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Abstract: Invasive alien insects directly or indirectly driven by climate change threaten crop produc-
tion and increase economic costs worldwide. Ectomyelois ceratoniae (Zeller) is a highly reproductive
invasive crop insect that can severely damage fruit commodities and cause significant economic losses
globally. Estimating the global potentially suitable habitats (PSH) of E. ceratoniae is an important
aspect of its invasive risk assessment and early warning. Here, we constructed an optimized MaxEnt
model based on the global distribution records of E. ceratoniae, and nine environmental variables
(EVs), to predict its global PSH under current and future climates. Our results showed that the RM
value was 2.0 and the mean area under receiver operating characteristic curve (AUC) value was 0.972,
indicating the high accuracy of the optimal MaxEnt model. The mean temperature of driest quarter
(bio9, 50.2%), mean temperature of wettest quarter (bio8, 16.9%), temperature seasonality (bio4, 9.7%),
and precipitation of coldest quarter (bio19, 9.1%) were the significant EVs affecting its distribution
patterns. The global PSH of E. ceratoniae are mainly located in western Asia under current climate
scenarios (687.57 x 10* km?2), which showed an increasing trend under future climate scenarios.
The PSH of E. ceratoniae achieved the maximum under the shared socioeconomic pathway (SSP)
1-2.6 in the 2030s and under the SSP2-4.5 in the 2050s. The increased PSH of E. ceratoniae are mainly
located in southwestern Asia, northwestern Europe, northwestern South America, northwestern
North America, southern Oceania, and northwestern Africa. Our findings suggest that quarantine
officials and governmental departments in the above high-risk invasion areas should strengthen
monitoring and early warning to control E. ceratoniae; in particular, cultural measures should be taken
in areas where its further expansion is expected in the future.
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1. Introduction

With the increase in global trade and human activities, climate change and biological
invasion is becoming increasingly frequent and has become one of the high-ranking world-
wide environmental problems in the twenty-first century [1]. Invasive alien insects have
become an important part of biological invasion due to their robust adaptability for both
reproduction and dispersal, which can reduce crop yield, decrease species richness, cause
significant economic losses in invaded areas, and pose hazards to human health. These
insects are a research hotspot, being one of the most extensively and best-studied groups
of current research [2]. Lepidoptera is the second largest order of insects and many of its
members are globally important agricultural pests that pose a significant threat to agricul-
tural production. For example, Lepidoptera causes direct damage to fruit and may affect the
quality, yield, or both, of harvestable produce [3]. Conogethes punctiferalis (Guenée) damaged
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20% of the fruits in Jammu and Kashmir, which led to a 50% reduction in grape production
in Karnataka [4,5]. Furthermore, climate change will breakdown temperature barriers to
growth and dispersal that limit the range of movement of many insects, as well as facilitate
the global invasion of invasive alien insects and change their global geographic distribution
patterns [4,6]. Consequently, estimating the potentially suitable habitats (PSH) of invasive
alien insects under climate change is critical for their monitoring, control, and management.

Ectomyelois ceratoniae (Zeller) (Lepidoptera) is a highly polyphagous insect that affects
numerous hosts, including pomegranate, date palm, citrus, and figs [7]. It is originally
from the Mediterranean region and is widely distributed across six continents, due to its
accidental introduction as a contaminant crop [8,9]. The phytophagus larval stage of E.
ceratoniae can damage the leaves, shoots, and fruits of host plants [3]. Its larvae can enter the
fruit from the corolla or use fissures in the pericarp to enter the fruit and cause damage [10].
Adult females lay their eggs in the corolla of the host plant or in the cracks in the peel, which
rot internally, leading to contamination by saprophytic fungi [11]. It not only reduces fruit
production, but also causes economic losses. For example, E. ceratoniae invasion caused
losses in the yield of pomegranate and date palm fruit of >80% in Tunisia [12]. In California,
infested fruits can be damaged, yielding 10-40% of the harvestable crop each year; over
USD 1 million is spent annually to prevent E. ceratoniae damage to fruit [13]. Therefore,
some countries have added it to the quarantine list to prevent its further spread. For
example, it has been recorded on the list of imported plant quarantine pests by the Ministry
of Agriculture and Rural Affairs of the People’s Republic of China since 2007. However,
previous research has focused on the biological characteristics and control measures of
E. ceratoniae [12,14-19], and few have investigated the PSH of E. ceratoniae under climate
change. Only a few studies have frequently used the maximum entropy method (MaxEnt)
models to predict the current and future distribution of other Lepidopterous pests, such
as Cydia pomonell (Linnaeus) and Cadra figulilella (Gregson) [20,21]. Considering the wide
spread of E. ceratoniae and its serious threat to fruit production [22,23], predicting the PSH
of E. ceratoniae is beneficial for early warning and control on a global scale.

