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Abstract: This study presents a framework to attribute river runoff variations to the combined effects
of reservoir operations, land surface changes, and climate variability. We delineated the data into
natural and impacted periods. For the natural period, an integrated Long Short-Term Memory and
Random Forest model was developed to accurately simulate both mean and extreme runoff values,
outperforming existing models. This model was then used to estimate runoff unaffected by human
activities in the impacted period. Our findings indicate stable annual and wet season mean runoff,
with a decrease in wet season maximums and an increase in dry season means, while extreme values
remained largely unchanged. A Budyko framework incorporating reconstructed runoff revealed that
rainfall and land surface changes are the predominant factors influencing runoff variations in wet and
dry seasons, respectively, and land surface impacts become more pronounced during the impacted
period for both seasons. Human activities dominate dry season runoff variation (93.9%), with climate
change at 6.1%, while in the wet season, the split is 64.5% to 35.5%. Climate change and human
activities have spontaneously led to reduced runoff during the wet season and increased runoff
during the dry season. Only reservoir regulation is found to be linked to human-induced runoff
changes, while the effects of land surface changes remain ambiguous. These insights underscore
the growing influence of anthropogenic factors on hydrological extremes and quantify the role of
reservoirs within the impacts of human activities on runoff.

Keywords: climate change; Budyko framework; LSTM; reservoir operation; runoff variation
attribution

1. Introduction

Both climate change and human activities have exerted a significant influence on
the river flow regime [1-5]. Flow regime changes have consequential impacts on various
aspects such as aquatic ecosystems, sediment movement, and water supply [6-10]. In
response to the escalating demand for clean, renewable energy and fresh water, numerous
countries have embarked on the construction of multi-purpose reservoirs [11]. However,
the operation of these reservoirs can disrupt the continuity of the river system [12,13], and
the roles of reservoir operation, aquatic ecosystem protection, energy production, and flood
control become increasingly complex under the changing climate [1,8,11,14]. The objective
of this paper is to explore how human activities, represented by reservoir regulation,
influence the variation in water resources against the circumstances of climate change.

Identifying the primary factors that contribute to changes in runoff has become a
crucial area of research in hydrology [15]. At present, the predominant methods for an-
alyzing the factors contributing to changes in runoff encompass the paired catchment
method [16,17], statistical analysis [18,19], hydrology models [20,21], and the Budyko

Atmosphere 2024, 15, 164. https:/ /doi.org/10.3390/atmos15020164

https://www.mdpi.com/journal /atmosphere


https://doi.org/10.3390/atmos15020164
https://doi.org/10.3390/atmos15020164
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0003-0809-5297
https://doi.org/10.3390/atmos15020164
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos15020164?type=check_update&version=4

Atmosphere 2024, 15, 164

2 0f 23

framework [22-24]. These methodologies offer diverse perspectives and approaches to
understanding the complex dynamics of runoff changes. Among the aforementioned
methods, the Budyko framework is constructed purely based on the principle of water
balance [22,25]. Given its comprehensive consideration of meteorological and hydrological
elements, as well as its simplicity and convenience, it has been widely applied in hydrol-
ogy researches [23,24,26,27]. The elastic coefficient is commonly used with the Budyko
framework to reflect the sensitivity of runoff to various indicators [28,29]. With the rapid
process of urbanization, the hardening of the ground surface has altered the rhythm of
runoff generation, and the impact of human activities is becoming increasingly significant.
Scholars have proposed parameterizing land use to characterize the impact of human
activities [30-33]. However, some studies indicate that changes in the land surface mainly
alter the evapotranspiration process, and their interaction with human activities remains
complex [34-37]. Furthermore, there is relatively less research characterizing the role of
reservoirs, thus necessitating further improvements in related methods to clarify how the
role of reservoirs attributes to runoff variation.

Hang et al. [38] designed experiments to apply the Budyko framework at annual,
monthly, and daily time scales. The results indicated that an increase in the complexity of
the Budyko framework is necessary to accurately reflect the water balance relationship at
the monthly scale and finer time scales. That is, while the Budyko framework is expected to
achieve parsimony in hydrological model parameters, it is typically applied to annual water—
heat relationship reasoning [18,23,38]. Meanwhile, prior studies have indicated that short-
duration extreme precipitation events are becoming more frequent due to climate change
and human activities, while changes in long-duration precipitation remain negligible [39].

In summary, on the one hand, the Budyko framework’s ability to identify human
activities based on empirical inference is limited, and it struggles to explicitly consider the
role of reservoir regulation. On the other hand, the Budyko framework’s capacity to reflect
hydrological effects at fine time scales is lacking, obscuring the changes in short-duration
extremes. Given this context, in order to carry out the attribution analysis of runoff varia-
tion in the reservoir construction area, reconstructing the runoff affected by the reservoir
emerged as an appealing approach. The Long Short-term Memory network (LSTM) [40],
with its aptitude for learning long-term, feature-rich data, demonstrated its suitability for
hydrological modeling in recent studies [41-45]. As previously mentioned, the variation in
short-duration extremes also holds significant information for water resource management,
and the accurate simulation of extreme values is both a focal point and a challenge [46,47].
However, current research on how LSTM expresses extreme values in hydrology is still rela-
tively scarce. Therefore, enhancing the ability of runoff extreme simulation using advanced
deep learning technology is of considerable importance and can reveal more information
in terms of attribution of runoff variation.

