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Abstract: Radar echo extrapolation provides important information for precipitation nowcasting.
Existing mainstream radar echo extrapolation methods are based on the Single-Input-Single-Output
(SISO) architecture. These approaches of recursively predicting the predictive echo image with
the current echo image as input often results in error accumulation, leading to severe performance
degradation. In addition, the echo motion variations are extremely complex. Different regions of
strong or weak echoes should receive different degrees of attention. Previous methods have not been
specifically designed for this aspect. This paper proposes a new radar echo extrapolation network
based entirely on a convolutional neural network (CNN). The network uses a Multi-Input-Multi-
Output (MIMO) architecture to mitigate cumulative errors. It incorporates a multi-scale, large kernel
convolutional attention module that enhances the extraction of both local and global information.
This design results in improved performance while significantly reducing training costs. Experiments
on dual-polarization radar echo datasets from Shijiazhuang and Nanjing show that the proposed
fully CNN-based model can achieve better performance while reducing computational cost.

Keywords: radar echo extrapolation; multi-scale large kernel convolution; long-term prediction

1. Introduction

Precipitation nowcasting, which refers to high-resolution weather forecasting within
a short period of 0–2 h [1], is one of the most important tasks in weather forecasting,
and has received increasing attention in the research community [2]. The significance
of precipitation nowcasting lies in its ability to provide accurate advance predictions
of short-term precipitation within a forecasted period, which is crucial for addressing
meteorological disasters, optimizing resource management, improving transportation
logistics, and enhancing public safety [3–5]. This forecasting technology aids various
sectors in effectively dealing with unpredictable weather conditions, reducing potential
risks and losses, and boosting overall productivity.

Weather radar has become a major tool for precipitation nowcasting because of the
high temporal and spatial resolution of its echo images. Radar echo refers to the radar
phenomenon where electromagnetic waves emitted into the atmosphere encounter precipi-
tation particles, such as raindrops or snowflakes. The waves scatter, reflect, or are absorbed
by these particles, returning to the radar and forming an image known as an echo image.
This image is crucial for displaying and analyzing precipitation location, intensity, and
distribution in meteorology and radar meteorology. Echo position refers to the specific
location of precipitation echoes displayed on an echo image. The echoes and their positions
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are crucial for displaying and analyzing the location, intensity, and distribution of precip-
itation. Traditional radar echo extrapolation methods mainly include cross-correlation
algorithms [6], cell centroid tracking algorithms [7], and optical flow algorithms [8], which
extrapolate the echo position of the next moment based on the radar echo images of several
moments. Despite the high computational efficiency of these methods, they ignore the
complex nonlinear variations in the small- and medium-scale atmospheric systems in the
radar echo. They also suffer from the underutilization of historical radar data and the
limitation of short extrapolation time limit [9].

In recent years, with the rapid development of artificial intelligence technology, deep
learning methods have been heavily applied to various fields, including precipitation
nowcasting. Most of the current deep learning methods focus on extrapolation tasks
guided by radar echo data because of the ease of collecting a large amount of continuous
radar echo data to meet the data requirements of long-time forecasting tasks.

The main models currently used for radar echo extrapolation tasks use a hybrid
architecture of convolutional neural networks (CNN) and recurrent neural networks (RNN).
Such an architectural design allows the models to exploit both the ability of convolutional
units to model spatial relationships and the potential of recursive units to capture temporal
dependencies. Although such predictive architectures give satisfactory results, they are
still limited and not fully suitable for radar echo extrapolation tasks [10].

Firstly, these recurrent models are based on the Single-Input Single-Output (SISO)
architecture, which generates the next frame using the current prediction frame by learning
the hidden state of the historical information. However, as more frames are generated,
their quality and accuracy deteriorate rapidly due to the effect of small errors in the earlier
frames. In particular, the complexity of the radar echo motions is such that even small
errors can easily be amplified into severe compound errors over time. To effectively
suppress cumulative errors, some methods for prediction tasks such as Simvp [11] and
MIMO-VP [12] adopt a Multi-Input Multi-Output (MIMO) approach to model building.
These models have shown significant performance gains. They encode the spatiotemporal
representation by stacking feature maps of all input frames in the translator module and
simultaneously decoding them into multiple future frames. However, only a few attempts
in video prediction have adopted the MIMO architecture, and there has been limited
exploration of the MIMO architecture in the radar extrapolation field.

