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Abstract: Atmospheric sounding using the Tu-134 Optik aircraft-laboratory was conducted in Septem-
ber 2020 over the seas of the Russian sector of the Arctic Ocean, namely the Barents, Kara, Laptev,
East Siberian, Chukchi and Bering seas. Unique samples of atmospheric aerosols at altitudes from 200
and up to 10,000 m were taken, including samples for the identification of cultivated microorganisms
and their genetic analysis. Data on the concentration and diversity of bacteria and fungi isolated from
24 samples of atmospheric aerosols are presented; the main phenotypic and genomic characteristics
were obtained for 152 bacterial cultures; and taxonomic belonging was determined. The concentra-
tion of cultured microorganisms detected in aerosols of different locations was similar, averaging
5.5 × 103 CFU/m3. No dependence of the number of isolated microorganisms on the height and
location of aerosol sampling was observed. The presence of pathogenic and condto shitionally
pathogenic bacteria, including those referred to in the genera Staphylococcus, Kocuria, Rothia, Coma-
monas, Brevundimonas, Acinetobacter, and others, as well as fungi represented by the widely spread
genera Aureobasidium, Aspergillus, Alternaria, Penicillium, capable of causing infectious and allergic
diseases were present in most analyzed samples. Obtained data reveal the necessity of systematic
studies of atmospheric microbiota composition to combat emerging population diseases.

Keywords: seas of the Russian sector of the Arctic; atmospheric aerosols; aircraft sounding; culturable
microorganisms; analysis of genome; biochemical characteristics; biotechnological properties

1. Introduction

The polar regions of the Earth, characterized by low average annual temperatures, have
long attracted the attention of scientists from the point of view of studying the microbiota
present there. The first microbiological studies in the Russian Arctic were carried out in
areas adjacent to the mainland and islands—in the shelf part of the Arctic seas or on the
continental slope—and were published back in 1914 [1]. Studies of microorganisms began
to cover not only terrestrial, but also aquatic samples [2], as well as samples of Arctic
atmospheric air obtained using aircrafts [3–5] in the mid-20th century.

Recently, progressive environmental changes have been observed in the Arctic: the
melting of glaciers and permafrost and the reduction in the ice area of the Arctic Ocean,
which also affects the composition of the biota [6,7]. The Arctic is affected by global
warming, and the temperature increase observed here is twice that of similar changes in
other parts of the globe [8,9]. When studying the organic and biological components of
the atmosphere, one of the main types of research activity in the polar regions remains
marine expeditions using ice-class vessels and polar regions monitoring groups using
Arctic stations [10–16]. The dominant species were the fungi Aureobasidium pullulans,
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Chaetomium globosum, Cladosporium cladosporioides, Penicillium spp. and a number of others,
with numbers up to 2.54 × 102 CFU/m3 of air, which is consistent with the results obtained
in cold regions such as Antarctica and Canada [17–22]. A significant part of the identified
fungi were opportunistic human pathogens. The key routes of microbial dispersal are
anthropogenic transfer (invasion) and the spread of microorganisms through the air. A
noticeable deterioration in the condition of people, especially those with weakened immune
systems, is possible if there are significant microorganism concentrations in the air. In this
regard, there is a need to study aerosols of organic and inorganic composition containing
biogenic components entering the region.

As existing reviews indicate [23,24], there is no unified monitoring network in the
Arctic region and, therefore, aircraft sounding is used to study the composition and concen-
tration of aerosols [3–5,14,20,25,26]. The aircraft method for studying the composition of
atmospheric air is the most accurate and widely used in the Arctic, however, information on
the number and species composition of the aeromicrobiota in the Arctic Russian territories
is scarce in the literature, mainly relating to the concentration and composition of fungi in
the near surface atmosphere [27,28]. Information on bacteria in atmospheric aerosols of the
Arctic is practically absent.

The purpose of this study was to obtain data on the vertical distribution of bacteria
and fungi in atmospheric aerosols during aircraft sounding of the atmosphere over the seas
of the Arctic Ocean of the Russian sector of the Arctic: Barents, Kara, Laptev, East Siberian
and Chukotka, as well as over the Bering Sea at altitudes of 200 and up to 10,000 m.