Species distribution models (SDMs) are considered one of the most important tools for
predicting species distribution and population dynamics in ecologyand biogeography [24-26]
and include CLIMEX, BIOCLIM, genetic algorithm for rule-set prediction (GARP), general-
ized linear models (GLM), and MaxEnt [7,27-29]. MaxEnt, a generalized machine learning
method [30,31], is the most commonly used to predict PSH for invasive species. For exam-
ple, MaxEnt models have been used to study the PSH of invasive alien species Parapediasia
teterrella (Zincken) in East Asia [32] and Agrotis robusta (Blanchard) worldwide [33]. Com-
pared with other SDMs, it has the advantages of shorter running time, smaller sample size
required, and higher accuracy. In addition, it is effective for most taxa and outperforms other
models in terms of the accuracy of predictions, particularly when species distribution data
are incomplete [34,35]. However, using MaxEnt with default parameter settings probably
leads to model overfitting, which can be effectively optimized using the ENMevals v2.0.4
package [36,37]. Therefore, our study used the optimized MaxEnt model to predict the PSH
of E. ceratoniae under current and future climate scenarios.

In the present study, we used the optimal MaxEnt model to predict the PSH of E.
ceratoniae under current and future climate scenarios in the 2030s and 2050s. We aimed to
(1) identify the important environmental variables (EVs) affecting the PSH of E. ceratoniae;
(2) predict the PSH of E. ceratoniae; (3) analyze the changes in the PSH of E. ceratoniae
under different future climate scenarios; and (4) analyze the PSH center transfer trend of
E. ceratonige from current to future climate scenarios. These results provide an important
theoretical foundation for preventing the further expansion and population establishment
of E. ceratoniae.
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2. Materials and Methods
2.1. Distribution Records of Ectomyelois ceratoniae

A total of 327 E. ceratoniae distribution records were collected from several databases,
including the Global Biodiversity Information Facility (GBIF: https:/ /doi.org/10.15468
/dl.73jéct; accessed on 26 August 2022) [38], China National Knowledge Infrastructure
(CNKI: https:/ /www.cnki.net/; accessed on 27 May 2022), and the Web of Science (WOS:
https:/ /www.webofscience.com/; accessed on 7 June 2022). Distribution records without
clear geographical information and duplicate records were excluded. To avoid overfitting,
we used the ENMTools v1.3 to maintain only one distribution record for each 5 x 5 km
raster [36,39]. Finally, 228 global distribution records of E. ceratoniae were obtained for
modeling its PSH with MaxEnt model (Figure 1).
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Figure 1. Global distribution points of Ectomyelois ceratoniae.

2.2. Environmental Variables

Nineteen EVs with 2.5 min under current climate data (1971-2000) and future cli-
mate data (2021-2040 and 2041-2060) were obtained from the World Climate Database
(Table S1) [40]. Future climate scenarios include SSP1-2.6, SSP2-4.5, and SSP5-8.5, which sim-
ulate the lowest-level, moderate-level and highest-level greenhouse gas emission scenarios.