Flood and drought events are occurring more frequently due to the impacts of climate
change and human activities [39,48]. The operation of reservoirs plays a crucial role in
flood prevention and water supply [49]. Understanding the natural hydrological regime
and identifying changes in river flows after the construction of a reservoir is essential for
effective flood control and clean water supply in a changing climate. Therefore, the overall
objective of this study is to identify the variation in runoff under the multiple influences
such as reservoir regulation, land surface changes, and climate change, and then identify the
contribution of each factor. Firstly, in order to identify the changes in runoff to the greatest
extent, we use deep learning methods to reconstruct runoff and eliminate the impact of
human activities on runoff series, and at this stage, we propose a combined model to deal
with the insufficient response of data-driven models to extreme values. Secondly, based
on the reconstructed runoff from the previous step, we construct a Budyko framework to
carry out the attribution analysis of runoff variation and explore the differences with the
existing Budyko framework, identifying the impact of reservoir regulation.



Atmosphere 2024, 15, 164

30f23

2. Materials and Methods
2.1. Study Area

This paper focuses on the Longchuan hydrological station control basin (LCB) in
southern China, as shown in Figure 1. The study area includes the Fengshuba reservoir
(FsbR), which is located 30 km upstream of the Longchuan hydrological station (LC) and
was built between January 1970 and 1974. FsbR is a multi-purpose reservoir integrating
flood control, power generation, and water supply. The dam is 91.5 m high and the crest is
418 m long, with a total storage capacity of 1.94 billion m3. LCB is situated in the subtropical
monsoon climate zone, with seasonal precipitation that is mainly concentrated in the wet
season (April to September), as shown in Figure 2.

Fengshuba
/Reservoir

.M Hydrological Station
9 Reservoir

— River

Basin

City Boundary — )

Figure 1. Zoning map of Longchuan hydrological station control basin (LCB) and Fengshuba
reservoir (FsbR).

2.2. Methodology

The methodology is structured as the following steps and the overview in Figure 3:

Step 1: Based on change-point detection, the hydrological and meteorological data
are partitioned into a natural period and an impacted period. The specific methods for
consistency inspection are elaborated in Section 2.2.1.

Step 2: A rainfall-runoff model is constructed based on the data from the natural
period, with the aim of quantifying the influence of overall human activities on runoff
during the impacted period. Here, we assumed that the reconstructed runoff only includes
the impact of climate change, and therefore, the difference between the reconstructed and
the observed runoff can be used to quantify the influence of all types of human activities on
runoff. Furthermore, in response to the challenges in simulating hydrological extremes, this
study proposes a coupled data-driven framework with the aim of improving the simulation
of extreme runoff. The specific method is elaborated in Section 2.2.2.

Step 3: The Budyko framework is applied to assess the contribution rates of climate
change and human activities to the runoff in the study area. As shown in Figure 3, the im-
pact of climate change is represented by precipitation and evapotranspiration, while human
activities are represented by reservoir regulation and land surface changes. The overall
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change in human activities is characterized by the difference between the reconstructed and
the observed runoff, then the contribution of the reservoir storage water volume and the
Normalized Difference Vegetation Index (NDVI) series is compared. The differences and
reasonableness between the proposed framework and the traditional Budyko framework
will be discussed for insights into dispatching impacts of multiple human activities on
runoff variations. The specific method is elaborated in Section 2.2.3.

Owing to the pronounced seasonality of reservoir operation, this study will divide the
hydrological and meteorological data into two distinct seasons: the wet season (from April
to September) and the dry season (from October to March of the following year). These
seasons will be analyzed separately. The complete framework is illustrated in Figure 3.
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Figure 2. From row 1 to 3: annual average, minimum, and maximum discharge recorded at
Longchuan station during 19562015 with linear regression results; from row 4 to 5, annual av-
erage and maximum precipitation recorded at Longchuan station during 1956-2015 with linear
regression results; the right column represents wet season and the left column represent dry season.
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Figure 3. Overview of runoff reconstruction models and attribution framework for runoff varia-
tion analysis.

2.2.1. Change-Point Detection

In this study, the Pettit’s test [50], Standard Normal Homogeneity Test (SNHT) [51],
and Buishand U test [52] were applied to the detect the change-point in the annual average
and maximum precipitation series and the annual average, maximum, and minimum
runoff series. If any of the three methods detect a change point, the earliest occurrence time
is identified as the breakpoint of the corresponding hydrological/meteorological series.
Based on the results of the change-point test, we separate the study period into natural
period and impacted period.

2.2.2. A LSTM and RF Coupled Rainfall-Runoff Simulation Model

Given its ability to handle long-term information, LSTM has emerged as a competitive
option for runoff prediction and simulation [53,54]. Random forest (RF), on the other hand,
is an ensemble learning algorithm introduced by Breiman et al. [55] and has been widely
used in rainfall-runoff models due to its excellent anti-overfitting ability and capacity to
handle multiple predictors [56,57]. This paper compares the advantages and disadvantages
of the two algorithms in runoff simulation and couples LSTM with Random Forest in the
hope of establishing a more reliable runoff restoration model. Considering the significant
seasonal variations in the wet and dry seasons of the study area, the design of the scheme
is as follows:

(1) Runoff simulation is performed separately using LSTM and RF, and the results are
marked as LSTM-SOLE and RF-SOLE, respectively;

(2) Based on the characteristics of significantly uneven annual distribution of basin
rainfall runoff, LSTM and RF are used separately for runoff simulation during the wet
and dry seasons, referred to LSTM-SEA and RE-SEA;
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(38) The 90th percentile and 10th percentile of the runoff sequence are used as thresholds
for extremely high and low flows, respectively, and the runoff extremes are trained
separately. In the MERGED model, when the input measured runoff exceeds the
threshold range of extremes, the simulation results of (1) or (2) are replaced with
simulated extremes.

By setting up the experiments with the aforementioned three steps, we aim to identify
the strengths and weaknesses of the LSTM and RF algorithms on the one hand, and on the
other hand, we hope to obtain the model that best reflects the rainfall-runoff process for
subsequent attribution analysis in the impacted period.