2. Materials and Methods
2.1. Flight Route

Airborne sounding of the atmosphere was carried out using a modified Tu-134 Optik
laboratory aircraft [26,29]. The route diagram of the entire experiment is shown in Figure 1.
Profiles of measured values were obtained from the minimum permissible heights (red and
other warm tones of trajectories on the schematic map) to the upper troposphere (purple
tones of trajectories on the schematic map).
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2.2. Aerosol Sampling

Atmospheric aerosols were collected into impingers manufactured by JSC Experimen-
tal Design Bureau of Fine Biological Engineering, Kirishi, Russia. The device is made of
stainless steel with a critical nozzle that ensures constant flow rate at a pressure difference
of more than 4 × 104 Pa of air through the device. The required pressure drop is ensured by
the difference in the pressure of the flow entering the air intake when the aircraft is moving
and the pressure is outside. The particles are inertially deposited into the liquid swirled by
the incoming flow (with a flow rate of 50 ± 5 L/min) along the walls of the device. In total,
50 mL of Hanks solution (ICN Biomedicals, Costa Mesa, CA, USA) is used as a sorbing
liquid. The retention efficiency of this device for aerosols larger than 0.3 µm (the minimum
size of known bacteria) exceeds 80%, amounting to an almost constant value of 90 ± 15%
for particles with a diameter of more than 2 µm. To eliminate the loss of aerosol particles in
the connecting tubes, impingers are located near the isokinetic sample inlet. Geographical
sampling conditions for microbiological analyzes are presented in Table 1. This table also
presents the detected concentrations of culturable microorganisms in the air included in
the samples.

Table 1. Sampling conditions of bioaerosols samples and the concentration of culturable microorgan-
isms in the air samples taken in 2020 (expressed in number of Colony Forming Units (CFU) per cubic
meter). Time is shown in Greenwich Mean Time.

Flight’s Day
Sampling Flight’s

Segment Altitude, m Sample
Number

Sampling
Duration, min.

Microorganisms
Concentration, CFU/m3

Start Finish

4 September 21:12 21:24 Barents Sea 500-200 1 10 5.50 × 103

-«- 21:35 22:05 -«- 5000-9000-8000 2 15 4.00 × 103

-«- 22:10 22:16 -«- 5000 3 16 4.06 × 103

-«- 22:25 22:39 -«- 200 4 10 5.00 × 103

6 September 15:05 15:06 Kara Sea 500-200-500 5 9 5.55 × 103

-«- 15:35 15:53 -«- 8000-9000-8000 6 16 3.13 × 103

-«- 15:58 16:10 -«- 5000 7 11 4.54 × 103

-«- 16:15 16:30 -«- 500-200-2500 8 11 4.55 × 103

7 September 8:25 9:03 Naryan-Mar—
Sabetta 9000-8500 9 15 3.33 × 103

-«- 12:42 13:25 Sabetta—Tiksi 10,000 10 10 5.00 × 103

9 September 13:12 13:24 Laptev Sea 300-200 11 9 5.55 × 103

-«- 13:43 13:55 -«- 8800 12 10 5.00 × 103

-«- 14:01 14:14 -«- 5000 13 12 4.17 × 103

-«- 14:22 14:32 -«- 300-200 14 12 4.17 × 103

11 September 12:18 13:18 Tiksi—Anadyr 9500-8000 15 17 2.94 × 103

15 September 12:36 12:50 Chukchi Sea 200 16 15 3.33 × 103

-«- 13:10 13:21 -«- 9000 17 10 5.00 × 103

-«- 13:27 13:34 -«- 5000-2000 18 6 8.33 × 103

-«- 13:40 13:50 -«- 250-200 19 10 5.00 × 103

16 September 11:03 11:40 East Siberian
Sea 300-200 20 10 5.00 × 103

-«- 12:12 12:23 -«- 200 21 10 5.00 × 103

-«- 12:42 13:17 East Siberian
Sea—Anadyr 8500 22 15 3.33 × 103

-«- 15:48 16:00 Bering Sea 200 23 12 3.33 × 103

17 September 17:09 17:24 -«- 8600 24 10 5.00 × 103

2.3. The Concentration of Culturable Microorganisms

The concentration of culturable microorganisms was determined by sowing aerosol
samples onto liquid and agar nutrient media: LB (Difco, Franklin Lakes, NJ, USA)—to
identify saprophytic bacteria; depleted LB medium (1:10 dilution)—for isolating microor-
ganisms inhibited by excess organic matter; starch-ammonia medium [30]—to identify
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actinomycetes; soil agar—for soil microorganisms; Sabouraud’s medium [31]—for identi-
fying fungi. Petri dishes with inoculations were incubated at a temperature of 28–30 ◦C
and—to identify psychrophiles—at 6–10 ◦C for 3–14 days. The calculation of the number
of culturable microorganisms in samples, expressed in decimal logarithms of the num-
ber of colony-forming units (CFU), was carried out according to standard methods [32].
Considering the size of the volumes of the atmospheric air samples taken for analysis, the
minimum threshold for detecting the concentration of viable fungi in the atmosphere was
40 CFU/m3, and for bacteria was 100 CFU/m3. The error in determining the concentration
of microorganisms for the cultivation conditions described above was ±0.2 log10.

