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Abstract: By analyzing the mass concentrations and compositions of atmospheric PM2.5 in Shaoxing
from December 2019 to February 2020, the characteristics of carbon-containing components, water-
soluble ions and metal elements were obtained. NO3

−, OC, SO4
2− and NH4

+ were the main
components of PM2.5 in winter. The OC/EC ratio was 3.27, which proved the existence of SOC.
The proportion of SOC in OC was 47.3%, which showed that secondary sources made a significant
contribution. The values of OC/EC and NO3

−/SO4
2− indicated that vehicle exhaust emissions

also made a significant contribution to PM2.5. Trace elements of Na, Ca, K and Cd had higher
enrichment factor values and were enriched due to human activities. Finally, PM2.5 sources analysis
was performed by the positive matrix factorization model. The results showed that secondary
inorganic salts (49.3%), motor vehicles and industrial sources (21.3%) and dust sources (17.0%) were
the important sources of PM2.5 pollution.

Keywords: PM2.5; metal elements; water-soluble ions; carbonaceous species; sources analysis

1. Introduction

At present, PM2.5 has become the primary pollutant in most cities in China [1]. The
primary aerosol particles and gaseous pollutants emitted by industry, transportation and
fossil fuel combustion, as well as the secondary aerosols transformed by primary aerosols,
are the main causes of PM2.5 pollution [2]. The chemical components of PM2.5 are complex,
including water-soluble ions, organic carbon, elemental carbon and metal elements, mainly
derived from human activities [3]. Water-soluble ions, especially secondary inorganic ions
NH4

+, SO4
2− and NO3

−, have become the main components of PM2.5 in most cities in
China [4].

In recent years, Zhejiang Province has successively conducted research on the compo-
nents and sources of PM2.5, mainly focusing on rapidly developing cities such as Hangzhou,
Wenzhou and Ningbo. Li et al. focused on analyzing the pollution characteristics of carbon-
containing components of PM2.5 in winter in Hangzhou [5] and found that organic carbon
accounted for a relatively high proportion. The compositional characteristics of water-
soluble ions in PM2.5 in Hangzhou were analyzed separately by Chen et al., and the results
showed that SO4

2−, NO3
−, NH4

+ and Cl− were the main components [6]. Ge et al. ana-
lyzed the pollution characteristics of water-soluble ions in PM2.5 in Wenzhou and found
that SO4

2−, NO3
− and NH4

+ were also the main components, mainly sourced from coal
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combustion, motor vehicle exhaust and biomass combustion [7]. Wang et al. conducted
a study on the characteristics and sources of PM2.5 pollution in Ningbo and found that
the source categories that made significant contributions to PM2.5 were secondary nitrates,
secondary sulfates, marine sources, biomass combustion, high chlorine sources, heavy oil
combustion, motor vehicle emissions, industrial smelting and mixed dust [8]. A targeted
analysis on the spatiotemporal distribution of carbon-containing components in PM2.5 was
conducted by Du et al., also in Ningbo. The results showed that secondary organic carbon
contributed significantly to the carbon components [9]. Xu et al. compared the pollution
characteristics of polycyclic aromatic hydrocarbons in PM2.5 in Hangzhou and Ningbo, and
the results showed that the concentration of polycyclic aromatic hydrocarbons exceeded
the national standard [10]. In addition, some scholars have begun to pay attention to the
PM2.5 pollution characteristics of small and medium-sized cities in Zhejiang Province. For
example, Fang et al. studied the distribution characteristics of secondary organic aerosol
indicators in PM2.5 in Lanxi, which is a small city in Zhejiang Province [11]. Isoprene and
toluene made significant contributions to secondary organic carbon (SOC).

Although extensive research has been conducted in many cities, there is still a lack
of comprehensive studies on the chemical components and sources of PM2.5 in Shaoxing.
Shaoxing is a typical industrial city in Zhejiang Province. Zhang et al. detected the pollution
characteristics of metal elements in PM2.5 in Shaoxing [12]. Zhu et al. also analyzed the
characteristics of organic carbon (OC) and elemental carbon (EC) since Shaoxing belongs to
the urban agglomeration around Hangzhou Bay, which is the area with the most serious
PM2.5 pollution in the Yangtze River Delta [13]. The impact of anthropogenic sources on
PM2.5 pollution in Shaoxing is obvious.

