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Abstract: In June 2020, a record-breaking Saharan dust storm, known as the “Godzilla” extreme
event, caused significant dust transport from the Sahara Desert across the Atlantic Ocean to the
United States. Based on satellite observations, the magnitude of aerosol optical depth (AOD) has
consistently remained highest over the Atlantic Ocean for the past 18 years. This study uses satellite
observations (including MODIS and CALIOP) and MERRA-2 reanalysis products to investigate the
relationships between dust and marine clouds. During this extreme event, the concentration of AOD
exhibits a synchronous anomaly with the cloud fraction (CF). Principal components analysis (PCA)
results show that the enhanced temperature and specific humidity near the surface contribute the
most to cloud development over the tropical Atlantic Ocean. Despite the reduced sensitivity of CF to
aerosols, the semi-direct effect of dust can still play a crucial role during this extreme dust storm. We
found that the presence of absorbing aerosols above the cloud layers warms the air, accompanied by
an enhancement of surface moisture, thereby benefiting low-level cloud coverage.

Keywords: dust; dust storm; extreme event; aerosol–cloud interactions; satellite remote sensing

1. Introduction

Aerosol–cloud interactions still cause the most uncertainties for estimating radiative
forcing in global climate models [1]. Dust is the most abundant aerosol type by mass [2,3],
and understanding its radiative effects is crucial for reducing the uncertainty of model
simulations. Dust aerosols could impact climate directly by absorbing or scattering energy
from solar and terrestrial radiation [4–6]. They could also impact climate indirectly by
serving as cloud condensation nuclei (CCN) [7–9]. The indirect effect of aerosols can
enhance cloud albedo via decreasing cloud droplet size [10,11] and may extend cloud
lifetime by suppressing precipitation [12]. Rosenfeld et al. [13] showed that Saharan dust
aerosols diminish precipitation in shallow clouds; meanwhile, Min et al. [14] suggested
that enhanced CCN and ice nuclei (IN) elevated by strong updraft reduce convective
precipitation. Moreover, Weinzierl et al. [8] indicated that high Saharan dust concentrations
are related to CCN enhancement. In addition to the indirect effect, absorbing dust can
change clouds by heating the atmosphere.

The semi-direct effect was originally discussed as absorbing aerosols embedded in the
cloud layer that may yield a positive climate force due to cloud coverage decreasing [15].
Ackerman et al. [16] performed a large-eddy simulation modeling wintertime cumulus
clouds over the tropical Indian Ocean. Their studies argued that absorbing aerosols, which
heat the air in the cloud layer, can reduce relative humidity and suppress convection.
Conversely, other studies suggest that for absorbing aerosols residing above the cloud layer,
the low cloud could be enhanced, leading to a negative forcing [17]. The semi-direct effect
would be notably influenced by the distance between the absorbing aerosol layers and the
cloud top. Koch and Del Genio [18] proposed that absorbing aerosols above the cloud top
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might promote the formation of stratocumulus clouds, a type of warm cloud, by stabilizing
the air below. This semi-direct effect indicating low cloud enhancement has been verified
by simulations [17,19–22] and satellite observations [23–25]. While many studies focus
on absorbing aerosols impacting cloud systems, such interactions under extreme weather
conditions are not well understood.

A record-breaking extreme dust storm, called the “Godzilla” dust storm, harshly de-
graded the air quality in Puerto Rico [25] and transported dust aerosols to the southeastern
United States in June 2020 [26]. Francis et al. [27] found that a wave train persisting in
the northern hemisphere drove continuous dust emissions from the Sahara. In addition,
the African easterly jet (AEJ), associated with the thermal contrast between the Saharan
Desert and the Gulf of Guinea, contributed to the rapid dust transport. Pu and Jin [26]
further pointed out that the intensified AEJ, the North Atlantic subtropical high, and the
intensified Caribbean low-level jet favored the long-range transport of the Godzilla dust
plume. Yu et al. [28] showed that the effect of intense haboobs sweeping through the
Niger–Mali–Mauritania corridor was one of the driving factors for this unprecedented dust
event. This event can serve as a natural experiment for studying the transport mechanisms
and aerosol–cloud interactions associated with extreme weather.