The presence of multicollinearity between EVs can lead to model overfitting. To avoid
this problem, we analyzed the correlation coefficients between the 19 EVs via the Pearson
correlation coefficient [41] and used 10 repeated runs of the MaxEnt model to eliminate
non-contributing EVs. We retained one with a higher contribution rate in both EVs when
the coefficient of correlation in two EVs was greater than 0.8 (1| > 0.8) [42] (Figure S1).
Finally, we retained 9 EVs to run the MaxEnt model (Table 1).

Table 1. Contribution of significant environmental variables (EVs).

Variable Description Contribution (%)
bio9 Mean temperature of driest quarter (°C) 50.2
bio8 Mean temperature of wettest quarter (°C) 16.9
bio4 Temperature seasonality (standard deviation x 100) (°C) 9.7
biol9 Precipitation of coldest quarter (mm) 9.1
biol5 Precipitation seasonality (coefficient of variation) 3.6
biol8 Precipitation of warmest quarter (mm) 3.6
biol3 Precipitation of wettest month (mm) 29
bio2 Mean diurnal range (Mean of monthly (max temp-min temp)) (°C) 23
biol7 Precipitation of driest quarter (mm) 1.7
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2.3. Model Calibration, Construction, and Evaluation

Feature combinations (FCs) and regularization multiplier (RM) are significant evalua-
tion criterion to construction the MaxEnt model [43]. FCs contains five features: linear (L),
quadratic (Q), fragmented (H), product (P), and threshold (T). We chose six combinations of
FCs, including L, LQ, H, LQH, LQHP, and LQHPT, respectively, and the RM was set from
0.5 to 4 with an interval of 0.5. The ENMeval package via Rstudio was used to optimize the
RM and FCs parameters in 48 combinations to calibrate the MaxEnt model [36,37]. When
the delta Akaike information criterion correction (AAICc) was the minimum value, we
chose the FCs and RM to set the MaxEnt model [44].

In this study, 228 global distribution records of E. ceratoniae and nine EVs were used to
run the optimized MaxEnt model. Out of all E. ceratoniae distribution records, about 25%
were selected as the test set, and the remaining records were used as the training set. The
maximum number of iterations was set at 500, and the maximum number of background
points was set to 10,000 with 10 repetitions [45]. The output format was set to Cloglog, and
the validation type was set to bootstrap [46,47]. The area (AUC) under the receiver (ROC)
operating characteristic curve was used to evaluate the model accuracy as a threshold [45].
The value of AUC is between 0 and 1, which is closer to 1 with higher accuracy. The
value of AUC is considered as three classification criterion: poor (0.5 < AUC < 0.7), fair
(0.7 < AUC < 0.9), and excellent (0.9 < AUC) [48].

2.4. Delineation of Potentially Suitable Habitats (PSH)

We used ArcGIS 10.8 to present the PSH of E. ceratoniae under different future climate
scenarios predicted by the optimized MaxEnt model. The PSH of E. ceratoniae were divided
into four grades via the maximum training sensitivity plus specificity threshold: unsuitable
habitat (0 < p < 0.1821), poorly suitable habitat (0.1821 < p < 0.4), moderately suitable
habitat (0.4 < p < 0.6), and highly suitable habitat (0.6 <p < 1).

We used the “field calculator tool” in ArcGIS 10.8 software to calculate the areas,
centroids, and shift trend for E. ceratoniae under different future climate scenarios using the
“feature to point tool” [49,50].