For machine learning algorithms, the selection of impacted factors is critical for the
accuracy of the training outcomes. Prior to initiating model training, we determine the
most appropriate factors by selecting the optimal inputs based on the preceding 0-15 days
of runoff and rainfall data. This period was chosen based on the assumption that 15 days is
an adequate timespan for flow confluence within the study area. The performance of the
model is assessed using the Nash-Sutcliffe efficiency coefficient (Ns.) [58] as the evaluation
criterion. The input combination yielding the highest N, is deemed the optimal set of
inputs. It is important to note that the input of rainfall and runoff are continuous over
time to ensure temporal consistency in the simulation. Furthermore, as the models in
this section are designed primarily for the reconstruction of natural runoff, the rainfall
data from the simulation day are included by default in all input factor combinations to
maximize the simulation’s reliability. Based on the results of the change-point test, the
model is trained using data from the natural period. To validate the model’s robustness,
5-fold cross-validation is employed during the training phase.

In order to evaluate the model results, an evaluation metric as listed in Table 1 was
constructed. It includes general indexes to investigate the mean and variance of the
sequence, the extreme indexes to represent the accuracy of extreme value prediction, and
the indexes to represent the accuracy of capturing runoff peaks. The names, definitions,
and calculation equations of these indicators are shown in Table 1.

Table 1. Evaluation metrics for the rainfall-runoff models.

Metrics Detail Equations
L 2
N [58] Nash-Sutcliffe efficiency N1 P (Q5-0Q5) 1)
se = L —
L Q-0
=1
- T _ _
Pearson 7 Pearson Correlgtlon between observed and L (Q4-0.)(Q-Ty) @
simulated flow r = TH =
¢2 Q-0 ¥ (G500
t=1 t=1
KGE'[59] Kling-Gupta efficiency KGE' =1- \/(r 12+ (05/00 = 1)* + (us/pto — 1)° ©)
H
FHV [60 Top 2% peak flow bi L (@-Q0) 4
L60] O 27 peak fow bias %BiasFHV = '=_ x 100% @
L (Qh)
=
L L _
FLV [60 Bottom 30% low flow bi 3 [log(Q4)—log(Qs)] -1 [log(Qh)—log(Q, )] 5
(601 ottom 2o fow Tow bias %BiasFLV = —1 - 1 _ ’ x 100% ©)
;[log(Qé)flog@o)]
Bias of the slope of the low-duration curve o s log(Q") —log(Q2) (Q")—log(QM2) .
FMS [60] between the 20% and 80% percentile %BiasEMS = | [log( ml}) 1[ 5(Q52)] Dca00s ©
; m ; % _ _H
Peaking POD Probability of detection of the flow peaks POD = gy (7)
Peaking FAR False alarm ratio of the flow peaks * FAR = HLM 8)
. g . _ H
Peaking CSI Critical success index of flow peaks * CSI = graer )

* In Equations (7)-(9), H, M, and F represent hit events, miss events, and false events in detecting peaks. A hit
event is when both the observed sequence and simulated sequence detect peaks; a miss event is when only the
gauge sequence report peaks, and vice versa for false event. In this study, the peaks are determined using SciPy
toolkits (https://www.scipy.org/) in Python 3.6.
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2.2.3. Attribution Based on the Budyko Frameworks

The Budyko framework is an effective method for quantitatively decomposing the
influence of climatic factors (precipitation and evaporation #) and human activities on the
river runoff [22,25]. This framework has been widely used in various studies [15,23,32,61].
For a long time scale, the water balance of a basin can be expressed as follow:

R=P— AEP+AS (10)

where R, P, and AEP denote the annual runoff, precipitation, and actual evaporation of
the basin, and AS denotes the terrestrial water storage change in the catchment; in the
long-term hydrological procedures, AS is generally considered to be 0. In this study, AEP
was calculated using the water—energy balance equation proposed by Ang et al. [62]:

P x ET,

AEP= — 2220
(P" 4+ ET,")n

(11)

where 1 denotes the landscape parameter to represent the impact of overall human activities;
ET, denotes the potential evapotranspiration. In this paper, n is determined by simulating
R based on Equations (10) and (11). Incrementing by 0.001, the value of 7 is calculated
from 0 to 10, and the value that minimizes the error of the equation is taken as the value
of the underlying surface parameter n for the basin. ET, is calculated using the equations
recommended by the Food and Agriculture Organization (FAO), and specific equations
refer to Allen et al. [63]. Combining Equations (10) and (11), R can be completely expressed
by P, ET,, and n as R = f(P, ET,, n), and then the variation in runoff can be represented

as follows: 3R IR -
R=-—dP+ ——dET, + — 12
The elastic coefficient ¢ was defined as the degree of change in basin runoff caused by
the change in a climate variable, such as the percentage change in annual runoff relative to
the multi-year average caused by a 1% increase in annual potential evapotranspiration. For

example, factor x’s elastic coefficient e, can be represented as follows:

JdR x
- .= 1
Ex Jx R (13
Thus, dividing both sides of Equation (12) by R, we obtain the following:
dR  dP dET, dn
Set ¢ = Eg" , the elastic coefficient of P, ET,, and n can be represented as follows:
1 _|_ n 1/n+1 _ n+1
ep = — - ) —a (15)
(1+¢M)[(1+¢")"" — 9]
1
€ET, = (16)
(L+ ML= (1+¢7)""]
n n —n
_In(l+¢") +¢"In(1+¢") 17

nl(1+¢") = (1+9m""

As previously mentioned, the area selected in this study is subject to reservoir regula-
tion. Using only land surface parameters to represent human activities lacks feedback on
the regulation effect of the reservoir. Therefore, in this study, we first determine the elas-
ticity coefficient of rainfall and runoff according to the above formulas and calculate their
overall variation during the impacted period. Subsequently, the overall difference between
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the reconstructed runoff (Rgjy,) and observed runoff (Rpp) from Section 2.2.2 is used to
represent the overall impact of human activities. In summary, we assume that the total
runoff variation (AR) is composed of climate change-induced variation (AR, ), which can
be divided into precipitation-induced (ARprecip) and evapotranspiration-induced (ARevap)
runoff variation, and human activity-induced variation (ARpon_clim)- Finally, AR i and
ARpon_clim are used to analyze the contribution rate of human activities and climate change
to runoff variation. Lastly, since the AR, cjim contains the impact of both reservoir and
land use changes, the difference in reservoir inflow and outflow and the NDVI index are
used to explore the proportion of reservoir operation and underlying surface changes in
human activities.