Since 2013, due to the frequent occurrence of winter haze pollution, China has been
committed to controlling particulate matter pollution, and the concentration of PM2.5 has
continued to decrease in recent years. However, according to the online monitoring data
of air pollutants in China on http://www.aqistudy.cn/ (accessed on 26 July 2023), PM2.5
pollution is still the most serious in winter. In winter, a PM2.5 concentration exceeding the
national standard limit often occurs in Shaoxing.

Therefore, this study focused on analyzing the chemical characteristics and sources of
PM2.5 in the atmosphere of Shaoxing from December 2019 to February 2020 by detecting the
components such as carbon-containing components, water-soluble ions and metal elements.
It would provide scientific support for the management of PM2.5 pollution in Shaoxing
during the winter.

2. Materials and Methods
2.1. Field Measurement

Considering urban functional area distribution, population density, environmental
sensitivity and other factors, the environmental monitoring station of Shaoxing was selected
as the sampling site. Shaoxing Environmental Monitoring Station is located at No. 38
Shuxiawang Road, which is a central area of commerce, transportation and residences.

Samples were collected from December 2019 to February 2020. Teflon filter membrane
and quartz filter membrane were used for synchronous collection for 23 h. A 4-channel
small-flow sampler and a medium-flow sampler were used to collect PM2.5 samples, with
sampling flow rates of 16.7 L/min and 100 L/min, respectively. The small-flow sampler
collected four parallel samples (two quartz filter samples and two Teflon filter samples),
and the medium-flow sampler synchronously collected one quartz filter sample, the brand
of which was Waterman. A total of 25 groups of samples were collected.

2.2. Chemical Analysis
2.2.1. PM2.5 Mass Concentration

Before sampling, a filter membrane was placed in a constant temperature and humidity
chamber (temperature 20 ◦C and humidity 50%) for 24 h, and then an automatic weighing
system (CR-4; Chinese Intelligent Manufacturing, Hangzhou, China) was used to weigh

http://www.aqistudy.cn/
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this filter membrane, and its mass was recorded. After sampling, the same instrument was
used to weigh the same filter membrane and the mass was also recorded under the same
conditions. The difference in mass was used to determine the mass concentration of PM2.5.

2.2.2. Analysis of Water-Soluble Ions and Elemental Components

The concentrations of water-soluble ions were determined by ion chromatography.
A 1/4 of one sample filter was taken and put into the sample bottle. The water-soluble
components were extracted from the filter into 20.0 mL of deionized water, entered the
sample bottle and soaked for 30 min. Then, the sample bottle was put into the ultrasonic
instrument for ultrasonic extraction for 20 min. Ice was added into the ultrasonic instrument
to ensure that the temperature was not higher than 20 ◦C. This could reduce the component
loss. The extract was filtered by 0.45 µm microporous membrane filter and then sent to ion
chromatograph (Ics-5000; Thermo Fisher, Waltham, USA) for analysis.

A filter sample collected by a small-flow sampler was put into a dry and clean sample
box, and then analyzed by the WD-XRF wavelength dispersive X-ray fluorescence spec-
trometer (S4 pioneer; Bruker, Saarbrücken, Germany). Then, the concentrations of element
components were determined.

2.2.3. Carbon-Containing Components Analysis

According to the Technical and Methodological Guidelines for Analytical Monitor-
ing of Ambient Air Particulate Matter Sources (trial) (Second Edition) [14], the carbon-
containing components were determined by the thermo-photometry method. A certain area
of quartz sample filter membrane was put into a quartz boat and analyzed by the thermal
optical carbon analyzer (DRI Model 2015; Desert Research Institute, Reno, USA). Firstly,
under the condition of pure He, heated in temperature gradients of 140 ◦C (OC1), 280 ◦C
(OC2), 480 ◦C (OC3) and 580 ◦C (OC4), all organic carbon in the sample was evaporated
or decomposed, left the filter membrane and entered the oxidation furnace with the He
gas flow (900 ◦C). The carbon element in the organic matter was oxidized to CO2 by MnO2.
The CO2 flowed out of the oxidation furnace with the He gas flow and was mixed with H2.
The mixture entered the reduction furnace (420 ◦C) and was reduced to CH4 by Ni. Finally,
the generated CH4 was detected by flame ion detector (FID) to calculate the carbon content.