Secondly, previous models have explored the hidden representation of spatiotemporal
variations, ignoring the extraction of global features. Convolution kernel size is a very
important design dimension, but is often neglected. The traditional convolution-learning
representation used in the model is strongly biased against local features. At the same
time, this leads to severe damage to global features [13]. Larger convolutional kernels cover
a wider spatial region of the image with a larger receptive field. Thus, more contextual
information can be taken into account, including features and structures at larger scales.
This facilitates the model to understand the overall appearance and overall nature of the
overall image, rather than just focusing on local details. Due to weather systems and
complex terrain factors, the shape, size, and motion speed of radar echoes vary greatly
from one rainfall process to another. The perceptual field provided by traditional small
convolution alone is very limited, and the ability to capture the spatial and temporal
variation in radar echoes when they move over a large area cannot meet the operational
requirements. Therefore, the radar echo extrapolation task needs to consider more spatial
feature information and different levels of attention should be paid to the strong and weak
echoes in different regions.

In this paper, we propose a new convolution-based spatiotemporal feature extraction
network, MSLKNet, to fully exploit the spatiotemporal relationships of meteorological data
and reduce prediction errors over time. We use a Multi-Input-Multi-Output (MIMO) ap-
proach to build our model, which updates the design of traditional convolution in previous
radar echo extrapolation models and differs from stacked RNN models using traditional
small convolution to extract features. A multi-scale large kernel convolution attention
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module is used to evoke spatial attention to preserve the global spatial information of the
frame. Building multi-scale spatial attention is more effective than standard convolution
and self-attention in spatial information encoding. In addition, an information recalling
scheme is applied to facilitate prediction. The contributions of our work can be summarized
as follows:

• We reconsider the convolutional attention structure and design the multi-scale large
kernel (MSLK) convolution module to acquire a multi-scale radar echo background
from local to global.

• We propose a new CNN-based radar extrapolation architecture to reduce extrapolation
accumulated errors by building a MIMO-based model. Moreover, an information
recalling scheme is applied to further preserve the visual details of the predictions.

• Comprehensive experiments are conducted on two real dual-polarization radar
echo datasets.

2. Related Work

In recent years, machine learning and deep learning approaches have become domi-
nant in the field of weather prediction and meteorological research. This trend is due to the
large amount of accessible radar or satellite image data and the rise of advanced models
such as deep neural networks, which provide powerful tools for solving diverse problems
in this field.

There are two main structures of existing deep learning models for radar echo extrap-
olation, the CNN based on the UNet [14] structure and the stacked ConvRNN model.

UNet and its variants are prominent CNN models that focus on utilizing convolutional
modules to learn temporal and spatial data variations. These models are renowned for
their outstanding performance and widespread application in various domains. Through
convolutional modules, they efficiently capture data features and patterns, enabling the
analysis and prediction of temporal and spatial data. SE-ResUNet [15] embeds ResNet
(Residual Network) [16] modules into U-Net to improve prediction accuracy. SmaAt-
UNet [17] equips UNet with an attention module and depth-separable convolution, using
only a quarter of the training parameters without compromising. FureNet [18] adds two
additional encoders to UNet for multimodal learning. WF-UNet [19] uses a 3D Unet model
to integrate precipitation and wind speed variables as inputs to the learning process and
analyzes the impact on the precipitation target task. Broad-UNet[20] is equipped with
asymmetric parallel convolution as well as the Atrous Spatial Pyramid Pooling (ASPP) [21]
module, which learns more complex patterns by combining multi-scale features while
using fewer parameters than the core UNet model. These models are simple in structure
and easy to apply. However, convolution is more concerned with extracting spatial features
and has a natural drawback in capturing temporal trends; this is not fully applicable to
time series tasks.