The above-mentioned runoff changes can be represented by the following equations:

AR = ARclim + ARnon_clim (18)
ARgim = ARprecip + ARevap (19)
Aeronfclim = Rops — Rsim (20)

The cumulative variation in total runoff AR and climate and other factor-induced
variation in runoff (AR iy, and ARpon clim, respectively) are denoted by AR¢, AR, jim, and
AR nc, respectively. (Specifically for the impacted period, we neglected the simulation
bias, assuming that the model established using the method in Section 2.2.2 during the
natural period can fully reflect the relationship between rainfall and runoff under natural
conditions. We have taken the difference between the simulated /reconstructed runoff
and the observed values as the quantity of runoff influenced by human activities.) The
contribution rate of impact factor x will be calculated by the following equation:

AR
AC, = = 100% 21
Cy AR x 100% (21)

2.3. Data

The precipitation data employed in this paper are the Asian Precipitation-Highly-
Resolved Observational Data Integration Towards Evaluation (APHRODITE) [64] daily-
scale precipitation from 1956 to 2015 extracted using the LCB mask. APHRODITE is a
precipitation dataset covering Asia and has now released gridded data at a 0.25° x 0.25°
(Lon x Lat) scale from 1956 to 2015. Since APHRODITE is derived based on a dense network
of rain-gauge data, it could be used as gauge precipitation. The APHRODITE precipitation
can be downloaded at http://aphrodite.st.hirosaki-u.ac.jp/download/ (product version
V1101 and V1101EX_R1).

The runoff data used in this paper are the daily runoff data of LC from 1956 to 2015
and inflow and outflow of FsbR from 1980 to 2015. The location of the hydrological station
is shown in Figure 1. To calculate ET, based on the FAO recommended equations [63],
meteorological data from Longchuan meteorological station are used, including daily
maximum/minimum /average temperature, daily average wind speed, pressure, sunshine
duration, and relative humidity. These meteorological data have been recorded since
1959. The NDVI was used to assess the impact of vegetation cover on non-climate factor-
induced runoff variation. The NDVI used in this study is the provided by the National
Ecosystem Science Data Center, the National Science and Technology Infrastructure of
China (http:/ /www.nesdc.org.cn), on a monthly scale, recorded from 1981 to 2015.

3. Results
3.1. Statistical Characteristics of the Precipitation and Runoff Series

Figure 2 depicts the annual average, minimum, and maximum daily runoff in LCB in
the wet season and dry season, respectively. It can be seen from the figure that the runoff
showed strong seasonal characteristics, with the runoff in the wet season much larger than
that in the dry season. On the other hand, during the wet or dry season, the average annual
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runoff did not change much, while the maximum and minimum annual runoff showed
a decreasing and increasing trend, respectively. These trends are most obvious after the
construction of the FsbR (1970s). We also present a linear regression for each subplot in
Figure 2. The linear trends of the annual maximum and annual minimum runoff in the wet
and dry period have passed the significance test.

Further, we performed a change-point test on the runoff and rainfall series of the
LCB; the results are shown in Table 2. The change points detected by each method are
very similar. The breaktime of average annual runoff and annual precipitation are both
in 1973. The annual maximum runoff breaks in 1969, before precipitation did. The FsbR
was built in 1970, and the change point in the annual maximum runoff may be highly
related to the construction of the reservoir, but this does not seem to have an impact on
the annual minimum runoff (no change point in the annual minimum runoff sequence has
been detected until 2006). We conducted a significance test for the identified change points.
The results indicate that rainfall is only significant during the abrupt change that occurred
in 20052006, while the different runoff sequences passed the significance test for abrupt
changes in the years 1969, 1973, and 2006. Based on the above analysis, we can deem the
runoff before 1969 as natural runoff; after 1970, with the construction of the reservoir, the
LCB’s runoff was impacted, resulting in a significant decrease in the annual maximum
runoff and an increase in the annual minimum runoff. Climate factors (precipitation) break
after 1973 and begin to have an impact on runoff variation.

Table 2. The results of the change-point detection using 3 different detecting methods.

Item Runoff Precipitation
Detection Method Average Maximum Minimum Average Maximum
Buishand 1973 * 1969 2006 1973 2005 *
SNHT 1973 * 1969 * 2006 * 1973 2006 *
Pettitt 1973 * 1977 2006 * 1973 2005 *

Numbers marked with “*” indicate that the change point has passed the significance test.

3.2. Comparison of the Rainfall—Runoff Simulation Models

The rainfall distribution in the study area has obvious seasonal characteristics. In
order to verify the MERGED model proposed in Section 2.2.2 step by step, in this part, we
first verify whether the season-distinguishing model (i.e., simulating the wet season and
dry season separately) can enhance the effectiveness of the data-driven model. Further
analysis is then carried out for extreme value models through integrated modeling, namely,
the MERGED model.

3.2.1. The Performance of Season-Distinguished Models

Figure 4 depict the N, results of RF-SOLE and LSTM-SOLE with different combi-
nations of previous rainfall and runoff inputs under the scenario of not distinguishing
seasons, while the simulation results of the two models distinguishing wet and dry seasons
are shown in Figure 5. The inputs for previous rainfall and runoff are denoted as P_in and
Q_in, respectively.