This study investigates the influence of dust on low-level cloud cover during the
“Godzilla” extreme dust storm by addressing two main questions: (1) how do the changes
in the marine clouds relate to dust during this event, and (2) what are atmospheric and
hydrological features contributing to cloud variation? To answer these questions, this
study employs satellite observations and reanalysis products to investigate aerosol–cloud
interactions associated with this extreme weather event.

2. Materials and Methods
2.1. Satellite Observations and Reanalysis

The moderate-resolution imaging spectroradiometer (MODIS) aboard the NASA Aqua
satellite provides a horizontal resolution 1◦ × 1◦ level-3 daily product of AOD [29], CF, and
cloud effective radius (CER) [30]. The AOD dataset was obtained from the Dark-Target
algorithm at 550 nm [31,32] to investigate the dust plume transported across the tropical
Atlantic Ocean. Similarly, this study utilized the CER in the liquid phase (CER-liquid) to
investigate the drop size variations in low clouds.

The vertical profiles of aerosols and clouds were investigated using the level-2 data
from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on-
board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)
mission [33,34]. The data utilized in this study have a spatial resolution of 5 km × 60 m,
which is derived from counting aerosol or cloud fractions within a grid of 1/3 km × 30 m.
As a result, the maximum value of the level-2 layer fraction within the grid is 30. This
study weighed the aerosol height with the corresponding layer fraction to yield the average
height for a specified time and space segment. Aerosol average height 〈Haer〉 is defined as:

〈Haer〉 =
∑i∈s,t faer(i) · Haer(i)

∑i∈s,t faer(i)
, (1)

where faer is the layer fraction of aerosols from the level-2 CALIOP data, t represents
the time range, s stands for the specified space domain, and i is the datapoint within the
assigned space–time range. Our study applied the same method for evaluating cloud
vertical changes.

To examine the atmospheric anomalies, we used the Modern-Era Retrospective Analy-
sis for Research and Applications, version 2 (MERRA-2) [35]. The daily average of wind,
temperature, and specific humidity were calculated from the 3 hourly MERRA-2 data with a
0.625◦ × 0.5◦ horizontal resolution and 42 vertical layers. We applied bilinear interpolation
to co-locate MERRA-2 data with the grid points (1◦ × 1◦) of the MODIS observations.
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2.2. Anomalous Conditions

We analyzed the anomalous atmospheric patterns during the Godzilla dust outbreak
from 14 June to 25 June 2020, with respect to the climatology of the same time period from
2003 to 2019. This study also investigated the evolution of this extreme event by composing
data every three days, resulting in so-called “states” as aerosols propagated toward the
west. For example, the composite of the first three days is referred to as state 1, and the
same rule applies to the following three-day periods. Accumulating the validated data
from a state (three days) allowed this study to conduct statistical analysis using remote
sensing observations.

To address aerosol–cloud interactions during this extreme dust event, we examined
the high-loaded aerosol domain over the Atlantic Ocean (85◦ W–15◦ W, 10◦ N–25◦ N). We
divided the area into seven regions, each spanning 10 degrees longitude and covering
identical latitudes, for two reasons. First, we utilized each region to study the spatial
evolution of this extreme event. Second, the regional dynamical factors impacting the
interactions between aerosols and clouds might vary across West Africa, the tropical
Atlantic Ocean, and the Caribbean islands. Table 1 gives detailed spatiotemporal settings
for this study.

Table 1. Temporal and spatial scope of the analysis capturing the evolution of the ‘Godzilla’ dust
extreme event.

Region G F E D C B A

Lat (N) 10–25 10–25 10–25 10–25 10–25 10–25 10–25

Lon (W) 85–75 75–65 65–55 55–45 45–35 35–25 25–15

State 1 2 3 4

Time range
14 June 2020

↓
16 June 2020

17 June 2020
↓

19 June 2020

20 June 2020
↓

22 June 2020

23 June 2020
↓

25 June 2020

2.3. Principal Components Analysis (PCA)

Principal component analysis (PCA) is a statistical method widely used to retrieve data
structures contributing to the covariance of a system. The eigenvectors derived from the
covariance matrix are the principal components (PCs), and the explained variance ratios are
the corresponding eigenvalues divided by the summation of all. The order of PCs is sorted
by the explained variance ratios, and the modes of interest can be derived by projecting
the system on the PCs. PCA capturing of spatial patterns and temporal compositions
of one variable, which are referred to as empirical orthogonal function (EOF), has been
widely applied to numerous climate studies such as El Niño–Southern Oscillation [36–38],
Madden-Julian Oscillation [39,40], and North Atlantic Oscillation [41,42]. PCA has also
been used in characterizing aerosol profiles [43–45] and air pollution [46,47].