3. Results
3.1. Model Performance

We set the RM as 2.0 and the FC as LQHPT to construct the optimal MaxEnt model
when AAICc was 0 through the lambdas file. The mean AUC was 0.972, indicating the Max-
Ent model showed excellent performance in predicting the PSH of E. ceratoniae (Figure 2).
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Figure 2. Optimal parameter results for the MaxEnt model (a) and the AUC value (b).
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3.2. Significant Environmental Variables (EVs)

We screened more significant EVs in the PSH of E. ceratoniae based on the contribu-
tion of EVs and the “Jackknife method” (Table 1, Figure S2). The total contribution of
temperature and precipitation variables achieved 67.1% and 9.1%. Thus, temperature
was the most important EVs that influenced the PSH of E. ceratoniae. When the probabil-
ity of presence was higher than 0.6, the range of EVs was preferable to the introduction
and establishment of E. ceratoniae. Therefore, the suitable ranges of bio9, bio8, bio4, and
biol9 were 19.5 to 32.0 °C, 4.3 to 13.5 °C, 226.9 to 620.7, and 147.1 to 373.6 mm, respec-
tively (Figure 3). For bio9, bio8, bio4, and bio19, the best suitable conditions were 31.9 °C,
12.22 °C, 378.8, and 373.6 mm, respectively.
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Figure 3. Response curves of significant environmental variables (EVs) and the curves show the
mean response of the 10 replicate Maxent runs (red) and the mean +/— one standard deviation (blue,
two shades for categorical variables).

3.3. Potentially Suitable Habitats under Current Climatic Scenarios

The PSH of E. ceratoniae are located mainly in southwestern Asia, northern Africa,
and southern Europe under the current climate scenario (Figure 4). The global total,
highly, moderately, and poorly suitable habitat areas (SHAs) are about 1597.65 x 104,
434.31 x 10*,348.06 x 10%, and 815.19 x 10* km?. The largest total, highly, moderately, and
poorly PSH of E. ceratoniae was located in Asia (Iran, China, India, and Pakistan), about
687.57 x 10%,252.28 x 10%,156.62 x 10%, and 278.67 x 10* km?; followed by Africa (Tunisia,
Madagascar, Egypt, and South Africa), about 307.68 x 10%, 75.65 x 10%, 73.42 x 10%,
and 158.61 x 10* km?; followed by in Europe (Portugal, France, Italy, and Spain), about
232.67 x 10%,62.40 x 10%,40.34 x 10%, and 129.93 x 10* km?.

3.4. Potentially Suitable Habitats (PSH) under Future Climatic Conditions

The PSH of E. ceratoniae in the 2030s and 2050s under the SSP1-2.6, SSP2-4.5, and SSP5-
8.5 scenarios are presented in Figures 5 and 6. Compared to the current climate, the total
SHAs of E. ceratoniae increased, except in Europe, whereas the poorly SHAs of E. ceratoniae
decreased to different extents. The PSH of E. ceratoniae are primarily concentrated in
southeastern India in Asia, northwestern Spain in Europe, and northwestern Brazil in
South America.
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Figure 4. Current global distribution of potentially suitable habitats (PSH) for Ectomyelois ceratoniae.
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In the 2030s, total, highly, moderately, and poorly SHAs of E. ceratoniae showed
an increasing trend in South America, with the SHAs of E. ceratoniae reaching the max-
imum under the SSP1-2.6 scenario, about 400.10 x 10%, 15.99 x 10*, 52.74 x 10%, and
331.37 x 10* km?, respectively. The total, highly, moderately, and poorly SHAs of E. cer-
atoniae presented an increasing trend in North America, with the SHAs of E. ceratoniae
reaching the maximum under the SSP1-2.6 scenario, about 285.61 x 10%, 28.79 x 10%,
39.72 x 104, and 217.10 x 10* km?, respectively. The total, highly, moderately, and poorly
SHAs of E. ceratoniae presented an increasing trend in Africa, with the SHAs of E. ceratoniae
reaching the maximum under the SSP1-2.6 scenario, about 687.80 x 104, 181.76 x 10%,
95.93 x 10%, and 410.12 x 10* km?, respectively. The total, highly, and poorly SHAs of
E. ceratoniae showed an increasing trend and moderately SHAs presented a decreasing
trend in Oceania, with the SHAs of E. ceratoniae reaching the maximum under the SSP1-2.6
scenario, about 204.42 x 10%, 64.47 x 10%,43.35 x 10*, and 96.60 x 10* km?, respectively.
The total, highly, and poorly SHAs of E. ceratoniae showed an increasing trend, and mod-
erately SHAs presented a decreasing trend in Asia. The SHAs of E. ceratoniae reached the
maximum under the SSP1-2.6 scenario, about 1054.47 x 10%, 444.56 x 10*, 147.27 x 10%,
and 462.65 x 10* km?, respectively. The total, highly, and moderately SHAs of E. cera-
toniae presented an increasing trend, and poorly SHAs presented a decreasing trend in
Europe; the SHAs of E. ceratoniae reached the maximum under the SSP1-2.6 scenario, about
281.82 x 10%,101.07 x 10%,42.98 x 10%, and 137.76 x 10* km?, respectively.