Overall, as shown in Figure 4, LSTM-SOLE has better performance than RF-SOLE in
all input combinations. The optimal input for LSTM-SOLE is the rainfall from the previous
2 days and the runoff from the previous 14 days. The N;, of the RF-SOLE reaches its
maximum when taking the runoff from the previous 13 days and the rainfall from the
previous 5 days. It can be seen from Figure 4 that there is a certain similarity in the optimal
values of both models. The most significant difference is that the range of the optimal
input combination for RF is very clear, while LSTM can achieve good results in several
combinations. We further compare the season-distinguished models.

From the results in Figure 5, it can be seen that the performance of LSTM in wet/dry
seasons is basically consistent with the non-season-distinguished models. In contrast, the
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optimal input combination of the RF-SEA model exhibits a more pronounced distinction
between dry and wet seasons. Furthermore, the optimal input combination for the RF-
based models has a more defined input range than the LSTM models, akin to the RE-SOLE
model. Both models demonstrate superior performance during the dry season, which may
be attributed to the more direct correlation between rainfall and runoff in this period, along
with the comparatively less complex nature of precipitation events.

(a) LSTM-SOLE (b) RF-SOLE

.81

Q in Q in

Figure 4. The color map of N;, to evaluate input combination for (a) LSTM-SOLE and (b) RF-
SOLE models, where Q_in and P_in are the number of days of the input runoff and precipitation,
respectively. The values of Ns. obtained from the combinations of Q_in and P_in can be referenced
using the color bar on the right side of the image. Figure 5 and Figure 8 follow the same convention.
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Figure 5. The color map of N to evaluate input combination for LSTM in wet/dry season (a,b) and
RF in wet/dry season (c,d), where Q_in and P_in are the number of days of the input runoff and
precipitation, respectively.
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Table 3 shows the accuracy of LSTM-SOLE and RF-SOLE and season-distinguishing
LSTM-SEA and RF-SEA. The optimal values of each metric are marked by underlining,
italics, and bold. The results showed that SEA models improved the evaluation metrics
that represent the mean values (RMSE, MAE, N, Pearson r, and K GE') to a certain extent.
Especially for LSTM, the ability to capture peak events (POD, FAR, and CSI) has been
slightly improved. However, there is no improvement in the simulation of extreme values
(FHYV, FLV, and FMV) for both LSTM-SEA and RF-SEA. Scatter plots of the simulated
sequence and the observed sequence are also shown in Figure 6; the results indicated that
all models underestimated the high value of observed runoff, with the slope of the linear
fit fluctuating at around 0.80. Season-distinguishing models showed no improvement
in the aspect of linear slope. We further used Pearson r as an indicator to evaluate the
simulation abilities of each runoff at varied percentiles. The results are shown in Figure 7.
For runoff series below the 25th percentile, the simulation accuracy of the RF-based models
is significantly higher than that of the LSTM-based ones. On the contrary, for runoff above
the 50th percentile, the simulation results of the LSTM-based models are higher than those
of RF. However, no matter whether using RF-based models or LSTM-based models, the
wet/dry season division did not significantly improve the simulation results. It is worth
noting that KGE' is a comprehensive index that can reflect the simulation capabilities of
models. RF-based models both have higher KGE’ than LSTM-based rainfall-runoff models.
Although LSTM shows a good ability to simulate time series with rich features, the metric
value of KGE' is inferior to that of RF because of its insufficient ability to capture extreme
values, resulting in smaller standard variance (STD, shown in Supplemental Table S1).
Based on the above analysis, we expect that using RF will improve the extreme runoff
forecasting capability of LSTM.

Table 3. The evaluation metrics of the sole and seasonal LSTM and RF models.

Model RMSE MAE N, Pearson r KGE' FHV FLV FMV POD FAR CSI
LSTM-SOLE 137.504 39.243 0.813 0.906 0.790 —42.859 6.854 —3.072 0.324 0.759 0.160
RF-SOLE 151.607 38.045 0.772 0.879 0.803 —47.758 —9.188 1.194 0.391 0.749 0.181
LSTM_SEA 137.337 38.453 0.813 0.907 0.784 —45.272 —12.768 —1.753 0.331 0.752 0.165
RF_SEA 149.425 37.823 0.779 0.883 0.806 —46.766 —13.355 —0.548 0.334 0.793 0.147
The values marked in bold, italic and underline are the best values of each metric; for example, the LSTM_SEA
model has the least RMSE among all 4 models. This marking principle is the same for Table 4.
Table 4. The evaluation metrics of sole and seasonal LSTM models and the MERGED model.
Model RMSE MAE N, Pearson r KGE' FHV FLV FMV POF FAR CSI
LSTM-SOLE 137.504 39.243 0.813 0.906 0.790 —42.859 6.854 —3.072 0.324 0.759 0.160
LSTM_SEA 137.337 38.453 0.813 0.907 0.784 —45.272 —12.768 —1.753 0.331 0.752 0.165
MERGED 134.610 36.617 0.820 0.906 0.864 —35.665 —7.581 —0.044 0.398 0.727 0.193

3.2.2. The Performance of the MERGED Model

Based on the above results, we used RF to simulate extreme values. Extreme flows are
divided into extreme high flows and extreme low flows. In this paper, the 10th percentile
and 90th percentile of the runoff in the natural period are selected as the thresholds for
extreme high and low runoff, respectively. The result of the extreme flow model is then
used to substitute the corresponding values simulated by LSTM-SOLE. Figure 8 depicts
the results of optimal input combinations for the extreme models. The best inputs for
extreme high flows are previous precipitation and runoff of 3 days (P_in = 3, Q_in = 3);
and P_in =5 and Q_in = 3 for extreme low flows. The results in Figure 8 show that the
high extreme runoff is more strongly correlated with rainfall and runoff within 0—4 days,
and extreme low runoff tends to be related to the rainfall from 6 to 10 days ago, which is
basically consistent with the physical process of runoff generation. The combination of
the optimal input factors differs greatly from the SOLE or SEA models, indicating that the
data-based relationships for ordinary and extreme runoff are different.
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and (d) RF_SEA in the natural period, with linear regressions intersecting to zero. For the regression
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Figure 8. The color map of N;, to evaluate input combination for (a) extreme high value and
(b) extreme low value simulation based on RF, where Q_in and P_in are the number of days of the

input runoff and precipitation, respectively.