This study utilized PCA to explore the covariance of atmospheric parameters associ-
ated with the cloud variations during the Godzilla dust storm. We estimated the correlation
coefficients between the input variables and CF before performing PCA. The PC results
show the quantitative and qualitative properties of each parameter varying with CF. Mean-
while, the modes indicate their spatial and temporal influence as the Godzilla dust storm
struck the tropical Atlantic Ocean.

3. Results and Discussion
3.1. Climatology and Dust Outbreak

The climatology and anomalies of AOD, CF, and winds at 850 hPa were studied
for the 12 days of the Godzilla event (Figure 1). The AOD climatology has a prominent
pattern that initiates at the West African coast and extends toward the Caribbean basin
(Figure 1a), while the clouds cover the tropical Atlantic Ocean (Figure 1b). The winds and
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AOD anomalies (Figure 1c) show that the aerosol enhancement over the tropical Atlantic
Ocean (blue box) coincides with the increased CF over the tropical Atlantic Ocean. The
climatology and anomalies of temperature and specific humidity profiles associated with
AOD and CF variation are given in Figure S1. The following part of the study focuses on
the evolution of aerosols and clouds over the regions with the prominent AOD anomaly
(blue box in Figure 1c).
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Figure 1. Climatology analysis of (a) AOD (shading) and (b) CF (shading) with accompanying 850 hPa
wind (vectors; ms−1); anomaly analysis of (c) AOD (shading) and (d) CF (shading) accompanied by
850 hPa wind anomaly (vectors; ms−1). The climatology was calculated over the period of 14–25
June from 2003 to 2019. The anomalies are then compared to the corresponding period during the
dust event in 2020, relative to the established climatology. The gray areas indicate missing values in
the MODIS observation. The labeled blue boxes shown in (c) and (d) are the regions of interest for
tracking the evolution of dust plumes. The spatial extent of each region can be found in Table 1.

3.2. Westward Transport of Warming and Convective Systems

Figure 2a–h show the evolution of the dust storm in each time state. The aerosol trans-
port in each state coincides with the warm core moving westward during the development
of the Godzilla dust storm. Meanwhile, the enhanced AOD is accompanied by mid-level
anti-cyclonic wind anomalies in each state, propagating westward (Figure 2e–h). Hossein-
pour and Wilcox suggested that AOD enhancement over the tropical Atlantic Ocean might
be associated with the strength of anti-cyclonic vorticity based on their analysis of 13 years
of satellite data [48].
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Figure 2. (a–d) Meridional anomaly of temperature (T, shading; K), v-wind (contour; ms−1), and
u×−100ω wind (vector; ms−1 × Pas−1) profiles and (e–h) AOD and 700 hPa wind anomaly. The
profiles of anomalies are meridionally averaged from 10◦ to 25◦ N. The climatology analysis of the
temperature profile and AOD can be found in Figure S1a,e, respectively.

In state 1, the upstream warm core (Figure 2a) corresponds to the high dust AOD
originating from West Africa (Figure 2e), where the enhanced convection causes ascending
airflow (Figure 2a). In state 2, the warm core, accompanied by the transported aerosols, is
observed to shift to higher altitudes, extending up to 850 hPa (Figure 2b,f). This vertical dis-
placement of the warm core is attributed to the anomalous updraft in mesoscale convection,
which is associated with the African Easterly Waves (AEWs), as discussed by Hosseinpour
and Wilcox [48]. In state 3, the enhanced AOD, located within the anti-cyclonic anomalies,
continues to propagate further downstream when the warm core is observed to shift up-
ward toward the middle layers (Figure 2c,g). Simultaneously, the second wave initiates
over the west coast of Africa and coincides with the intensified warm updraft generated
by the convection upstream. In state 4, the first aerosol concentration and the warm core
reach the Caribbean islands (region G; Figure 2d,h). The aerosols embedded in the second
wave are propagated further west, coinciding with the anti-cyclonic anomalies. The syn-



Atmosphere 2024, 15, 13 6 of 15

chronized movement of the aerosols and the warm core implies that the light-absorbing
dust is elevated and heats the atmosphere during this event (Figure S2).

