase (decrease) in summer precipitation in the ESWC.

3.2.1. Water Vapor Conditions and Vertical Motion

The factors directly influencing precipitation in the region are the water vapor condi-
tion and vertical motion. Therefore, Figure 3 illustrates the regression coefficient of PC1
on the water vapor flux throughout the entire layer, and the vertical velocity at 850 hPa
to represent vertical motion in the lower troposphere. From the perspective of water va-
por transport conditions, the ESWC is situated at the convergence area of cold air from
the northwest and warm and humid air from the southwest to the ESWC, resulting in
noticeable horizontal shear in the wind direction of water vapor transport. The southern
(northern) region to the ESWC exhibits an anticyclonic (cyclonic) anomaly of water vapor
(Figure 3a). Specifically, the anticyclone in the northwest Pacific on the northwest side
exhibits a significant southwest water vapor transport anomaly, conveying warm and
humid air from the tropical ocean to the ESWC, where it intersects with the northwest
cold air from the mid-latitudes. In addition, there is a small local cyclonic circulation in
the ESWC which may induce enhanced ascent and greater rainfall. According to the w
equation, warm advection in the lower layer facilitates vertical upward motion and the gen-
eration of precipitation [33]. In terms of vertical velocity at lower levels, most parts of the
ESWC region experience prevailing ascending motion (Figure 3b), while the western Pacific
experiences prevailing sinking motion, both of which contribute to increased precipitation.

3.2.2. Circulation Configuration and Wave Activity Flux

According to the analysis in Section 3.2.1, the anticyclonic–cyclonic dipole water vapor
transport anomaly on the north and south sides of the ESWC contributes to the formation
of precipitation in the region. To further investigate the atmospheric circulation anomalies
responsible for the water vapor transport configuration and their impact, Figure 4 presents
the regression coefficients of PC1 on the atmospheric fields. It can be observed that the
upstream region of the ESWC exhibits the pronounced alternation of positive and negative
wave-like circulation from the northwest Atlantic Ocean to the western Pacific Ocean. And
as PC1 increases, a deep, westward-inclined anticyclonic anomaly emerges in the northwest
Pacific region east of south China, accompanied by a southwest airflow on its northwest
side, corresponding to the strong southwest warm and humid water vapor transport shown
in Figure 3a. Simultaneously, in the middle and upper troposphere, a distinct cyclonic
circulation forms on the northern side of southwest China, while the northwest airflow
on the southwest side leads to the convergence of mid-latitude cold air in the ESWC and
the development of warm and moist cyclones on the southern side of southwest China.
This suggests that the quasi-zonal wave train from the upstream region may serve as an
important driving factor for the summer precipitation anomaly in the ESWC.
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Figure 3. Regression coefficients of PC1 on (a) the vertical integration of water vapor flux in the
whole layer (vector) and (b) 850 hPa wind field (shadow). Dotted areas in the figure indicate that
the regression coefficients pass the 90% reliability test. The red, blue, and green arrows in the wind
vector diagram represent the uv direction, u direction, and v direction, respectively, which pass the
90% reliability test. The black box indicates the location of the ESWC.

To provide a clearer description of the mid-latitude wave train circulation anomalies
associated with summer precipitation over the ESWC, Figure 5 presents the vertical profile
of the potential height composite difference along the wave train. It can be observed that
the geopotential height anomaly generally aligns with the aforementioned characteristics of
the upper quasi-zonal wave train. In particular, there is a pronounced “+− +” type altitude
anomaly oscillation in the southern regions of Iceland, the Norwegian Sea, the Barents
Sea, and the west Siberian region, with relatively deep geopotential altitude anomalies.
The largest anomaly values are observed in the upper troposphere, gradually decreasing
towards the lower levels, indicating a downward propagation trend for the geopotential
altitude anomaly signal.
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As depicted in Figures 4 and 5, a clear relationship emerges between anomalous
summer precipitation in the ESWC and mid-latitude Rossby wave activity. To further
elucidate the associated Rossby wave activity and the concurrent propagation of wave
energy, Figure 6 illustrates the composite difference of the 300 hPa wave activity flux and
the quasi-geostrophic stream function between high and low PC1 years. It is evident that,
during years characterized by substantial positive anomalies of summer precipitation in
the ESWC, notable eastward-propagating and dissipating Rossby wave activity features
manifest in the mid to high latitudes of the Eurasian continent. This wave train efficiently
transfers wave energy to the ESWC region through the Norwegian Sea and western Europe.
This atmospheric teleconnection pattern bears a striking resemblance to the Eurasian–Pacific
(EUP) pattern [34].
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Figure 6. The composite difference of the 300 hPa wave activity flux (vector, unit: m2/s2) and the
quasi-geostrophic stream function anomaly (shaded, unit: 106 m2/s) between high and low PC1
years. The green solid line denotes the propagation path of the wave activity flux.

In general, Rossby waves are excited by various wave sources, with atmospheric
divergence playing a substantial role in linear systems [35]. To provide a more precise
depiction of the wave sources’ variability, this study uses the source of Rossby wave activity
(SRWS) term based on the potential vorticity equation [36]. The formula is as follows:

SRWS= − f∇·V (2)

where f represents the Coriolis force parameter and ∇·V denotes wind divergence.
The composite difference of SRWS in Figure 7 reveals that the significant locations

of wave sources and sinks align closely with the propagation path of the wave activity
flux. Positive RWS anomalies of significance are observed in the tropical Atlantic Ocean,
as well as in the vicinity of the Greenland Sea and the Norwegian Sea. These anomalies
contribute to the excitation of high-level atmospheric Rossby waves [37]. The formation
and propagation of Rossby waves play a crucial role in modulating the development of
anomalous wave-train-like circulations, thereby exerting significant influence on summer
precipitation in the ESWC.
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3.2.3. External Forcing Factors