Table 4 shows the evaluate metrics of the MERGED model, and the results are com-
pared to LSTM-SOLE and LSTM_SEA. It can be seen from the table that the MERGED
model is better than the other two LSTM-based models in almost all aspects. The STD of the
MERGED model has been greatly improved (Supplemental Table S1), and thus the KGE'
has been significantly improved. By comparing POD, FAR, and CSI, the MERGED model
has significantly improved the ability of capturing peak events compared to the sole model
and seasonal model. Figure 9 shows the scatter plot of the MERGED model. The linear
regression results show that the slope is much closer to 1.0 than the results in Figure 6. In
summary, the MERGED model proposed in this paper can well improve LSTM’s ability in
extreme value simulation.
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Figure 9. Scatter plot of the simulation results of the MERGED model in the natural period, with

linear regression intersecting to zero.
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Based on the above analysis, we believe that this is the best runoff simulation model
under this research framework reflecting the relationship between rainfall and runoff in
the natural period. In the next step, the MERGED model will be used to reconstruct the
runoff during the natural period, compare it with the observed impacted runoff, and then
analyze the contribution of human activities.

3.3. Impacts of Human Activity and Climate Change on River Runoff
3.3.1. Impacts on Runoff Volume and Extreme Flows

Based on the natural runoff (obtained by MERGED) and LC observed runoff, Figure 9
depicts the double mass curve (DMC) of annual precipitation and runoff in the dry season
and wet season, respectively. It is worth noting that MERGED is a rainfall-runoff model,
so the influence of rainfall variation on runoff simulation cannot be eliminated; therefore,
the results in Figure 10 can only reflect the runoff variation under the influence of human
activities. The results show that runoff varied to a certain degree in both wet season and dry
seasons. In the dry season, due to human activities, the runoff observed by LC is smaller
than the natural runoff reconstructed by MERGED. Meanwhile, in the wet season, the LC
observed runoff was only slightly lower than the natural runoff, indicating that human
activities have little effect on the overall wet season.

15,000 - (a) Dry season —— Observation
—— Simulation

10,000 —

5,000 —

0 T T T T T T T T 1
0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000 22,500
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| (b) Wet season

30,000

20,000

Seasonal cumulative discharge (mm)

10,000
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0 10,000 20,000 30,000 40,000 50,000 60,000
Seasonal cumulative precipitation (mm)

Figure 10. Double cumulative curves of LCB in (a) dry season and (b) wet season from 1956 to 2015.

We further compared the runoff characteristics of the natural period and impacted
period of each year. The evaluation features include annual average runoff (Q.m), annual
STD (Qastd), annual maximum /minimum runoff (Qamax/ Qamin), and 90th and 10th per-
centile of daily runoff of each year (Q,90/Qa10)- The result of the impacted period is shown
in Figure 11, and the results of the natural period are shown in Supplemental Figure S1 for
comparison. Similar to Figure 10, in the impacted period, human activities have hardly
changed Qam. The simulated natural Q,qq4 is significantly higher than that observed by the
LC. In contrast, the Q,¢tq of the MERGED simulation shows similar results in the natural
period, shown in Supplementary Figure S1; although the range of the boxplot is smaller
compared to the observed data, the mean of Q.4 is close to the observed data. This
indicates that in the impacted period, due to the effect of the reservoir operation and other
human activities, the variability in runoff is significantly reduced.
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Figure 11. Boxplot of observed and simulated runoff characteristics of each year in the impacted
period, where (a) depicts the annual average runoff (Qam); (b) depicts the annual standard variation
(Qastd); (c,d) depict the annual maximum/minimum runoff (Qamax/Qamin); and (e,f) depict the
annual 90th and 10th percentile runoff (Qa90/ Qa10)-

Qamax and Q,gp also decreased due to human activities, and vice versa for Qamin
and Q,19. Comparing the results from Figure 10, although the result of the DMC indi-
cates that the runoff variability in the dry season is the most pronounced, the change
in the low extreme value is smaller than the high extremes. Correspondingly, the total
annual runoff during the wet season does not change much but the extreme values are
significantly reduced.

This section uses the MERGED model in Section 3.2 to carry out a basic statistical
analysis of the runoff variation during the impacted period. From this section, we can
understand that during the impacted period, affected by various human activities such as
reservoir regulation, the runoff of LC has changed, with more abundant flow in the dry
season and slightly reduced flow in the wet season. With the results of these conclusions,
we will carry out the following attribution analysis.

3.3.2. Attribution of Runoff Variation Based on the Budyko Framework

In order to attribute the changes in river runoff caused by climate change and human
activities (non-climate-induced), the Budyko framework was applied. According to the
previous section, the runoff change patterns in the wet season and dry season are quite
different. Therefore, this section will analyze the dry season and wet season separately.

First, based on Equations (15)—(17) above, the elastic coefficients of each factor were
calculated using the observed runoff, rainfall, and evapotranspiration data from 1956 to
2015. The absolute values of the elastic coefficients reflect the sensitivity of runoff to each
impact factor, and the results are shown in Table 5 below. For the wet season, during
both natural and impacted periods, the factors influencing LC runoff in order of impact
are rainfall, evapotranspiration, and land surface. Runoff depth is positively correlated
with rainfall changes and negatively correlated with evapotranspiration and land surface
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changes. In the dry season, the factors with the greatest impact on runoff depth changes are
land surface changes, rainfall, and evapotranspiration, which is obviously different from
the wet season. Therefore, for the annual sequence as a whole, the sensitivity coefficients
from large to small are land surface changes, rainfall, and evapotranspiration. Comparing
the natural period and impacted period, the sensitivity of the land surface is increasing in
all seasons, especially in the dry season, and the runoff depth is positively correlated with
precipitation and negatively corelated with evaporation and land surface in all seasons.