2.4. The Phenotypic Characteristics of the Isolated Microorganisms

The phenotypic characteristics of the isolated microorganisms were determined in
accordance with the guidelines [30]. The morphological features of the isolates were studied
by observing cells of vital- and fixed-stained preparations using an Axioskop 40 microscope
“Carl Zeiss” (Gottingen, Germany).

2.5. The Enzymatic Activity of the Isolated Microorganisms

The enzymatic activity of the isolated microorganisms was determined by testing
the proteolytic, amylolytic, lecithinase, nuclease, and lipase activities of the isolates [29].
Pathogenic properties were determined by the presence of alkaline phosphatase, hemolytic,
phospholipase (lecithinase), plasmacoagulase, fibrinolytic, and gelatinase activities [33].

2.6. Destruction of Oil

Microbial cultures isolated from Arctic aerosols were tested for their ability to degrade
oil by sowing on agarized and liquid 8E mediums [34]. Up to 1–5% of high-viscosity oil
from the Usinsk field (Komi Republic, Russian Federation) was added to the medium as
the only carbon source. The average density of oil was 0.920–0.986 g/cm3.

2.7. Microorganisms’ Antibiotic Properties

To determine the resistance of coccus strains to antibiotics using the disc diffusion
method, the following drugs were used (µg/disc): gentamicin (10), ciprofloxacin (30),
kanamycin (30), vancomycin (30), levofloxacin (5), oxacillin (10), benzylpenicillin (10 units),
erythromycin (15), clindomycin (2). For spore-forming bacteria, a slightly different recom-
mended set was used: gentamicin (10), ciprofloxacin (5), vancomycin (30), levofloxacin (5),
norfloxacin (10), imipenem (10), linozolid (30). The discs with the antibiotics used were
produced by NICF LLC (Russia). The Mueller–Hinton medium was used in the experiment
according to [35].

The antibiotic activity of spore-forming bacteria was studied using the method of
delayed antagonism [36] against opportunistic test strains of bacteria and yeast: Escherichia
coli 6645 ATCC 25922, Candida albicans 620 Y-583, Staphylococcus aureus ATCC 6538, Klebsiella
pneumoniae B-378 B-4894, and Bacillus cereus ATCC 1070 2 from the collection of bacteria,
bacteriophages, and fungi at the Federal Budgetary Research Institution «State Research
Center for Virology and Biotechnology “Vector”» of Rospotrebnadzor.

2.8. Microorganisms’ Taxonomy

The taxonomy of microorganism strains was determined based on the total results
of phenotypic and genomic analysis. Molecular biological identification of bacteria was
carried out by determining the nucleotide sequence of a fragment (about 700 bp) of the 16S
ribosomal RNA gene [37]. Total nucleic acids were isolated from the prepared material us-
ing a commercial reagent kit “RIBO-prep” (InterLabService, Moscow, Russia) in accordance
with the manufacturer’s instructions. Next, PCR was carried out using the PCR mixture
“5X ScreenMix” (Evrogen, Moscow, Russia) and specific primers for amplification of the 16S
rRNA gene fragment (oligodeoxyribonucleotide primers ACTCCTACGGGAGGCAGCAG
and CGACRRCCATGCANCACCT; with a 5′→3′ structure). Detection of PCR products
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was carried out using gel electrophoresis [38]. Determination of the nucleotide sequences of
PCR products purified using the AMPure XP Reagent kit was carried out using the BigDye™
Terminator v.3.1 Cycle Sequencing Kit on an ABI PRISM 3500 Genetic Analyzer automatic
sequencer (Applied Biosystems, Foster City, CA, USA) [39]. Analysis of the obtained
nucleotide sequences was carried out using the Sequencher program. Identification of mi-
croorganisms based on analysis of the primary nucleotide sequence was carried out in the
GenBank/EMBL/DDBJ database (http://www.ncbi.nlm.nih.gov, accessed on 12 Septem-
ber 2023) using multiple alignment in the BLASTn program (http://www.ncbi.nlm.nih.gov,
accessed on 12 September 2023).