Anomalies in SST and sea ice coverage can induce local atmospheric circulation
changes through non-adiabatic heating, subsequently affecting downstream areas through
the dispersion of energy by Rossby waves [38–40]. To further analyze the driving fac-
tors behind the formation of the aforementioned wave train, the correlation coefficient
between the PC1 for summer precipitation in the ESWC and concurrent SST was calculated
(Figure 8). It is evident that the PC1-associated SST anomalies exhibit a significant “+ −
+” teleconnection pattern in the North Atlantic. This pattern may be associated with the
tri-pole SST anomaly forcing in the North Atlantic [41], with a notable negative correlation
area extending northward from the negative correlation region in the Norwegian Sea to
the Kara Sea. Notably, the tropical Atlantic region shows a positive correlation, suggesting
that positive SST anomalies in this region may induce anomalous cyclonic circulation and
upper-level divergence in its northwest due to the Gill effect [42]. This corresponds to the
negative anomaly center in the mid-latitude region of the Atlantic (30–50◦ N), as depicted
in Figure 4, resulting in the formation of a quasi-stationary Rossby wave train propagating
northeastward and downstream.
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It is worth noting that the Rossby wave train associated with PC1 exhibits negative
anomalies in the upper troposphere, particularly in the Norwegian Sea and the Barents
Sea regions, displaying pronounced intensified negative fluctuation amplitudes. Since
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the lower layer in this region corresponds primarily to areas with notable interannual
oscillations in sea ice coverage, the variability of sea ice anomalies in this region may
have a certain modulation effect on the amplitude variation of the high-level Rossby wave
train. To explore its possible cause, Figure 9 presents the correlation coefficients between
PC1 and concurrent sea ice concentration over the past 60 years. It is evident that PC1
shows a significant positive correlation with sea ice concentration in the Barents Sea and
Kara Sea. This significant correlation indicates that, when PC1 is positive, there is an
abundance of sea ice in the vicinity of the Barents Sea and Kara Sea, leading to increased
reflectivity in this region. Consequently, the solar shortwave radiation absorbed by the sea
surface decreases, further strengthening the negative correlation between PC1 and SST in
this area. Additionally, the excess sea ice near the Barents Sea induces local atmospheric
cooling, which suppresses convective activity and further enhances the anomalous cyclonic
circulation in the troposphere [32], thereby increasing the amplitude of the anomalous
cyclonic circulation system in the Norwegian Sea and the Barents Sea regions.
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Based on the above analysis, we can summarize the conceptual diagram of the
possible causes of summertime precipitation anomalies in the ESWC, as depicted in
Figure 10. Anomalies in tropical SST in the North Atlantic induce cyclonic circulation
in the mid-latitude region through the Gill effect. This, in turn, triggers the formation of a
northeastward-propagating Rossby wave train, coupled with the “tri-pole” SST anomalies
in the Atlantic. Additionally, the lower sea surface temperature near the Barents Sea leads
to an abundance of sea ice and cooling of the air column, promoting the development of the
wave train. The energy of the wave train disperses downstream and propagates to eastern
China, resulting in cyclonic (anticyclonic) anomalies to the north (south) of the ESWC.
These anomalies cause the convergence of low-latitude water vapor and high-latitude cold
air, favoring regional precipitation formation in the ESWC. Consequently, this leads to
above-normal summer precipitation in the ESWC, and vice versa.
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4. Conclusions and Discussion

This paper combines station observations and reanalysis data to perform an empir-
ical orthogonal function (EOF) analysis of summer precipitation in the ESWC over the
past 60 years. This study investigates the spatial distribution and interannual variability
characteristics of summer precipitation and further reveals possible physical mechanisms
influencing the interannual variations of summer precipitation in the ESWC. The conclu-
sions are as follows:

(1) At the interannual scale, the first two modes of summer precipitation in the ESWC
are identified as the uniform pattern and the north–south dipole pattern, respectively.
Among them, the uniform pattern dominates the variability of regional summer precipita-
tion over the past 60 years, contributing to 52.9% of the total variance.

(2) When the uniform pattern (PC1) of summer precipitation in the ESWC strengthens,
it is usually associated with cyclonic anomalies to the north of the ESWC and anticyclonic
anomalies to the south of the ESWC. This meridional dipole pattern facilitates the conver-
gence of high-latitude dry and cold air with the warm and moist southwesterly flow from
the tropical ocean, promoting increased summer precipitation in the ESWC.

(3) The PC1 associated with tri-pole SST anomalies in the North Atlantic and sea ice
anomalies near the Barents Sea significantly corresponds to a quasi-zonal wave train in
the upper troposphere. This wave train propagates through the northwest Atlantic Ocean
via the Norwegian Sea and western Europe, eventually reaching the ESWC. It induces
the aforementioned “-+” circulation anomaly pattern near the ESWC, leading to increased
regional summer precipitation.

An analysis of the possible causes of interannual variability in summer precipitation
in the ESWC was conducted, along with an explanation of the corresponding physical
mechanisms. However, future work should focus on further verification using numerical
models. The variation of summertime precipitation in the ESWC is influenced by multiple
driving factors, and this paper primarily considered the impact of SST in the northwestern
Atlantic and sea ice in the vicinity of the Norwegian Sea and the Barents Sea on summer
precipitation in the ESWC. In future research, other factors, such as the dynamic and
thermal effects of the plateau, should also be taken into account. For the dynamic effect,
an anomalous cyclonic structure that is constantly moving out will intensify convergence
motion. In terms of the thermodynamic effect, the heating effect of the plateau will increase
the instability of the air and strengthen the convective motion [43].
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