The stacked ConvRNN model attempts to design a new spatiotemporal module and
then stack multiple such modules to form the final model. ConvLSTM [22] is the pioneer of
this work, which pioneered the use of convolution and LSTM to model spatial and temporal
variations, respectively. TrajGRU [23] absorbs the advantages of the trajectory tracking
strategy by substituting optical flow into the hidden state. PredRNN [24] proposed a spa-
tiotemporal memory unit that propagates information horizontally and vertically through
highway connections that can extract and store both spatial and temporal representations,
and its follow-up work PredRNN++ [25] further proposed a gradient highway unit and Ca-
sual LSTM to capture temporal dependence adaptively. MIM [26] introduced more memory
cells to handle smooth and non-smooth information to enhance the ability of PredRNN to
model higher-order dynamics. E3D-LSTM [27] designed eidetic memory transformations
to further enhance the long-time memory capability of LSTM and proposed 3D convolution
to enhance its performance. MotionRNN [28] modeled overall motion trends and transient
changes uniformly. PrecipLSTM [10] designed two modules focusing on meteorological
spatial relationships and meteorological temporal variations, respectively, and combined
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the two modules with PredRNN to adequately capture the spatiotemporal dependence of
radar data. The ConvRNN model can effectively capture the spatio-temporal features in
the input data and is suitable for tasks with spatial and temporal dependencies. However,
its high computational cost in dealing with long sequences or large input data will lead to
a decrease in the efficiency of training and inference [29].

To summarize, previous methods have certain limitations. In the past, to capture long-
term spatio-temporal dependencies, CNNs typically introduced attention mechanisms.
These approaches have had limited results, and we used large kernel convolution to build
multi-scale spatial attention when encoding spatiotemporal information. Subsequently,
we learned the stacked ConvRNN model, which enables the modeling of spatio-temporal
dependencies by stacking such specially designed convolutional modules.

3. Approach
3.1. Problem Formulation

Precipitation nowcasting describes the present weather conditions and the weather
forecast from 0 to 2 h. Therefore, the radar extrapolation problem can be defined as using
the radar echo reflectivity of 1 h before the current time to predict the reflectivity of the
following 2 h. A radar extrapolation model typically takes a video clip {v1, . . . , vi} as the
inputs and outputs the future video clip {v̂i+1, . . . , v̂T}. The problem we want to optimize
can be represented by Equation (1):

min
T

∑
t=i+1

[L(v̂t, vt)], (1)

where v̂t denotes the predicted frame at time step t,L denotes the loss function, such as the
L1,L2 loss functions and so on.

3.2. Overview

We illustrate the detailed architecture of MSLKNet in Figure 1, where the input past
frames are first encoded into a low-dimensional potential space by an encoder consisting
of three convolutional layers. The spatial features of the radar echo maps are extracted at
each convolution step while reducing the spatial resolution of the feature maps. Next, the
translator captures spatial dependencies and local motion variations by learning the latent
space. The translator consists of several specially designed stacks of multi-scale large kernel
convolution blocks. The MSLK Block is divided into two parts to extract global structural
features and local motion variations, described in more detail in the following two sections.
Finally, the decoder decodes the potential space into predicted future frames. The decoder
is symmetric with the encoder, including three deconvolution layers. An information
recall scheme is used to bridge the gap between low-level details and high-level semantics,
preserving spatial features. Figure 1(2) depicts the detailed structure of the MSLK block.
The first part of MSLK focuses on the global spatial structure and uses operations such as
multi-scale convolution to capture the spatial information of the image. The second part
of local motion concern (LMC) focuses on local motion changes and uses convolution to
extract features at each location, increasing the nonlinear representation of the model and
improving the diversity of features by up- and down-dimensioning. Figure 1(3) depicts the
detailed structure of MSLK.

3.3. Multi-Scale Large Kernel Convolution (MSLK)

Unlike many video prediction tasks, the radar echo extrapolation task needs to focus
on the local echo motion and the global system motion trend due to the complexity of
atmospheric system evolution, which cannot be satisfied by the traditional representation
of convolutional learning. The attention mechanism [30] may be more suitable for global
feature extraction. It is a hot topic in visual transformer research, and aims to make
the network focus on the important parts, capturing the influence of all other points
across the map and adaptively selecting differentiated features based on the input features.
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Unfortunately, the attention mechanism requires an excessive memory footprint, and
models with stacked RNN units cannot meet this demand. Recent studies have found
that large convolutional kernel models, supported by novel model designs, demonstrate
comparable or superior performance to Transformer models in various deep learning tasks.
Large kernel convolution offers significant advantages in obtaining larger effective sensory
fields and more accurate shape biases [31–35]. Therefore, we consider using large kernel
convolution to model attentional mechanisms to achieve larger receptive fields and capture
multi-scale spatial structures.

Encoder
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Figure 1. Network structure of our model. (1) The consecutive input frames are first sent to the
encoder for encoding. After encoding, the translator extracts spatial features and spatio-temporal
correlations. Finally, the features are decoded into predicted video frames. The encoder and decoder
consist of three convolutional layers. The translator consists of stacked MSLK Blocks. (2) Architecture
of MSLK Block. (3) Architecture of MSLK in (2).