In the 2050s, the total, highly, moderately, and poorly SHAs of E. ceratoniae present
an increasing trend in South America, with the SHAs of E. ceratoniae reaching a max-
imum under the SSP5-8.5 scenario, about 320.55 x 10, 25.74 x 10%, 47.33 x 10%, and
247.48 x 10* km?, respectively. The total, highly, moderately, and poorly SHAs of E. cer-
atoniae showed an increasing trend in North America, with the SHAs of E. ceratoniae
reaching a maximum under SSP2-4.5, about 292.41 x 104, 32.28 x 10%, 36.02 x 10%, and
224.11 x 10* km?, respectively. The total, highly, moderately, and poorly SHAs of E. cer-
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atoniae showed an increasing trend in Africa, with the SHAs of E. ceratoniae reaching a
maximum under the SSP2-4.5 scenario, about 616.75 x 10%,174.29 x 10%,99.59 x 10% and
342.87 x 10* km?, respectively. The total, highly, and poorly SHAs of E. ceratoniae showed
an increasing trend and moderately SHAs presented a decreasing trend in Oceania, with the
SHAs of E. ceratoniae reaching a maximum under the SSP2-4.5 scenario, about 190.16 x 104,
58.15 x 10%, 44.52 x 10%, and 87.49 x 10* km?, respectively. The total, highly, and poorly
SHAs of E. ceratoniae showed an increasing trend, and moderately SHAs presented a de-
creasing trend in Asia; the SHAs of E. ceratoniae reached the maximum under the SSP2-4.5
scenario, about 1068.17 x 10%, 442.56 x 10*, 158.68 x 10%, and 466.93 x 10* km?, respec-
tively. The total, highly, and moderately SHAs of E. ceratoniae presented an increasing trend,
and poorly SHAs presented a decreasing trend in Europe; the SHAs of E. ceratoniae reached
a maximum under the SSP2-4.5 scenario, about 369.82 x 10%, 101.44 x 10%, 43.57 x 10%,
and 224.81 x 10* km?, respectively (Figures 5 and 6).

3.5. Potentially Suitable Habitats (PSH) Change
The changes in the SHAs of E. ceratoniae in the 2030s and 2050s are shown in Figure 7.

_2030s, SSP1-2.6

r g -

~_2050s, SSP1-2.6

i -

o~ E oS

e

r g s e

A4

[ Unsuitable habitat [ Decreased habitat I Increased habitat B Unchange habitat

Figure 7. Future changes in potentially suitable habitats (PSH) for global Ectomyelois ceratoniae for
different periods compared to climate conditions in the current period.