Fungi were mainly identified by morpho-physiological characteristics, molecular
genetic methods were used selectively for a small number of strains.

ITS (intergenic ribosomal spacer sequence) was used for the identification of fungal
strains using molecular genetic methods. The amplification reaction of ITS-fragment
of genomic DNA was carried out using oligonucleotides ITS1 and ITS4 for the first
round of PCR (obtained fragment~700 bp), ITS3 and ITS4 for the second round of PCR
(300 bp). Sequencing reaction of the obtained PCR fragments was performed using the
same oligonucleotides and BigDye v.3.1 reagent (Applied Biosystems, USA) under stan-
dard conditions. The obtained sequences were analyzed using ABI Sequence Scanner
and FinchTV 4.1 software. Sequences were compared with those available in the NCBI
GenBank database (http://www.ncbi.nlm.nih.gov, accessed on 12 September 2023) us-
ing the BLASTN algorithm, and phylogenetic analysis was performed using the MEGA
7.0.21 program.

The studied strains are stored for low-temperature freezing in the collection of bacteria,
bacteriophages, and fungi at the Federal Budgetary Research Institution «State Research
Center for Virology and Biotechnology “Vector”» of Rospotrebnadzor.

3. Results
3.1. Microorganisms Concentrations and Diversity

Flights were carried out over the Barents Sea, White Sea, Kara Sea, Laptev Sea, East
Siberian Sea, Chukchi Sea and over the Anadyr Gulf of the Bering Sea. For microbiological
analysis, 24 samples of atmospheric aerosols were taken into impingers at altitudes from
200 to 10,000 m. Analysis of the reverse trajectories of air masses from which samples
were taken using the HYSPLIT program [40,41] shows that their trajectories mainly passed
through the northern territories and water areas that are not rich in powerful sources of
bioaerosols. Only some backward trajectories for samples with the highest concentrations
of culturable microorganisms came from more southern regions (Supplementary Materials,
Figures S1–S6). Consequently, there was no reason to expect high concentrations of cultur-
able microorganisms in all air samples over the Arctic seas.

The concentration of culturable microorganisms found in all samples averaged
5.5 × 103 CFU/m3, which is close to the concentrations of atmospheric bioaerosols previ-
ously discovered for the more southern region of Russia [42,43]. There was no dependence
on the number of isolated microorganisms on the height of aerosol sampling (Table 1). From
the studied aerosol samples, 252 culturable isolates of bacteria and fungi were isolated.
The obligate psychrophiles expected in samples of Antarctic aerosols, cultivated under
experimental conditions, were not detected.

Fungi, including representatives of the widespread genera Penicillium, Aspergillus,
and Aureobasidium, were identified only in seven of 24 studied samples, occurring both
at high altitudes up to 9000 m and at the level 200–300 m above the water surface. Their
highest concentration was isolated from a sample taken over the Barents Sea at an altitude
of 500-200 m, accounting for 30% of the number of culturable microorganisms isolated
from this sample. In the remaining samples, fungi were either not detected or were
present in insignificant quantities (from 0.14 to 4.41%, Figure 2, Tables 1 and 2). The
isolated fungi can cause both infectious diseases and allergic reactions. According to the
results of studies conducted in pulmonology clinics in different countries, the frequency of
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sensitization to Aspergillus spp. in patients with bronchial asthma in China was 5.5%; in
New Zealand 18.4%; in Saudi Arabia 22.6%; in India 38.5%; in Russia 36%; the number of
patients with this disease in the world is approximately 6 million, in Russia this number is
175 thousand [44–46].

Atmosphere 2024, 15, x FOR PEER REVIEW 6 of 15 
 

 

fungi can cause both infectious diseases and allergic reactions. According to the results of 
studies conducted in pulmonology clinics in different countries, the frequency of sensiti-
zation to Aspergillus spp. in patients with bronchial asthma in China was 5.5%; in New 
Zealand 18.4%; in Saudi Arabia 22.6%; in India 38.5%; in Russia 36%; the number of pa-
tients with this disease in the world is approximately 6 million, in Russia this number is 
175 thousand [44–46]. 

 
Figure 2. The ratio of groups of detected culturable microorganisms in samples of Arctic aerosols 
selected during aircraft sounding of the atmosphere in different regions at different altitudes. 