To enable the model to obtain a larger receptive field and to be able to adjust its
receptive field size adaptively, we propose a multi-scale convolution with automatic se-
lection [36] among multiple kernels with different kernel sizes. The specific structure is
shown in Figure 1. MSLK consists of four parts: extract, split, fuse, and select. First, a
deep convolution with a convolution kernel of 5 is used to aggregate local information, fol-
lowed by the application of a deep strip convolution with multiple branches for capturing
multi-scale spatial information. We use a fusion operation to aggregate information from
multiple paths to obtain a global and integrated representation and select weights. Finally,
we aggregate feature maps of different-size kernels based on these weights. This allows for
better integration and utilization of information from different sensory fields to improve
the performance and robustness of the model. MSLK can be described by Equation (2):

y = FMSLK(x) =
3

∑
i=1

αi

∑3
j=1 αj

fi(DW- Conv(x)), (2)
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where x denotes the input feature map. DW-Conv denotes the depth direction convolution
and fi, i ∈ {1, 2, 3} denotes the i-th branch. In each branch, we use two depth-wise strip
convolutions instead of the conventional convolution, where the convolution kernel size of
each branch is set to 7, 11, and 21, respectively. Depth strip convolution can significantly
reduce the convolution parameters and significantly improve efficiency with limited loss of
model performance. αi, i ∈ {1, 2, 3} denotes the weight of the i-th branch.

3.4. Local Motion Concern (LMC)

Another important aspect of radar echo extrapolation is capturing short-term local
motion changes, which is critical for generating future video frames. That is, the model
needs to have the sensitivity and ability to capture local motion changes and effectively
identify and predict local motion changes in radar echoes to generate video sequences with
continuity and naturalness. Therefore, it is justified to install a local motion concern block
behind the MSLK block to effectively extract local features in the image.

In designing the block, we adopt the idea of Fully Connected Feedforward Network
(FFN) in the Transformer [37] structure. Specifically, we first map the low-dimensional
features into the high-dimensional space by 1 × 1 convolution to increase the complexity
and richness among the features. Next, we use 3 × 3 deep convolution to extract local
information and perform nonlinear transformations on the features by Gelu functions
to improve the expressiveness of the network. Finally, we downscale the features by
1 × 1 convolution to remove the less relevant information and focus more on the important
information of local motion. In this process, we use the residual connection to combine
contextual information to further improve the effectiveness and accuracy of the model.

3.5. Information Recall Scheme

Considering the problem of information loss during encoding, we adopt an informa-
tion recall scheme between the encoder and decoder and can be represented by Equation (3):

Dl = Dec(Dl−1 + E−l), l = 1, . . . , (3)

where Dl , E−l denote decoded features from the lth layer of the decoder and the encoded
features from the lth from the last layer of the encoder. Decl denotes the lth layer of the
decoder. On the basis of the above information recalling scheme, the gap between low-level
detail and high-level semantics is bridged. The decoder can recall multi-level encoded
information back and improving the quality of forecasts.

4. Experiment

In this section, we validate the performance of our proposed model on two real radar
datasets. This study uses data from a C-band dual polarization weather radar operated by
Nanjing University and a S-band dual polarization weather radar operated by Shijiazhuang
Meteorological Bureau. Currently, S-band and C-band radars are the main weather radars
in operation in China.

4.1. Datasets
4.1.1. Nanjing Dual-Polarization Radar Dataset

NJU-CPOL [18] is a C-band dual polarimetric weather radar open dataset provided by
Nanjing University. The dataset contains 268 precipitation events from 2014 to 2019, using
Constant Altitude Plan Position Indicator (CAPPI) data at 3 km altitude with prior quality
control [38] of the raw data and interpolation into a Cartesian coordinate system. CAPPI
displays radar echo information at a particular altitude, which helps to observe weather
conditions at a particular altitude and can be used to analyze precipitation, thunderstorm
activity, cloud structure, etc. The temporal resolution of the dataset is 6–7 min, the spatial
resolution is 1 km horizontally, and the area around the radar center is 256 × 256 km.

Many precipitation events in the dataset have missing data and the event sequence
length cannot meet the requirements for the proximity forecasting task. Therefore, after the
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screening, we divide the dataset into a training set containing 5547 sequences and a test set
containing 1110 sequences.