Then, He/O2 mixed gas containing 10% O2 was introduced, and the sample furnace
was gradually heated up again. The sample was heated at 580 ◦C (EC1), 740 ◦C (EC2) and
840 ◦C (EC3). In this process, the elemental carbon was oxidized in the oxidation furnace.
The carbonaceous material was oxidized to CO2, and then reduced to CH4. Finally, the
carbon-containing contents were calculated by detecting the generated CH4 by FID. The
total carbon (TC) mass concentration was the sum of the mass concentrations of OC and EC.

2.2.4. Quality Control and Quality Assurance

The testing process strictly followed the testing methods and procedures. Before
injection, a solvent blank test and an experimental process blank test were conducted. The
samples were injected in the order of PM2.5 mass concentration, and no target compounds
were detected in the blank test.

Recovery experiments were conducted during the detection of water-soluble ions. The
standard solution was dropped onto the blank filter membrane. After the solution was air
dried, the pretreatment process was performed following the sample operation process.
Then, the blank filter membrane was tested on the machine. The added amount was
equivalent to the actual concentration of the sample, and the results showed the recovery
rates ranging from 80.0% to 120%.
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2.3. Analysis Methods
2.3.1. Estimation of Enrichment Factor (EF)

The EF method was used to assess the man-made influence on metal elements. The
calculation formula was shown as follows:

EF =
(CX/CR)aerosol
(CX/CR)crust

(1)

where CX was the mass concentration of element X, µg/m3; CR was the mass concentration
of the reference element, µg/m3. The subscripts aerosol and crust referred to the recipient
sample and crust sample, respectively.

In this study, Al, which experiences less interference from human pollution, was used
as the reference element [15]. When EF is less than 10, it indicates that these elements are
not enriched and might be unaffected by human activities. When EF is larger than 10 and
less than 100, it indicates that these elements are enriched to different degrees. When EF
is larger than 100, it indicates that these elements are seriously enriched due to human
activities [16].

2.3.2. Estimation of Sulfur Oxidation Rate (SOR) and Nitrogen Oxidation Rate (NOR)

SOR and NOR were used to characterize the conversion rates of SO4
2− and NO3

− in
PM2.5. The larger the SOR and NOR, the higher the secondary conversion efficiency [16].
The calculation equations were as follows:

SOR =
CSO2−

4

CSO2−
4

+ CSO2

(2)

NOR =
CNO−

3

CNO−
3
+ CNO2

(3)

where CSO2−
4

was the mass concentration of water-soluble sulfate ion, µg/m3; CNO−
3

was

the mass concentration of water-soluble nitrate ion, µg/m3; CSO2 was the mass concentra-
tion of SO2 in the atmosphere, µg/m3; CNO2 was the mass concentration of NO2 in the
atmosphere, µg/m3.

2.3.3. Calculation of Secondary Organic Carbon

The minimum OC/EC ratio was used to evaluate and verify the contribution of SOC
to total organic carbon, and the specific calculation equation [17] was as follows:

SOC = OC − EC×(OC/EC)min (4)

where (OC/EC)min was the minimum OC/EC value of the detection results of OC and EC.

3. Results and Discussion
3.1. PM2.5 Mass Concentrations

During the sampling period, the average mass concentration of PM2.5 in Shaoxing
was 45.3 µg/m3, which exceeded the national standard limit (35 µg/m3, GB3095-2012) of
10.3 µg/m3. The daily variation sequence of PM2.5 concentrations manually sampled is
shown in Figure 1. During the sampling period, there were a total of 15 days in which the
daily average concentration of PM2.5 exceeded the national standard limit, accounting for
60% of the total sampling days. The high daily average concentration ultimately led to
exceeding the standard limit of the average concentration of PM2.5 in winter.
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3.2. Carbon-Containing Components Characteristics