In the 2030s, the global total SHAs of E. ceratoniae would increase by 1398.47 x 10%,
652.98 x 10%, and 1116.26 x 10* km?, under SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively.
The increased SHASs of E. ceratoniae were located in southern China, northeast Iran, south-
ern India in Asia, southeastern Brazil, southwestern Argentina in South America, the
northwestern United States of America in North America, southern Australia in Oceania,
and northwestern Ethiopia in Africa. Furthermore, the global total SHAs of E. ceratoniae
would decrease by 54.45 x 10%, 114.34 x 10%, and 59.43 x 10* km?, under SSP1-2.6, SSP2-
4.5, and SSP5-8.5, respectively. The decreases in the SHAs of E. ceratoniae were located
in southeastern India in Asia, northwest Poland in Europe, and northwestern Brazil in
South America.
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In the 2050s, the global total SHAs of E. ceratoniae would increase by 712.85 x 10%,
1304.21 x 10%, and 1128.34 x 10* km?, under SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively.
The increased SHAs of E. ceratoniae were located in southern China, northeastern Iran,
southern India in Asia, southwestern Argentina in South America, the northwestern United
States of America in North America, southern Australia in Oceania, and northwestern
Ethiopia in Africa. Furthermore, the global total SHAs of E. ceratoniaze would decrease by
126.06 x 10%,34.30 x 10%, and 61.14 x 10* km?, under SSP1-2.6, SSP2-4.5, and SSP5-8.5,
respectively. The decreased SHAs of E. ceratoniae were located in southeastern India in
Asia, northwestern Poland in Europe, northwestern Brazil in South America, and the
southwestern United States of America in North America.

3.6. Center Transfer

The central transfer of E. ceratoniae from the current climate to future climate scenarios
is shown in Figure 8. In the current climate, the distribution center of E. ceratoniae is
located in Iran (49.03° E, 31.99° N). Under SSP1-2.6, the distribution center of E. ceratoniae
transferred 1308 km to southeast Saudi Arabia (50.70° E, 19.89° N) during the 2030s, and
1955 km to northeast Iran (60.43° E, 35.60° N) during the 2050s. Under SSP2-4.5, the
distribution center of E. ceratoniae transferred 1130 km to the northeastern Iran (60.55° E,
35.63° N) during the 2030s, and 1930 km to southwestern Saudi Arabia (50.82° E, 19.91° N)
during the 2050s. Under SSP5-8.5, the distribution center of E. ceratoniae transferred
1203 km to the southern Saudi Arabia (49.69° E, 20.70° N) during the 2030s, and 158 km to
southwestern Saudi Arabia (50.73° E, 20.01° N) during the 2050s. The central transfer of
E. ceratoniae shifted to lower latitudes with climate change.
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Figure 8. Changes in the geographic center of potentially suitable habitats (PSH) of Ectomyelois
ceratoniae over time.
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4. Discussion

Ectomyelois ceratoniae has high polyphagia and fecundity that affects hosts such as
pomegranate and date palm and causes serious damage to the global fruit industry [7].
Predicting the PSH of E. ceratoniae worldwide is important for its prevention, control, and
management. Therefore, we used the optimized MaxEnt model to predict the PSH of
E. ceratoniae worldwide under climate change conditions. Our findings not only provide
theoretical guidance for the prevention and control of E. ceratoniae, but also ensure the
safety of the global fruit industry.

As poikilothermic animals, insects are sensitive to changes in temperature. Warming
can directly affect the life history, fitness, and population dynamics of many insects by
increasing developmental rates, survival, or fecundity [51]. Therefore, knowing the range
of suitable temperatures for insects is of significant importance for their growth and
reproduction under climate warming. Previous studies have found that Cox cultured
E. ceratoniae on maize at different temperatures and humidity and reported total egg
development times of 4-5, 3—4, and 3—4 days at 25, 30, and 35 °C, 70-80%, respectively; and
the total developmental period from egg hatch to adult emergence at 70% r.h. averaged
48 days at 20 °C, 30 days at 25 °C and 23 days at 30 °C [52]. Exposure to 50 °C for 10 min,
55 °C for 5 min, and 60 °C for 3 min could kill E. ceratoniae [53]. Our results are similar to
the suitable and lethal temperature of E. ceratoniae in previous studies. Our study showed
that bio8, bio9, and bio4 were significant biological variables for E. ceratoniae development,
which shows that the temperature is more suitable at approximately 32 °C and survival is
unlikely over 40 °C. These results showed that the development of E. ceratoniae responded
significantly to temperature changes. Moreover, our results showed that precipitation with
below 370 mm is also an important EVs for E. ceratoniae growth. Ahmadi et al. showed that
Iranian areas where E. ceratoniae occurs have an annual rainfall of <200 mm [54]. These
studies confirm the accuracy of our findings that temperature and precipitation have a
significant effect on the survival of E. ceratoniae.