The elevated aerosols and the associated warming vary with the cloud enhancement
coupling with the convective systems during the Godzilla event (Figure 3). In state 1, the
enhanced CF coincides with the transient anti-cyclonic anomalies of the waves offshore
(Figure 3e). The baroclinic instability of the waves is related to the intensified meridional
anomalies over the eastern tropical Atlantic Ocean (contour core in Figure 3a; Hosseinpour
and Wilcox, 2023 [49]). In addition, the moisture increase extends above 600 hPa, accom-
panied by enhanced updraft and cloudiness over the offshore region (Figure 3a,e). An
enhancement of lower-level moisture is developed in areas B and C (Figure 3a). In state 2,
the downstream development of CF is transported westward along with the convective
systems (Figure 3b,f). Likewise, the enhanced moisture column coinciding with the propa-
gation of the wave (the core of contours in Figure 3a,b) reaches to the west (region C). In
state 3, the CF increase accompanied by the anti-cyclonic anomalies reveals a synchronized
variation with dust concentration (Figures 2g and 3g). The increase in low-level moisture
covers the tropical Atlantic Ocean, while a second wave system and elevated water vapor
initiate in region A (Figure 3c). Finally, the anomalous subsidence associated with drier air
over the Caribbean islands (Figure 3d) coincides with the dust AOD shown in Figure 2d.
This subsidence is linked to the suppression of baroclinic instability during the dissipation
of the wave. Meanwhile, the second convective system moves with the CF enhancement
and the elevated water vapor to region C (Figure 3d,h).
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3.3. PCA Results and AOD-CF Relationships

In this section, PCA is applied to examine the systematic relationships between CF
and the associated atmospheric parameters across the tropical Atlantic Ocean. In our
study, we used the surface pressure (PS) and 10-m winds (U10M and V10M) to investigate
the dynamic influence from the surface; 10-m temperature (T10M) and specific humidity
(QV10M) were used to study the low-level thermal effect. We also examine the atmospheric
impacts from the middle layer, specifically at 700 hPa. This level is significant as the
jet weakens, facilitating the westward propagation of AEWs [50]. Moreover, our study
identifies the prominent temperature anomaly at 700 hPa, which is associated with the
anti-cyclonic anomalies shown in Figure 2. Thus, the selected parameters are geopotential
height (H700), omega (ω700), u-wind (U700), v-wind (V700), temperature (T700), and
specific humidity (QV700). AOD is utilized to study the effect of the aerosol column.

As the initial step, we estimate correlations between CF and the aforementioned
atmospheric parameters. This analysis allows us to examine the covariance between cloud
cover and the surrounding environmental conditions. The correlation coefficients are
estimated for each space–time range (Table 1), and the preliminary results are presented
individually in Figure S3. Subsequently, PCA is applied to derive contributing atmospheric
variables that show representative space–time patterns affecting the Atlantic clouds while
the extreme event evolved.