Gram-positive endospore-forming bacteria of the genera Lysinibacillus and Bacillus 
were most abundant in aerosols at altitudes of 200–300 m, accounting for up to 97.8% of 
the total number of microbial isolates isolated from the sample (Figure 2). Two samples 
collected at high altitudes of 9000 and 2000–5000 m above the Chukchi Sea were excep-
tions and also contained noticeable amounts of spore-forming bacteria—33.3 and 89.4%, 
respectively, of the total isolated from the samples. In other samples, bacilli were observed 
in much smaller quantities or were absent. 

Non-spore-forming bacteria were isolated from 12 samples found at different alti-
tudes: 15, 30, 57.6, and 58.8% of the total number of isolated non-spore-forming bacteria 
were in samples taken at altitudes of 500-200 m (Chukchi, Barents, Kara Sea, Anadyr Sea). 
bay, respectively). The largest number of these were isolated from three samples over the 
Kara Sea (up to 99.78%) and in a sample taken at an altitude of 200 m above the Gulf of 
Anadyr—57.06% of those isolated from the sample (Figure 2). It is possible that these sam-
ples were taken in locations where the influence of land-based sources was small. The 

Figure 2. The ratio of groups of detected culturable microorganisms in samples of Arctic aerosols
selected during aircraft sounding of the atmosphere in different regions at different altitudes.

Gram-positive endospore-forming bacteria of the genera Lysinibacillus and Bacillus
were most abundant in aerosols at altitudes of 200–300 m, accounting for up to 97.8% of
the total number of microbial isolates isolated from the sample (Figure 2). Two samples
collected at high altitudes of 9000 and 2000–5000 m above the Chukchi Sea were exceptions
and also contained noticeable amounts of spore-forming bacteria—33.3 and 89.4%, respec-
tively, of the total isolated from the samples. In other samples, bacilli were observed in
much smaller quantities or were absent.

Non-spore-forming bacteria were isolated from 12 samples found at different altitudes:
15, 30, 57.6, and 58.8% of the total number of isolated non-spore-forming bacteria were in
samples taken at altitudes of 500-200 m (Chukchi, Barents, Kara Sea, Anadyr Sea). bay,
respectively). The largest number of these were isolated from three samples over the Kara
Sea (up to 99.78%) and in a sample taken at an altitude of 200 m above the Gulf of Anadyr—
57.06% of those isolated from the sample (Figure 2). It is possible that these samples were
taken in locations where the influence of land-based sources was small. The composition
and concentration of isolated microorganisms corresponds to the information that oceanic
air masses contain mainly Gram-negative bacteria of marine origin caught in the aerosol
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from the surface of the water, since it is Gram-negative bacteria that are up to 80-95% of the
total number of bacteria in seawater [47].

Table 2. Diversity of culturable microorganisms in samples of atmospheric bioaerosols of the Arctic,
determined from the results of analysis of phenotypic and genomic characteristics.

Flight’s Segment
Altitude, km/Name of Culturable Microorganisms

0.2–0.5 2–5 8–10

Barents Sea
Acinetobacter spp.; Staphylococcus
spp.; Micrococcus spp.; Bacillus

spp.

Lysinibacillus spp.; Penicillium
ssp.; Aspergillus spp.;

Pseudomonas spp.

Staphylococcus spp.;
Cladosporium spp.

Kara Sea

Staphylococcus spp.; Paracoccus
spp.; Rothia spp.; Pseudomonas

spp.; Jeotgalicoccus spp.;
Brevundimonas spp.;

Acinetobacter radioresistens

Staphylococcus hominis;
Pseudomonas spp.;
Acinetobacter spp.

Microbacterium spp.;
Staphylococcus spp.; Rhizobium

spp.; Staphylococcus hominis

Laptev Sea
Curtobacterium spp.; Bacillus
spp.; Pseudarthrobacter spp.;

Rothia spp.

Bacillus spp.; Rothia spp.;
Staphylococcus spp.; Penicillium

spp.

Staphylococcus spp.; Penicillium
ssp.; Staphylococcus hominis;

Alternaria spp.

Chukchi Sea
Staphylococcus spp.; Micrococcus
spp.; Bacillus spp.; Acinetobacter
spp.; Staphylococcus epidermidis

Comamonas spp.; Micrococcus
spp.; Bacillus spp.;

Staphylococcus equorum
Bacillus spp.

East Siberian Sea

Staphylococcus spp.;
Lysinibacillus spp.;

Staphylococcus warneri;
Aureobasidium spp.; Rothia terrae;

Bacillus spp.; Aspergillus spp.;
Kocuria spp.;

No data No data

East Siberian Sea—Anadyr No data No data

Bacillus spp., Kocuria spp.
Kocuria sediminis

Staphylococcus epidermidis
Staphylococcus warneri

Bering Sea
Bacillus spp., Nocardia spp.