The daily variations in TC, OC and EC mass concentrations in winter in Shaoxing
are shown in Figure 2. The average concentrations of TC, OC and EC were 9.86 µg/m3,
7.41 µg/m3 and 2.45 µg/m3, accounting for 21.8%, 16.4% and 5.41% of PM2.5 concentration,
respectively. It could be seen that OC was the important component of PM2.5.
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EC mainly comes from the incomplete combustion of fossil fuels or biomass, and only
exists in the primary sources. OC sources include primary organic carbon (POC) emitted
from coal, fuel and biomass combustion, and SOC formed by the conversion of VOCs
and SVOCs [18]. That is to say, the POC sources in OC are consistent with EC sources.
Therefore, the correlation analysis between OC and EC could be used to preliminarily
determine the sources of carbon-containing components [19]. If the correlation coefficient
between OC and EC is close to 1, it indicates that the OC and EC sources are consistent,
both from primary sources [20]. If the correlation coefficient is less than 0.5, it indicates that
the OC and EC sources are not consistent. As shown in Figure 3, the correlation coefficient
R between OC and EC was only 0.71, indicating that the main sources of OC and EC in
Shaoxing were not consistent. OC was more affected by SOC.
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The ratio of OC/EC could reveal carbon-containing components’ sources to some
extent, and an OC/EC of 2.0 is often used as a basis for determining the presence of
SOC [21]. The OC/EC ratio in this study was 3.27, indicating the presence of SOC in
the carbon components of PM2.5. The SOC was calculated using Equation (4), and the
result is shown in Table 1. The average concentration of SOC was 3.54 µg/m3, accounting
for 47.8% of OC concentration and 7.82% of PM2.5 concentration. This indicated that the
contribution and impact of SOC were significant. Therefore, a more detailed analysis of
the SOC characteristics should be conducted in the future, which will help to deepen the
understanding of the PM2.5 pollution characteristics in Shaoxing.

Table 1. The characteristics of SOC in winter in Shaoxing.

Season OC (µg/m3) EC (µg/m3) OC/ECmin SOC (µg/m3) SOC/OC

Winter 7.41 2.45 1.58 3.54 47.8%

Additionally, OC/EC is commonly used to preliminarily determine the types of
primary and secondary sources of carbon-containing components. Through calculation,
the OC/EC of Shaoxing was 3.27. According to the literature, when the OC/EC ratio is
between 1.0 and 4.2, it indicates that exhaust emissions from diesel and gasoline vehicles
exist [22,23]; meanwhile, 2.5 to 10.5 indicates coal-fired emissions contribute to carbon
components [24]. Therefore, diesel vehicles, gasoline vehicles and coal-fired emissions all
contributed to the carbon-containing contents of PM2.5 in Shaoxing.

3.3. Variation Characteristics of Water-Soluble Ions

The water-soluble ions detected in this study included SO4
2−, NO3

−, F−, Cl−, Na+,
NH4

+, K+, Mg2+, Ca2+, etc. The mass concentrations of these ions are shown in Figure 4.
The average total concentration of water-soluble ions during the sampling period was
30.6 µg/m3. The highest average concentrations of NO3

−, SO4
2− and NH4

+ were 14.9, 7.23
and 6.58 µg/m3, respectively.
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The total concentration of water-soluble ions accounted for 67.5% of PM2.5 concen-
tration. NO3

−, SO4
2− and NH4

+ accounted for the highest proportions, accounting for
32.9%, 16.0% and 14.5%, respectively. This illustrated that NO3

−, SO4
2− and NH4

+ had
become the important components of PM2.5 in Shaoxing. K+ and Cl−, as representative
elements of coal-fired combustion, also had a place in PM2.5 (a total of 2.94%). K+ is also
usually considered as a marker for biomass combustion. This proved that coal and biomass
combustion made contributions to PM2.5 in winter.

In Shaoxing, the proportion of NO3
− was higher than that of SO4

2−. This result
was different from the reports about Hangzhou and Wenzhou [6,7]. The possible reason
was that the emission sources had changed. The research about Wenzhou and Hangzhou
was conducted in 2014 and 2015. According to the statistical yearbooks of these three
cities, the numbers of vehicles in Hangzhou and Wenzhou in 2014 were 2.18 million and
1.57 million [25,26], respectively. Between 2014 and 2019, the number of vehicles in Shaoxing
increased from 851,200 to 1.67 million [27,28]. Therefore, based on the large increase
in the number of vehicles, the proportion of NO3

− from vehicle exhaust in Shaoxing
significantly increased.