The most symbolic distribution of the first mode (Figure 4) has the highest explained
variance ratio (44.7%). This space–time pattern represents the dominance of the strong
convection offshore West Africa. In state 1, the intensified PS and H700, associated with
the initiation of AEWs, are beneficial for cloud coverage. In state 2, the convection system
moves toward the middle of the tropical Atlantic Ocean. Later, another, but weaker, dust
plume initiates at region A, yielding a positive signal in states 3 and 4. The negative
components of T10M and Q10M in PC1 and the negative signals over the middle tropical
Atlantic Ocean suggest that the warm temperatures associated with dust (Figure 2a–e)
and the moisture from the lower levels (Figure 3a–e) are favorable for promoting clouds
but may not have benefited CF offshore of Africa. Similarly, the positive element of
U700 in PC1 shows the importance of easterlies to marine CF, where these winds are also
responsible for aerosol transport. The second representative mode, which has an explained
variance ratio of 24.9%, exhibits a significant westward propagation racing toward the
Caribbean islands (Figure 5). This signal reveals a westward systematic effect, and the
component feature from PC2 suggests a positive relationship between cloud variation and
enhanced PS, AOD, and temperature at 700 hPa (T700). The negative atmospheric variables
of PC2 reveal the importance of surface easterlies and the decrease in specific humidity
associated with the westward effect. Thus, the space–time pattern and the PC2 support
the synchronic movement of anomalous anti-cyclone circulation and AOD (Figure 2). The
negative tendency of QV correlation to CF may relate to anomalous airflow from higher
levels containing less moisture (Figure 3a–d). The westward transportation observed
during the Godzilla event might relate to the systematic influence of the AEJ, the North
Atlantic subtropical high, and the intensified Caribbean low-level jet, as proposed by Pu
and Jin [26]. The first two results from PCA contain more than half the explained variance.

While CF varies with atmospheric parameters westward (Figure 5), the impact of AOD
is less pronounced when substantial dust, potentially acting as cloud condensation nuclei
(CCN) or ice nuclei (IN), reaches the tropical Atlantic Ocean. In the following section, we
analyze the relationship between CF and AOD during the Godzilla event for each state
and region. Figure 6a,b display the average distribution of AOD and CF, respectively; the
space–time relationships between CF and AOD are determined through linear regression
analysis. The regression analysis (Figure 6c) suggests that a systematic effect of space and
time suppresses cloud sensitivity to Saharan dust. We note that the responses of cloud
coverage to aerosols are still positive, but CF sensitivity to AOD becomes lower. The
suppression can reach downstream in state 3 when AOD synchronically arrives in the
Caribbean islands. One of the plausible reasons is that the increase in dust might not have
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facilitated more cloud formation in already cloudy conditions. Under this situation, the
surface easterlies and the warming air at 700 hPa are more significant for clouds’ westward
propagation in the Godzilla case (Figure 5).

Atmosphere 2024, 15, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 4. The first mode (a) and the corresponding PC (b) obtained from PCA have an explained 

variance ratio of 44.7%. The top panel displays the space–time pattern of the first mode. The bottom 

panel shows the contribution of each variable to PC1. The inputs used for PCA are the correlation 

coefficients between the corresponding meteorological variables noted in the bottom panel with 

cloud fraction (CF). 

 

Figure 5. Same as Figure 4, but for the second mode (a) and its PC (b), obtained from PCA with an 

explained variance ratio of 24.9%. 

Figure 4. The first mode (a) and the corresponding PC (b) obtained from PCA have an explained
variance ratio of 44.7%. The top panel displays the space–time pattern of the first mode. The bottom
panel shows the contribution of each variable to PC1. The inputs used for PCA are the correlation
coefficients between the corresponding meteorological variables noted in the bottom panel with
cloud fraction (CF).

Atmosphere 2024, 15, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 4. The first mode (a) and the corresponding PC (b) obtained from PCA have an explained 

variance ratio of 44.7%. The top panel displays the space–time pattern of the first mode. The bottom 

panel shows the contribution of each variable to PC1. The inputs used for PCA are the correlation 

coefficients between the corresponding meteorological variables noted in the bottom panel with 

cloud fraction (CF). 

 

Figure 5. Same as Figure 4, but for the second mode (a) and its PC (b), obtained from PCA with an 

explained variance ratio of 24.9%. 
Figure 5. Same as Figure 4, but for the second mode (a) and its PC (b), obtained from PCA with an
explained variance ratio of 24.9%.