4.1.2. Shijiazhuang Dual-Polarization Radar Dataset

The dataset generated from S-band dual-polarization radar-based data is provided
by the Shijiazhuang Meteorological Bureau, Hebei Province, China. We collected radar
data for all precipitation days from 2020 to 2022 and took the maximum of the reflectances
from the nine elevation angles to form a combined reflectance to be applied for radar echo
extrapolation. The raw radar data were first quality-controlled, and non-meteorological
echoes in the radar echoes were removed using dual-polarization radar parameters such
as Differential Reflectivity (ZDR), Specific Differential Phase (KDP), and correlation co-
efficients. The data were rasterized into a 200 × 200 grid using the K-nearest neighbor
regression algorithm, which covered the entire Shijiazhuang city (113.5° E–115.5° E and
37° N–39° N, with a resolution of 0.1°). The temporal resolution of the radar-based data are
6 min. For the partitioning of the dataset, we refer to the method in ConvLSTM [22], which
divides each precipitation day sequence into six blocks, randomly assigning five blocks for
training and one block for testing. Then, we slice the consecutive frames in each block with
a 20-frame wide sliding window to generate a training set of 5254 samples and a test set of
814 samples.

4.2. Experiment Setup

We first refer to the general setup of a spatiotemporal sequence prediction task on a
radar dataset, generating 10 future frames by inputting 10 prior frames when training the
model. We then extend the extrapolation length from 10 to 20 frames to explore the model’s
ability in long-term prediction covering the next 2 h.

We compare MSLKNet with five benchmark models in the literature: ConvLSTM,
PredRNN, PredRNN++, MIM, and MotionRNN. We set the mini-batch to 8 to optimize
the model using L2 loss as the training loss using the Adam optimizer [39] with a learning
rate of 0.001. All experiments were performed on an NVIDIA 3060 GPU. We computed
several evaluation metrics for the prediction results, such as Mean Square Error (MSE),
Mean Absolute Error (MAE), Structural Similarity (SSIM), Peak Signal-to-Noise Ratio
(PSNR) and Critical Success Index (CSI). These metrics are computed and averaged for
all prediction frames to comprehensively assess the performance and effectiveness of the
model. Among them, MSE and MAE reflect the prediction accuracy and precision of the
model. PSNR is a metric for measuring image quality, commonly used to compare the
similarity between an original image and a processed or compressed version. SSIM is
another metric used for image quality assessment, considering not only brightness, but
also contrast and structure. PSNR primarily focuses on brightness, being less sensitive
to changes in contrast and structure. SSIM considers structural information, making it
more perceptually aligned with human vision. CSI is a metric commonly employed in the
assessment of the consistency between predictions and observations, particularly in the
context of precipitation forecasting. In addition, we use the fvcore [40] library to report the
number of triggers per sample to ensure the accuracy of the calculation. Also, we report
the training time by calculating the average time (in seconds) required to train an epoch. By
considering these metrics, we can evaluate the performance and effectiveness of the model
more comprehensively.

4.3. Results

Tables 1 and 2 present the performance of each model on the two radar echo datasets
from Shijiazhuang and Nanjing. MSLKNet achieves consistent improvement for all the
metrics, indicating that our proposed model obtains the best prediction quality with the
fastest training time and the smallest computational resource consumption.

Compared with MotionRNN, which has the best extrapolation effect, MSLKNet im-
proves the MSE by 11.6%, and the SSIM increases from 0.836 to 0.857 on the Shijiazhuang
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Radar dataset using only 1/3 of the computing resources and less training time. In addition,
the overall nowcasting performance on the testing data set is quantitatively evaluated with
CSI for 30 dBZ threshold. The CSI (R > 30) of MSLKNet increased from 0.051 to 0.058,
which indicates that our model has a good nowcasting ability for heavier rainfall. Our
model can predict future frames more accurately than other models while making better
use of computational resources and training time. Our model does not use RNN, LSTM or
complex modules and relies on CNN with good computational optimization, and avoids
iterative computation, making the training process faster than other methods while saving
computational costs.

Table 1. Quantitative results of the different models on the Shijiazhuang radar dataset (10→20 frames).