Bacillus pumilus
Penicillium spp., Aspergillus spp.

No data No data

Coccal forms of bacteria isolated from most of the samples were represented by both
saprotrophic bacteria of the genus Micrococcus and a group of opportunistic bacteria of the
genera Staphylococcus, Acinetobacter, Rothia and a number of others that can cause infectious
diseases (Table 2).

Among the isolates of this group, bacteria were found that have signs of pathogenic-
ity: phosphatase, lecithinase, and hemolytic activities. Pathogenic microorganisms use a
number of genetic strategies to invade the host—the secretion of aggression enzymes is one
of them. Testing for signs of pathogenicity of 145 bacterial isolates from different samples
revealed 30 spore-forming bacteria, 15 cocci, and 20 non-spore-forming bacteria that secrete
hemolysins which destroy red blood cells. In total, 45 bacterial cultures possessed lipolytic
enzymes of varying activity and specificity involved in the destruction of cell membranes.
Bacteria belonging to the genera Bacillus and Staphylococcus were discovered, producing
highly active phospholipases that determine the invasiveness of microorganisms.

Such a sign of pathogenicity as the production of alkaline phosphatase was found in
most of the 145 tested strains, among them the most active were 20 cultures of the genus
Bacillus, 17 cocci of the genus Staphylococcus and Jeotgaliococcus, and 15 non-spore-bearing
bacteria of the genera Acinetobacter, Brevundiomonas, and Microbacterium.
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3.2. Antibiotic Activities of Isolates

Important are the ongoing studies to determine the antibiotic activity of microbial
isolates from the Arctic and Antarctic in order to identify new promising producers of
antibiotics that make it possible to overcome the increasing resistance to antimicrobial
drugs of clinical strains of pathogens [48–51].

The antibiotic activity of 34 spore-forming bacteria was studied using the method
of delayed antagonism against opportunistic test cultures E. coli, C. albicans, S. aureus, K.
pneumoniae, and B. cereus. Almost all strains of bacilli effectively inhibited the growth of
the Candida strain, different effects indicate different sets of compounds secreted by the
bacilli (zones of lysis and growth inhibition were up to 45 mm, Table S1), 16 out of 34
tested spore-forming bacteria inhibited the growth of S. aureus, 9 strains of B. cereus. E. coli
zones were negligible. The K. pneumoniae strain was resistant to secreted metabolites of all
bacilli studied.

The presence and concentration of staphylococci in the air determines the degree
of its contamination by pathogenic microorganisms. Control of the resistance of such
atmospheric contaminants to antibiotics is an important factor in determining their danger
to public health. Of the 36 tested strains of the staphylococcal group, 15 showed resistance
to benzylpenicillin, expressed to varying degrees, 7 strains were resistant to kanamycin, 3
to vancomycin, and one each to gentamicin and oxacillin (Tables S2 and S3). In general,
one can say that the staphylococcal strains isolated from northern aerosols showed high
sensitivity to the antibiotics used in the experiment in contrast to the control strains S. aureus
MRSA B-1352 and S. epidermidis MRSE B-1350, represented by clinical isolates. The test
strain S. aureus 209-p B-1266, recommended by the Russian Pharmacopoeia for monitoring
drug resistance of strains, showed sensitivity to all drugs used (Tables S2 and S3).

Spore-forming bacteria also showed high sensitivity to antibiotic drugs with a few ex-
ceptions (Tables S4 and S5). Three strains Sp-32, Sp-69 and Sp-127, resistant to
3–5 antibiotics, can be classified as multi-resistant. Linozolid turned out to be the least
effective antibiotic, while 16 out of 40 tested strains showed resistance to it.

3.3. Bacterial Growth at Different Temperatures

Another sign that indirectly indicates the ability of a microorganism to cause a
pathogenic process is its active growth at a temperature of 37 ◦C. The studied strains
were tested for their ability to grow in the temperature range of 6–37 ◦C when sown on
the agar medium of the Russian Federation and incubated for 48 h, the results obtained
are presented in Table 3. Eighteen strains out of 145 tested were distinguished by active
growth at a temperature of 6–9 ◦C are classified as psychrotolerant bacteria. The rest were
mesophilic microorganisms, and more than half of them grew very well at 37 ◦C (Table 3).

Table 3. Ability of the studied strains to grow at different temperatures.