Atmosphere 2024, 15, 13 9 of 15

Atmosphere 2024, 15, x FOR PEER REVIEW 9 of 16 
 

 

While CF varies with atmospheric parameters westward (Figure 5), the impact of 

AOD is less pronounced when substantial dust, potentially acting as cloud condensation 

nuclei (CCN) or ice nuclei (IN), reaches the tropical Atlantic Ocean. In the following sec-

tion, we analyze the relationship between CF and AOD during the Godzilla event for each 

state and region. Figure 6a,b display the average distribution of AOD and CF, respectively; 

the space–time relationships between CF and AOD are determined through linear regres-

sion analysis. The regression analysis (Figure 6c) suggests that a systematic effect of space 

and time suppresses cloud sensitivity to Saharan dust. We note that the responses of cloud 

coverage to aerosols are still positive, but CF sensitivity to AOD becomes lower. The sup-

pression can reach downstream in state 3 when AOD synchronically arrives in the Carib-

bean islands. One of the plausible reasons is that the increase in dust might not have fa-

cilitated more cloud formation in already cloudy conditions. Under this situation, the sur-

face easterlies and the warming air at 700 hPa are more significant for clouds’ westward 

propagation in the Godzilla case (Figure 5). 

 

Figure 6. Space–time distribution of (a) AOD, (b) CF, and (c) the derivatives of CF to AOD. The 

space–time of the AOD and CF distributions are derived from averaging data over each region and 

time given in Table 1. The derivatives shown in (c) are obtained via the linear regression of CF to 

AOD. The p-values of the derivatives in (c) are less than 0.005. 

3.4. Evolution of Aerosols and Clouds during the Extreme Dust Storm 

This section focuses on the altitude changes of aerosols and clouds in space and time 

during the Godzilla dust storm. The CALIOP profiles in each region and state (Table 1) 

and Equation (1) are used to derive the average height of aerosols and clouds shown in 

Figure 7a and 7b, respectively. The aerosol average height reaches an altitude higher than 

3 km offshore West Africa (regions A; Figure 7a). While the dust aerosols are transported 

westward, the average height of aerosols ascends, and the elevated dust can reach the 

western tropical Atlantic Ocean (regions F and G) in state 4. In addition, the average height 

of aerosols descends toward the west. Thus, the space–time distribution of aerosol layers 

represents a gradient. This observed result implies that the SAL embedded with dust low-

ers during the dust storm. The average height of clouds reveals that higher clouds domi-

nate in the western tropical Atlantic Ocean (Figure 7b). The low clouds (<2 km) are located 

Figure 6. Space–time distribution of (a) AOD, (b) CF, and (c) the derivatives of CF to AOD. The
space–time of the AOD and CF distributions are derived from averaging data over each region and
time given in Table 1. The derivatives shown in (c) are obtained via the linear regression of CF to
AOD. The p-values of the derivatives in (c) are less than 0.005.

3.4. Evolution of Aerosols and Clouds during the Extreme Dust Storm

This section focuses on the altitude changes of aerosols and clouds in space and time
during the Godzilla dust storm. The CALIOP profiles in each region and state (Table 1)
and Equation (1) are used to derive the average height of aerosols and clouds shown in
Figure 7a and 7b, respectively. The aerosol average height reaches an altitude higher than
3 km offshore West Africa (regions A; Figure 7a). While the dust aerosols are transported
westward, the average height of aerosols ascends, and the elevated dust can reach the
western tropical Atlantic Ocean (regions F and G) in state 4. In addition, the average height
of aerosols descends toward the west. Thus, the space–time distribution of aerosol layers
represents a gradient. This observed result implies that the SAL embedded with dust
lowers during the dust storm. The average height of clouds reveals that higher clouds
dominate in the western tropical Atlantic Ocean (Figure 7b). The low clouds (<2 km) are
located near the West African offshore and propagate westward with the dust transport
(Figure 7c).