Model Flops (G) Training Time (s) MSE ↓ MAE ↓ SSIM ↑ PSNR ↑ CSI ↑

ConvLSTM 14.9 416 149.89 1300.66 0.751 32.84 0.021
PredRNN 30.1 508 127.19 1119.07 0.808 33.55 0.036

PredRNN++ 41.3 541 122.99 1095.49 0.807 33.70 0.046
MIM 44.9 587 102.80 955.57 0.833 34.01 0.042

MotionRNN 33.4 569 99.62 964.65 0.836 34.04 0.051
MSLKNet 12.7 371 88.11 864.83 0.857 34.51 0.058

Figure 2 shows the MSE, MAE, SSIM and PSNR of the next 20 frames for each model.
Based on these metrics, it can be seen that over time, our model produces prediction results
with a lower mean difference and variance loss as well as higher image quality, showing a
clear advantage of the model in capturing long-term motion trends.

(a) MSE (b) MAE

(c) SSIM (d) PSNR
Figure 2. Frame-wise comparisons of the next 20 extrapolation echoes.

Figures 3 and 4 provide representative examples from the two test datasets. The
quantitative visualization results show that the MSLKNet-predicted frames are resistant
to ambiguity and can retain more overall structure and detailed features. For example,
the prediction results for the development of the echo center region from the right part
of the last predicted frame in Figure 3 are very similar to the true value, while other
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models produce significantly blurred frames or have errors in the prediction of the echo
center location.

Table 2. Quantitative results of the different models on the Shijiazhuang radar dataset (10→20 frames).

Model Flops (G) Training Time (s) MSE ↓ MAE ↓ SSIM ↑ PSNR ↑ CSI ↑

ConvLSTM 24.4 737 238.60 2338.89 0.772 34.86 0.083
PredRNN 49.3 911 190.26 2018.65 0.791 34.95 0.162

PredRNN++ 67.6 1401 166.52 1875.35 0.805 35.18 0.153
MIM 73.6 1432 153.98 1790.89 0.812 35.30 0.167

MotionRNN 54.7 1317 134.31 1704.20 0.821 35.34 0.181
MSLKNet 20.9 680 124.59 1653.01 0.825 35.56 0.192

ConvLSTM

Input sequence Ground truth and prediction

t=1               t=4               t=7               t=10              t=12              t=15             t=18              t=21             t=24             t=27             t=30          

PredRNN

PredRNN++

MIM

MotionRNN

MSLKNet

Figure 3. Visualization samples on the Shijiazhuang radar echo dataset. Yellow indicates higher
echo intensities.

ConvLSTM

Input sequence Ground truth and prediction

t=1               t=4               t=7               t=10              t=12              t=15             t=18              t=21             t=24             t=27             t=30          

PredRNN

PredRNN++

MIM

MotionRNN

MSLKNet

Figure 4. Visualization samples on the Nanjing radar echo dataset. Yellow indicates higher
echo intensities.

4.4. Ablation Experiments

To verify the effectiveness of each module in MSLKNet, we conduct a comparison
experiment on the Shijiazhuang dual-polarization radar echo dataset. From the quantitative
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results Table 3, we find that our improvements can reinforce each other and the model can
achieve better results in each metric.

Table 3. Ablation experiments for information recall scheme, multi-scale large kernel convolu-
tion module (MSLK) and local motion concern (LMC) on the Shijiazhuang radar dataset. We use
3 × 3 ordinary convolution to replace the MSLK Block in the basenet).

Model MSE ↓ SSIM ↑ PSNR ↑

Basenet 131.12 0.783 33.39
MSLKNet w/o MSLK 97.25 0.835 33.96
MSLKNet w/o LMC 106.01 0.823 33.82
MSLKNet w/o recall 92.07 0.854 34.46

MSLKNet 88.11 0.857 34.51

5. Conclusions

This paper proposes the MSLKNet, a convolution-based spatiotemporal feature ex-
traction network for radar extrapolation. The network includes two modules, MSLK and
LMC, which focus on multi-scale global spatial information extraction of radar echoes and
local motion objects, respectively. In addition, we design the model using a MIMO ap-
proach to improve long-term prediction capability. Radar echo extrapolation experiments
demonstrate the effectiveness of our approach. Our approach can predict future frames
more accurately while using computational resources and training time more efficiently. In
addition, the approach improves long-term prediction.

In the future, multiple parameters related to precipitation nowcasting in dual-
polarization radar will be introduced, and further improvement of the model architec-
ture will be studied to promote the fusion of multiple variable information.
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