Strain
Growth Temperature, ◦C

Strain
Growth Temperature, ◦C

Strain
Growth Temperature, ◦C

6–9 20–22 37 6–9 20–22 37 6–9 20–22 37
Sp-1 ++ ++ ++ Sp-49 + Sp-97 - +++ +++
Sp-2 ++ ++ ++ Sp-50 - ++ + Sp-98 - +++ +++
Sp-3 - ++ + Sp-51 - ++ + Sp-99 - +++ ++

Sp-4 - ++++ ± Sp-52 ±- ++ ++ Sp-100 - ++++ ++

Sp-5 - + ± Sp-53 -- ++ ++ Sp-101 - +++ +++

Sp-6 - ++ ++ Sp-54 - + ± Sp-102 - ++++ ++

Sp-7 - ++ + Sp-55 - ++++ ++++ Sp-103 - ++++ ±

Sp-8 ± ++++ +++ Sp-56 - ++++ ++++ Sp-104 - ++++ ++++

Sp-9 - ++ ++ Sp-57 - + ± Sp-105 - ++++ ++++
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Table 3. Cont.

Strain
Growth Temperature, ◦C

Strain
Growth Temperature, ◦C

Strain
Growth Temperature, ◦C

6–9 20–22 37 6–9 20–22 37 6–9 20–22 37

Sp-10 - ++ ++ Sp-58 - +++ + Sp-106 - ++++ ++++

Sp-11 ± ++ ++ Sp-59 - ++++ ++++ Sp-107 - ++++ ++++
Sp-12 - ++++ ++++ Sp-60 - ++++ +++ Sp-108 ++ ++++ ++++
Sp-13 - ++ +++ Sp-61 - +++ + Sp-109 ++ ++++ ++++
Sp-14 ++ ± Sp-62 - ++++ ++++ Sp-110 - ++++ ++++

Sp-15 - ++++ ++ Sp-63 - +++ ++ Sp-111 - ++++ ++++
Sp-16 ++ ++++ +++ Sp-64 - ++++ ++++ Sp-112 - + ++
Sp-17 - ++ ++ Sp-65 ± +++ ++ Sp-113 - ++ ++
Sp-18 +++ ++++ +++ Sp-66 - + ± Sp-114 ++ +++ ++
Sp-19 - ++ ++ Sp-67 - ++++ +++ Sp-115 ++ ++++ ++
Sp-20 - ++++ ++++ Sp-68 - ++++ + Sp-116 ++ ++++ ±
Sp-21 - + - Sp-69 ± ++++ +++ Sp-117 - ++++ ++++
Sp-22 ++ ++++ ++++ Sp-70 - ++++ +++ Sp-118 - ++++ ++++
Sp-23 + ++ +++ Sp-71 - ++++ +++ Sp-119 - ++++ ++++
Sp-24 ++ +++ ++ Sp-72 - ++++ +++ Sp-120 - ++++ ++++
Sp-25 ++ ++++ ++ Sp-73 - +++ + Sp-121 - + ++
Sp-26 ++ +++ ± Sp-74 - ++++ ++ Sp-122 - +++ ++
Sp-27 + ++ ± Sp-75 - ++++ +++ Sp-123 - + ±

Sp-28 - ++ ± Sp-76 - ++ + Sp-124 - +++ ±

Sp-29 ± +++ ± Sp-77 - + ± Sp-125 - ++ +
Sp-30 ++ +++ ++ Sp-78 - + + Sp-126 - +++ ++
Sp-31 ± +++ ++ Sp-79 - ++++ +++ Sp-127 - ++ ±

Sp-32 + ++ + Sp-80 - ++++ +++ Sp-128 - +++ -

Sp-33 - ++ + Sp-81 - ++++ ++++ Sp-129 - +++ -

Sp-34 - + + Sp-82 - ++++ ++ Sp-130 ± ++++ -

Sp-35 - ++ + Sp-83 - ++++ ++++ Sp-131 ± ++++ -

Sp-36 - ++ ± Sp-84 - +++ +++ Sp-132 - ++++ ±

Sp-37 - ++ + Sp-85 - +++ +++ Sp-133 - +++ ++

Sp-38 - + + Sp-86 - +++ +++ Sp-134 + ++++ ++

Sp-39 - ++ ++ Sp-87 - +++ ± Sp-135 - +++ +

Sp-40 - ++ ++ Sp-88 - + ± Sp-136 - +++ ++

Sp-41 - ++ ++ Sp-89 - ++ ± Sp-137 - +++ ±
Sp-42 - ++ ± Sp-90 - ++++ ++++ Sp-138 ++ ++++ +++
Sp-43 - ++ ++ Sp-91 - ++++ ++++ Sp-139 - ++++ +++