NO3
− and SO4

2−, known as the secondary inorganic aerosols, are secondary reactions
of primary pollutants such as SO2 and NO2 emitted into the atmosphere. In the past decade,
due to the pollution problems caused by coal-fired sources (such as acid rain and particulate
matter pollution), China has increased its efforts to govern SO2 from coal-fired sources. The
sources of NO2 are more complex. The governance effect on NO2 is not as good as SO2.
Therefore, the concentration of SO2 has been maintained at a low level. According to the
data from http://www.aqistudy.cn/ (accessed on 26 July 2023), the average concentration
of SO2 in the atmosphere of Shaoxing was only 7 µg/m3 and the average concentration of
NO2 was 32 µg/m3. This inevitably led to a significant increase in NO3

−.
SOR and NOR reflect the conversion degrees of SO2 and NO2 into SO4

2– and NO3
−

in the atmosphere, respectively. If NOR and SOR are larger than 0.1, it indicates that
sulfates and nitrates are mainly produced by the photochemical oxidation of SO2 and NO2.
Therefore, secondary pollution exists [29]. The higher the SOR and NOR, the higher the
conversion efficiency. Thus, in this study, the SOR and NOR values were calculated using
Equations (2) and (3), with average values of 0.61 and 0.34, respectively. This indicates that
the conversion effect of SO2 was stronger than that of NO2.

Usually, with the concentration of particulate matter increasing, SO2 is more likely to
adsorb onto the surface of the particulate matter and undergo various homogeneous and
heterogeneous reactions to generate secondary ions [30]. This might be the reason for the
higher conversion rate of SO2 in winter. There is a negative correlation between NOR and
temperature [31], leading to a poor conversion of NO2 under low temperature conditions
in winter.

http://www.aqistudy.cn/
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The correlations between various inorganic water-soluble ions in PM2.5 can reflect the
similarity in properties and sources between each ion [32]. NH4

+ and NO3
−, NH4

+ and
SO4

2− had high correlations and the R values were 0.98 and 0.86, respectively (Figure 5). It
indicates that these three ions mainly existed in the forms of (NH4)2SO4 and NH4NO3 [32,33].
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The NO3
−/SO4

2− ratio could reflect the situation of vehicle exhaust and fixed com-
bustion sources to some extent [31]. If the NO3

−/SO4
2− ratio is larger than 1, it indicates

that the effect of vehicle exhaust is more obvious than that of fixed combustion sources; if
the NO3

−/SO4
2− ratio is less than 1, it suggests that the contribution of fixed combustion

sources is greater than that of vehicle exhaust [18]. The average ratio of NO3
−/SO4

2− was
2.06, suggesting that there were more sources to PM2.5 emissions from vehicle exhaust
compared to fixed combustion sources in the winter in Shaoxing.

3.4. Characteristics of Metal Elements

The mass concentrations and proportions of metal elements in PM2.5 are shown in
Table 2. K had the highest proportion, followed by Fe and Si. The background values of
soil elements in Zhejiang Province [34] were selected to calculate the enrichment factors of
metal elements, as shown in Figure 6. The EF values of Na, Ca, K and Cd were greater than
10, indicating that the impact of human activities was obvious and enriched these elements.
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Table 2. The mass concentrations and proportions of metal elements in PM2.5.

Metal Element Mass Concentration
(µg/m3)

Proportion in Metal
Element (%)

Proportion in PM2.5
(%)

K 0.514 10.72% 1.14%
Fe 0.300 6.26% 0.66%
Si 0.284 5.92% 0.63%

Na 0.159 3.31% 0.35%
Ca 0.152 3.16% 0.33%
Al 0.109 2.27% 0.24%
Zn 0.084 1.76% 0.19%
Pb 0.058 1.21% 0.13%
Cd 0.055 1.15% 0.12%
Mg 0.045 0.95% 0.10%
Ba 0.039 0.81% 0.09%
Mn 0.030 0.62% 0.07%
Sn 0.027 0.56% 0.06%
Sb 0.024 0.50% 0.05%
Cr 0.016 0.34% 0.04%
Ti 0.015 0.31% 0.03%
Cu 0.011 0.22% 0.02%

The sources of K were consistent with K+ and might come from coal or biomass
combustion. Coal or biomass combustion belong to anthropogenic sources. Na, Fe, Al and
Si were crustal elements, mainly derived from crustal sources such as ground dust and
soil fly ash. Although most of Fe came from crustal sources, it might be also influenced
by human activities, such as steel smelting. In this study, the EF value of Na was greater
than 10, indicating that crustal sources have caused Na to be enriched. Similarly, Ca was
an indicator element for building construction [35]. The construction dust in Shaoxing
has also enriched Ca. The EF value of Fe was less than 10, suggesting the influence of
anthropogenic sources was weak. It indicates that Fe in PM2.5 in Shaoxing was mainly from
crustal sources.