This study also examines the vertical variations in the microphysical properties of low
clouds in relation to moisture changes associated with the dust storm. We have applied
linear regression to the CER in the liquid phase (CER-liquid) and AOD, but the high p-
values indicate the complexity of the microphysical processes involved in this case (not
shown). Instead, we calculate the average QV from 1000 hPa to 600 hPa for every 100 hPa
as an interval containing the up and the bottom limits. Subsequently, the space–time
correlations between the QV layers and CER-liquid are obtained and presented in Figure 8.
In state 1, the high correlations between the CER-liquid and the QV are located offshore
West Africa (regions C–A), especially at lower levels (<800 hPa). In the next state, the
convection system moves westward and pumps up QV (Figure 3b). The hotspot of the
correlations propagates westward and reaches 700 hPa (Figure 8b). In addition to the
hotspot movement, the correlations between the low-level QV and CER-liquid over the
western tropical Atlantic Ocean are developed in state 3 (Figure 8c) when the signal of
the warm cloud increases and reaches region G (Figure 7c). Figure 8d shows that the high
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correlations arrive at 600 hPa, and the hotspots are associated with the convection initiated
by another dust plume (Figures 2d and 3d). These findings indicate that the relationship
between CER liquid and water vapor propagates westward. The finding agrees with the
hypothesis that providing sufficient water vapor can promote the growth of cloud droplets
when aerosols mix with clouds [51].
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Figure 8. Correlations between CER in the liquid phase (CER-liquid) and different layers’ specific
humidity (QV) from state 1 to state 4 (a–d). The vertical QV is averaged across each 100 hPa interval,
ranging from 1000 hPa to 600 hPa, inclusive of both the upper and lower limits. The results are
obtained from correlation analysis between CER-liquid and the QV layers for each state and region
(as shown in Table 1). The asterisks (*) indicate that the corresponding Pearson’s r-values are below
the significance threshold of 0.05.
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3.5. Vertical Characteristics of SAL Using CALIOP Observations

Figure 9 displays the vertical distribution of the aerosol layer fraction, cloud layer
fraction, and anomalies of temperature and specific humidity during the Godzilla dust
storm. The CALIOP profiles exhibit that the altitude of the elevated Saharan Air Layer
(SAL) is reduced across the tropical Atlantic Ocean. In the beginning (state 1), the aerosols
reach higher than 5 km at region A (offshore West Africa), while this height is reduced
to around 2 km close to the western Atlantic Ocean (region G). These results also show
an altitude gradient that agrees with the average height of aerosols shown in Figure 7a.
Noteworthy, at the end (state 4), the top of aerosol fractions rises to approximately 4 km
over the western tropical Atlantic Ocean (region G) and to about 6 km offshore West Africa
(region A). Some cloud fractions can extend to altitudes exceeding 8 km, which relates
to the higher average height of clouds in regions G and F (Figure 8b). In the middle
tropical Atlantic Ocean (regions C–E), the presence of low clouds, specifically those below
2 km in altitude, contributes to the observed decrease in average cloud height depicted
in Figure 7b,c. In the upstream, the development of clouds is associated with offshore
convection (Figure 3).
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Figure 9. Profiles of aerosol layer fraction (solid black line), cloud layer fraction (dashed black line),
anomalous temperature (T; red line), and anomalous specific humidity (QV; blue line). The thin
vertical dashed line represents the zero anomaly of T and QV. The profiles of aerosol and cloud are
obtained by averaging the CALIOP level-2 layer fraction for each state and region (Table 1).

Also, Figure 9 illustrates the environmental anomalies associated with the vertical
distributions of aerosols and clouds during the dust storm. The cooling above 550 hPa,
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shown in Figure 2a–d as well, might relate to the concentration of light-absorbing dust
aerosols [48,52]. The cooling signals in Figure 9 are especially prominent in state 2 within
regions A–C (same as Figure 2b), with altitudes closely matching the top of the dust clouds.
When another plume develops in state 4, the cooling at 500 hPa can also be observed in
regions A–C. Below 700 hPa, the warming is generally accompanied by anomalous ascend-
ing motion, which is embedded within SAL and is supported by Figure 2. Hosseinpour
and Wilcox [49] proposed that heating from dust aerosols can enhance baroclinicity. For
the layers lower than 850 hPa, in addition to the warming, Figure 9 shows the increase in
QV (Figure 3) and the low clouds’ layer fraction peak in regions B–E. The heating caused
by the absorption of dust may have contributed to the increase in QV from the surface,
facilitating the development of low clouds. This mechanism is consistent with the observed
environmental anomalies during the Godzilla dust storm. From state 1 to state 2, the
increases in low clouds in regions C–E are accompanied by the enhancement of QV near
the surface. The westward propagation of low clouds can reach F–G in state 3, consistent
with Figure 7c. In addition to more cloud coverage, the water vapor supply could increase
the droplet size of liquid clouds (Figure 8). Moreover, Figure 9 reveals that certain low
clouds reside beneath a peak of the aerosol fractions at higher altitudes. In state 2, regions
B and C exhibit a peak of the aerosol fraction that extends higher than 2.5 km and above the
cloud layer. In the next state, as the warming at 850 hPa (Figure 2c) shifts toward region D,
the peaks of low clouds are apparent at regions B–D. In state 4, the low clouds still occupy
the tropical Atlantic Ocean. The observational findings from CALIOP data are consistent
with previous studies, suggesting that CF is enhanced when absorbing particles that reside
above clouds [22,23,53].