Predicting the PSH of invasive alien species with climate warming is an important
part of early warming and species management. Previous studies have shown that the PSH
of Deanolis sublimbalis (Snellen) worldwide has a relative increase under climate change [55].
Our results are consistent with the trend that the PSH of E. ceratoniae is relatively increased
under current and future climatic conditions, where it is mainly distributed in southern
Europe, northern Africa, and most of southwestern Asia (Tunisia, Iran and China). This is
consistent with E. ceratoniae being suitable for survival in hot and dry climates. Furthermore,
previous studies have shown that pomegranate with over 200 cultivars and cultivated in
China for over 2000 years, located mainly in Shandong, Xinjiang, and Yunnan provinces [56],
as well as Shahvare-Danesefid, is a pomegranate cultivar relatively susceptible to E. cerato-
niae [8]. The increased PSH of E. ceratoniae cover the main pomegranate production area,
which is suitable for the survival and reproduction of E. ceratoniae [7]. Therefore, countries
in southwest Asia should take care to prevent damage from E. ceratoniae.

Ectomyelois ceratoniae can spread over short distances by wind, and over long distances
by flight in fruits, such as pomegranates, dates, and pistachios [23]. Therefore, the regions of
increase under future climatic scenarios—particularly Iran, Argentina, the United States, and
Australia, which have large increases in area—should be alert to host plant introductions
and strengthen early warnings and management to prevent the further spread of secondary
invasions of E. ceratoniae. Furthermore, E. ceratoniae has spread globally with increased
global trade, and some of the major fruit-producing regions—including the world’s major
pomegranate growing areas such as China, the United States, Australia, and Iran—are
suitable for E. ceratoniae, posing potential economic loss and production damage for the
global fruit industry. Ectomyelois ceratoniae is widely spread throughout southern Europe,
northern Africa, and southwestern Asia. Based on the invasion risks mentioned above, these
countries should firstly strengthen early warnings of E. ceratoniae, and adopt effective control
measures to eradicate it, such as cultural, chemical, and biological measures. Cultural mea-
sures include the prompt disposal of dropped and left-on-tree fruit [57]. Chemical measures
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often involve using insecticides, such as cypermethrin and emamectin benzoate [58]. Bio-
logical measures involve infecting the E. ceratoniae with Bacillus thuringiensis (Berliner) [59].
Although these control measures can prevent E. ceratoniae from harming the host plant, they
all have shortcomings, including the long duration of cultural measures, the risk of damage
to the crop itself from chemical measures, and the long research cycle for implementing
pre-biological measures. Therefore, early warning, monitoring, prevention, control, and
management systems should be established to prevent further harm from E. ceratoniae.

5. Conclusions

In this study, we used the MaxEnt model to predict the PSH of E. ceratoniae based on
228 records of global geographic distribution and nine environmental factors. Temperature
was the most important EVs of significance influencing its distribution (bio9 and bio8).
Under current climatize, the PSH of E. ceratoniae were in southern Europe, northern Africa,
and southwestern Asia. Under future climate scenarios, the PSH of E. ceratoniae showed
an overall increasing trend, with an increase in areas mainly located in southwest Asia
(China, Iran, Afghanistan, and India). Therefore, the main pomegranate production areas,
such as China and Iran, should strengthen quarantine, prevention, and control measures to
prevent the continuous spread and invasion of E. ceratoniae. Control measures such as the
prompt disposal of fallen and residual fruits on the trees, bagging of fruits, and the use of
cypermethrin insecticides are considered efficient measures to eliminate this pest. Thus, our
study could provide a theoretical foundation for the treatment and control of E. ceratoniae.
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