Except for the above elements, the EF values of the other elements were all less than
10, indicating that they were not enriched.

3.5. PM2.5 Sources Analysis

The positive matrix factorization (PMF) model was used to analyze the PM2.5 sources
in winter in Shaoxing. Based on the stability of the PMF analysis results, seven factors were
identified as the optimal components spectra for various compounds in PM2.5 (Figure 7).

The main contributions of factor 1 were Mg2+, Ca2+, Na+ and SO4
2−, which were

inferred as the dusts from construction sites and roads. The main contributors to factor 2
were NO3

− and NH4
+, which were secondary nitrates. The main contributor to factor 3

was L-glycan, which was inferred as biomass combustion [36]. Factor 4 was characterized
by Cl−, which was believed to mainly come from coal combustion in addition to natural
sources. Therefore, factor 4 was inferred as the coal-fired source. Factor 5 was characterized
by OC and EC, which were related to motor exhaust emissions. It also enriched metal
elements such as Mn, Zn, Fe and Cu, which were related to industrial production activ-
ities [37]. Therefore, factor 5 was inferred as industrial sources and automotive exhaust.
Factor 6 was characterized by Ti, Al and Si, which was inferred as soil dust. In this study,
the dusts included road dust and construction dust, which belonged to man-made dust.
The main contributors to factor 7 were NH4

+ and SO4
2−, which were secondary sulfates.

Among them, factors 1 and 6 were both related to the dusts, and factors 2 and 7
represented secondary inorganic salts. Thus, these factors were merged. As a result,
the sources of PM2.5 in Shaoxing were simplified into five categories: coal combustion,
dust, biomass combustion, motor vehicle exhaust and industrial sources and secondary
inorganic salts.
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Figure 8 shows secondary inorganic salts had the highest proportion to PM2.5 in winter
in Shaoxing, with a contribution value of 49.3%. The proportions of motor vehicles and
industrial sources and dust sources were 21.3% and 17.0%, respectively. Biomass burning
also made a contribution, accounting for 7.79%, perhaps because of the biomass burning in
autumn and winter in Shaoxing.
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4. Conclusions

A total of 25 groups of PM2.5 samples were collected to analyze the components in
Shaoxing in winter. During the sampling period, the average concentration of PM2.5 was
45.3 µg/m3. There was an obvious pollution phenomenon. The chemical composition
of PM2.5 in winter was mainly composed of water-soluble ions and carbon-containing
components.

Among all water-soluble ions, NO3
−, SO4

2− and NH4
+ were three main components

accounting for 63.4% totally of PM2.5. These three ions mainly existed in the form of
(NH4)2SO4 and NH4NO3. Through the calculation of SOR and NOR, it could be found
that a considerable portion of NO2 and SO2 in the air was converted into NO3

− and SO4
2−.

The secondary conversion was very obvious. Based on the ratio of NO3
−/SO4

2−, it could
be determined that the impact of vehicle exhaust on PM2.5 pollution was more obvious
than that of fixed combustion emission.

OC was the main component among the carbon-containing components. The OC/EC
ratio was 3.27, indicating secondary aerosols existed in PM2.5. After calculation, the average
concentration of SOC was 3.54 µg/m3, accounting for 47.8% of OC. The proportion of SOC
in OC was relatively high.

The concentrations of metal elements in PM2.5 were relatively low compared with
carbon-containing components and water-soluble ions. However, the EF values of Na,
Ca, K and Cd exceeded 10, indicating that these elements were obviously enriched due to
human activities.

Finally, this study used the PMF model to analyze the sources of PM2.5 in Shaoxing in
winter. The result indicated that the PM2.5 primary source was secondary inorganic salts
(49.3%), followed by motor vehicles and industrial sources (21.3%) and dust sources (17.0%).
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