4. Conclusions

In this study, we employed MODIS observations and the MERRA-2 reanalysis to inves-
tigate the relationships between aerosols, clouds, and environmental anomalies during the
“Godzilla” extreme dust storm (14 June to 25 June 2020). Using the CALIOP observations,
we have explored the vertical evolutions of the clouds and the aerosols within the Saharan
air layer (SAL). These findings aim to provide insights into the aerosol–cloud interactions
associated with extreme dust events.

During the Godzilla event, the intensified easterlies transport substantial aerosols,
which coincides with the enhancement of cloud fraction (CF) over the tropical Atlantic
Ocean. The dust moves with the warming, suggesting that the absorbing aerosols in
the SAL heat the air during the dust storm. Meanwhile, the baroclinic instability and
the elevated water vapor may have been linked to the dust concentration [49,54]. These
findings demonstrate the relationships between changes in marine clouds and dust during
this event, as well as the significant atmospheric and hydrological features associated with
cloud variation.

This study employed PCA to investigate the crucial atmospheric parameters and their
space–time patterns that contribute to the relationship between CF and the dust storm over
the tropical Atlantic Ocean. Although the AOD-CF relationships are suppressed, the related
atmospheric parameters still play a critical role in CF variation. PC1, which accounts for
44.7% of the explained variance, shows a significant influence of low-level temperature and
moisture on CF over the ocean. PC2 exhibits a westward propagation pattern, explaining
24.9% of the variance. The influences of easterlies and temperature from PC2, which align
with the movement of the warm core, exhibit a synchronic variation with CF. Our findings
highlight the significance of the semi-direct effect of dust embedded in SAL in influencing
CF during this extreme weather event.

Our analysis of CALIOP data indicates a gradient in aerosol height lowering towards
the west, accompanied by an escalation of aerosol levels during the Godzilla dust storm.
Meanwhile, an enhancement of low clouds is also observed over the tropical Atlantic Ocean
when dust resides above the clouds. Combining with the MERRA-2 reanalysis, we find
that warming within the aerosol layers and the supply of moisture from the lower levels
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coincide with cloud fraction variations. These findings, derived from CALIOP observations,
are consistent with our PCA results, indicating the significance of moisture supply from
the surface and the transport of warming to CF variations.

It is important to acknowledge the limitations inherent in this study. This work, which
applies remote sensing and reanalysis products for diagnostic analysis, cannot establish
causality. Additionally, our study is unable to quantify the indirect and semi-direct effects of
absorbing aerosols on CF enhancement, which will require further investigation. Building
on the identified relationships between aerosols and marine clouds, we intend to employ
regional climate models, such as the Weather Research and Forecasting (WRF) model
coupled with chemistry, to provide more detailed insights into the physical effects caused
by the dust particles. Sensitivity tests, such as tuning the absorption rate or dust emission
rate [22], might help clarify this causality.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos15010013/s1, Figure S1: Meridional climatology of v-wind
(contour; ms−1), u×−100ω wind (vector; ms−1× Pas−1), and (a) temperature (T, shading; K) and (b)
specific humidity (QV, shading; g kg−1); meridional anomaly of v-wind (contour; ms−1), u×−100ω

wind (vector; ms−1 × Pas−1), and (c) temperature (shading; K) and (d) specific humidity (shading;
gkg−1). The climatology of 700 hPa wind and (e) AOD (shading) and (f) CF (shading); the anomaly
of 700 hPa wind (vector; ms−1) and (f) AOD (shading) and (g) CF (shading); Figure S2: (a–d) The
evolution of aerosol shortwave radiative forcing (shading; W m−2). The time range of states can be
found in Table 1; Figure S3: Correlations between CF and the variables used in the PCA study.
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