Table 5. The elastic coefficient in the natural period and impacted period.

Period Season ep £ET, &n n
Natural Wet 1.30 —0.52 —0.11 2.13
g Dry 0.64 ~0.50 ~2.58 1.21
P All 0.98 —0.46 —0.65 1.45
Imoacted Wet 1.26 ~0.53 ~0.18 2.01
Srio p Dry 0.22 ~0.16 —6.23 0.54
P All 0.70 ~0.35 ~1.54 1.06

Based on Equation (14), the variation in runoff during the impacted periods were
calculated. The cumulative total runoff variation (AR (), cumulative climate-induced
runoff variation (AR, i), and cumulative non-climate-induced runoff variation (ARc_nc)
in each year are shown in Figure 12. Under various impacts, the runoff in the dry season
gradually increases, while in the wet season, the cumulative runoff variation decreases.
This conclusion is basically consistent with the DMC in Figure 9. It is noteworthy that
irrespective of the season—be it wet or dry—both AR i and ARc nc exhibit a similar
trend (manifested as both AR im and AR nc being positive or negative simultaneously).
Specifically, the influences of climate change and human activities on runoff do not coun-
terbalance each other. Instead, the river system undergoes more pronounced alterations
when these two factors are combined.

We further calculated the contribution rate (represented by Cjim and Cpon clim) of
climate factors and non-climate factors to runoff variation in the wet season and dry season,
and the results are shown in Figure 12. Non-climatic factors account for 93.9% of the total
runoff changes during the dry season and 64.5% during the wet season, indicating that the
influence of human activities significantly outweighs that of climate change.

In order to investigate the relative contributions of land surface cover and reservoir
regulation to the impact of human activities, this study further selected reservoir regulation
volume and the NDVI to characterize their effects on LC runoff. It should be noted that
in this study, the NDVI data were only available from 1981 onwards, and stable records
of the FsbR outflow data were only available after its official operation in 1974. Therefore,
the analysis in this section used data from 1980 to 2015. Wet season, dry season, reservoir
regulation volume (represented by the difference between outflow and inflow), and the
NDVI were considered, as shown in Figure 13. Correlation analysis indicated that in
both seasons, the correlation coefficients between reservoir regulation volume and runoff
changes were above 0.5, reaching a moderate positive correlation statistically; however,
the NDVI showed an extremely weak correlation with runoff changes in both wet and dry
seasons. Other studies have also shown that the relationship between the NDVI and runoff
changes remains controversial. On the one hand, vegetation changes may affect surface
runoff by influencing evapotranspiration, and thus an increase in the NDVI would reduce
surface water resources. It should be noted that since the NDVI data are only available
after 1981, they does not coincide with the complete impacted period established in this
study. Therefore, the results here have a certain degree of uncertainty. However, since the
NDVI data also have a relatively long time series, they can be considered to have a certain
level of reliability.
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Figure 13. Time series for ARpopn clim, NDVI, and reservoir in (a) wet season and (b) dry season;
"Rnc_res and rrnc NDvI are the Pearson r of human activity-induced runoff variation (ARpon clim)
and reservoir storage, and the Pearson r of human activity-induced runoff variation (ARpon_clim)
and NDVL

4. Discussion
4.1. Characteristics and Uncertainty of the MERGED Model

This paper compares the capabilities of Random Forest and LSTM in hydrological
modeling and proposes a hybrid model based on the characteristics of both methods. In
Section 3.2, the sensitivity of each model to antecedent input factors is discussed. Com-
paring Figures 4, 5 and 8, one intuitive interpretation is that the input ranges with high
accuracy for RF are very concentrated, whereas LSTM achieves high N, values across multi-
ple combinations (for example, in Figure 4, RF shows optimal Ng, when Q_in = 13 and P_in
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= 4-6, while LSTM achieves high NSE across several value ranges such as combinations of
Qin=8andP_in=2,Q in=14and P_in =2, and Q_in = 11 and P_in = 11, etc.). On the
other hand, the accuracy of LSTM in both dry and wet seasons does not differ significantly
from the LSTM-SOLE model, whereas RF exhibits clear seasonal characteristics, with the
accuracy of the RF model during the dry season being the highest among the four seasonal
models, while its accuracy during the wet season is the lowest, as shown in Figure 5. These
results are consistent with the features of the two types of models; that is, LSTMs are
generally superior for problems involving sequential data with long-term records and rich
features [65], while RF is often better for problems that involve classification or regression
of data with independent features [66]. Therefore, we concluded that RF can provide more
intuitive information regarding influence relationships.

LSTM training relies on a substantial amount of data. In the context of this study,
the possible reason for this could be the insufficient number of extreme values or the
need to sacrifice these extremes to achieve overall high performance. Therefore, under
such circumstances, a combined modeling approach is a competitive modeling strategy.
The employment of the proposed MERGED method has the potential to enhance the
performance of the original model. Nevertheless, uncertainties persist in several aspects: the
selection criteria for the original models, the determination of antecedent precipitation and
runoff as input variables, and the thresholds for extreme events. The inherent uncertainties
of this model necessitate further empirical investigation to ascertain the most efficacious
combination.

4.2. Impact of Human Activities on River Systems

In the recent runoff variation attribution studies under the Budyko framework, the
effects of rainfall, evapotranspiration, and land surface changes on runoff are typically
considered. Land surface characterization parameters are commonly used to represent
the impact of human activities on runoff. This approach helps to quantify the influence of
various human-induced factors on the hydrological processes and provides insights into
the complex interactions between human activities and the natural environment [15,23,35].
In this type of analysis, the research period is first divided into multiple periods, and the
land surface parameter values of each period are used to characterize the surface changes
between the periods. This approach usually does not reflect the monthly or finer scale
runoff change process, thereby neglecting the changes in extreme values to a great extent.
However, under the context of climate change, the impacts of short-duration extreme
value changes are highlighted. On the other hand, though previous studies concerning
the Budyko framework use the NDVI as an indicator to help explain the parameter n in
the equation [34,35,67], the physical meaning of the land surface parameter still requires
further mechanistic research [35]. For example, the results of Figure 13 show that according
to the correlation with AR, c1im, the effect of reservoir activities on runoff changes is more
specific (the correlation coefficient is moderately correlated), while the changes caused by
the NDVI are only weakly correlated with ARy, jim- This indicates that at least in this
study area, using a single land surface change to characterize human activities is not entirely
reasonable. This conclusion is similar to the research conclusions of Ning et al. [35] and
Zhang et al. [34], which highlighted that land surface changes are more related to climate-
induced runoff variations, and due to the complexity of vegetation—climate feedbacks, it is
challenging to definitively ascertain the influence of the NDVI on runoff variability.

Regarding the runoff changes caused by reservoir regulation, a comparison of average
dry season runoff with the annual minimum runoff series Q;min and the 10th percentile low
flow series Q,19 is shown in Figure 11; the mean value of the impacted period is significantly
larger than the mean value of the natural period, while Q;min and Q.19 have no significant
change. We inferred that events in the dry season are more affected by human activities
but the reservoir shows limited effectiveness in providing water supply during extreme
low water periods. Conversely, for the annual maximum Q,max and 90th percentile series
Quo0, the situation is the opposite, suggesting that during the wet season, the reservoir can
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effectively regulate the flood process, which is also facilitated by the extremely large storage
capacity of the FsbR in the study area. We acknowledge that the rainfall-runoff model
posited in this study is not without its limitations, and as such, the discrepancies between
the simulated and observed runoff values during periods of human impact may not
solely represent the effects of human activities. Indeed, the difference between simulated
and observed runoff likely encompasses both the model’s intrinsic prediction errors and
the external influences under consideration. To ensure a more scientific and accurate
interpretation, it is essential to differentiate the model’s estimation error from the actual
impact of human activities. The findings of this study suggest a notable human influence
on runoff, and the model demonstrates robust performance during natural periods, which
lends credence to our results that human activities significantly affect runoff, despite the
potential for model bias.

Global climate change has the potential to cause great fluctuations in runoff [68].
The frequent occurrence of extreme events will increase the pressure on water resource
management, and the runoff on a daily scale or a finer time scale may undergo more drastic
changes [5,39]. Figure 12b shows that runoff affected by climate change has increased
and then decreased in recent decades as a possible result of global warming. Current
numerical models still show inconsistencies in predicting the evolution of runoff under
future climate change, but the increase in the frequency of extreme events is an indisputable
fact. Therefore, it is necessary to continuously improve the operation and management
ability of reservoirs to cope with these challenges.

5. Conclusions

In this study, we propose a framework for carrying out attribution analysis of runoff
evolution in areas affected by reservoir operations. This framework allows us to better
understand the complex interplay of factors influencing runoff and provides a robust
tool for assessing the impacts of human activities such as reservoir operation. Our major
findings can be summarized as follows:

(1) In this study, we addressed the challenge of reconstructing extreme values in changed
runoff time series by proposing a coupled rainfall-runoff model based on LSTM and
RF to evaluate the impact of reservoir operation. The results show that the MERGED
model proposed in this paper can largely leverage the ability of both models and
outperform the SOLE and SEA series models in most evaluation metrics. For instance,
the comprehensive indicator KGE' remarkably improved from 0.79 in LSTM-SOLE to
0.864 in MERGED, and the CSI, an indicator representing the recognition rate of peak
events, also increased from 0.160 to 0.193. The proposed framework can be utilized in
the field of hydrological forecasting in future research.

(2) We further conducted a statistical analysis of the observed and reconstructed runoff for
the dry season and the wet season. For the annual average, there was no significant
change in runoff. The DMC curve shows that the total runoff in the dry season
significantly increased compared to the natural period, but the extreme values did
not change. Meanwhile, in wet the season, the total runoff slightly decreased, but
the extreme values were significantly reduced by reservoir operation. Indeed, in the
context of climate change where drought and flood extreme events are becoming
more frequent, reservoir operation rules need to not only consider the demand for
flood control but also strengthen the ability to handle extreme drought events. This
highlights the need for more robust and flexible water management strategies that
can adapt to the changing climate and extreme events.

(3) In the wet season, runoff is most sensitive to rainfall, while in the dry season, runoff
is most sensitive to changes in the land surface. Irrespective of the season, the
influence of the land surface on runoff changes was amplified during the impacted
period. The results of the contribution rate show that in the dry and wet seasons,
the contribution rates of human activities to runoff variation are 93.9% and 64.5%,
respectively. However, it is not reasonable to categorize all human activities with
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the land surface. We further examined the degree of impact of reservoir regulation
and the NDVI on the AR;,.. The results show a moderate correlation with reservoir
regulation and a weak correlation with the NDVI in both seasons.

Future research endeavors should delve deeper into understanding the physical
mechanisms underpinning the feedback of the NDVI on the runoff process. Additionally,
there is a need to enhance the complexity of the Budyko framework to enable a more
detailed temporal characterization of runoff and a more comprehensive reflection of the
impacts exerted by various human-induced factors.
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/ /www.mdpi.com/article/10.3390/atmos15020164/s1, Table S1: Standard variance (STD) of the
observation runoff and simulated runoff derived from 4 rainfall-runoff models; Figure S1: Same as
Figure 10 but for natural periods.
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