Sp-44 - ++ ± Sp-92 - + ± Sp-140 - ++++ ++++
Sp-45 ++ ++ ± Sp-93 - + ± Sp-141 - ++++ ++++
Sp-46 - ++ ± Sp-94 - +++ ++++ Sp-142 - +++ ++
Sp-47 ++ ++ ± Sp-95 - ++++ ++++ Sp-143, + ++ ±
Sp-48 ++ ++++ ++++ Sp-96 + ++++ ++++ Sp-144 - ++

Sp-146 ± +++ +++

Designation: “++++”—abundant growth of the crop, “+++”—active growth, “++”—moderate growth, “+”—weak
growth, “±”—trace growth, “-”—no growth. Psychrotolerant strains are highlighted in grey.

3.4. Biotechnological Properties of Isolates

A significant aspect of the study of microorganisms in polar habitats is their ability to
secrete various lytic compounds at low temperatures, which can be used in biotechnological
processes and in reclamation processes carried out in similar temperature conditions [52–56].
The results of testing isolated bacteria and yeasts as oil destructors are provided in the work
presented in [34]. The ability to grow at different temperature conditions was previously
demonstrated in Table 3. Psychrotolerant microorganisms capable of active destruction
of oil at low temperatures include bacterial strains Sp-1, Sp-16, Sp-18, Sp-22, Sp-22-1, and
Sp-116, as well as yeast Sp-71, Sp-91 (Figure 3B,C). The most active oil destructor turned
out to be the psychrotolerant strain Rhodococcus sp Sp-116 [34], deposited in the collection
of bacteria, bacteriophages, and fungi under No. B-1388. During 10 days of incubation of
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this strain at room temperature, oil added up to 2% to the cultivation medium was almost
completely utilized (Figure 3A).
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4. Discussion

The formation of the Arctic aeromycobiota occurs both due to the arrival of microor-
ganisms from natural landscapes and due to the appearance of bacteria and fungi as a result
of anthropogenic transfer (invasion) that has increased in the Arctic territory in recent years.
The dominant agents of biological transport between land, water, and the atmosphere
are air flows that facilitate the transfer of particles with immobilized microorganisms and
other biological objects over large horizontal distances and heights. An increase in the
concentration of fungi of the genera Penicillium, Aspergillus, and others in Arctic aerosols
growing at 37 ◦C is associated with their possible pathogenicity for humans [26], which
requires control of the concentration and composition of atmospheric mycota to prevent
possible fungal infections. The work presented in [57] showed that the majority of the
mycobiota in the studied air samples consisted of biodegraders of various materials and
conditional human pathogens. The dominant species and their uneven distribution in
the air of residential and work premises and in adjacent areas were identified. There is a
dominance of dark-colored microorganisms producing melanins, which are well-adapted
to overcome unfavorable environmental conditions. In our studies, these are fungi of the
genera Aspergillus and Aureobasidium (Table 2).

Knowledge of the sources and transport pathways of bioaerosols is necessary for a
comprehensive understanding of the role of microorganisms in the atmosphere and control
of the spread of associated epidemic diseases. The coronavirus disease 2019 (COVID-19)
pandemic has raised widespread concerns about bioaerosols, which may have significant
public health impacts. The Arctic aerial microbiota is formed due to the supply of mi-
croorganisms from natural local landscapes, large-scale propagation events associated
with the supply of biomaterials from distant sources, and also as a result of increased
anthropogenic load, leading to risks of biological pollution, which contributes to the spread
of cosmopolitan species in the Arctic, such as pathogenic fungi Aspergillus, Penicillium,
and others. Transoceanic and transcontinental dust events play a role in the transfer of
pathogens, expanding the biogeographic range of organisms through long-distance disper-
sal [58]. Satellite observations have shown atmospheric transport of dust from China more
than 10,000 km over the Pacific Ocean, and Eurasia has been identified as the main source
of anthropogenic aerosol pollution in the polar regions of North America [59]. Pathogens
moving through the air over long distances are able to spread diseases across continents
and between them [60]. Seasonal meningococcal meningitis in Africa [61] and valley fever
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caused by Coccidioides spores in arid regions on both American continents are associated
with the transfer of the pathogen with dust components [62]. The spread of microorganisms
over long distances in unfavorable atmospheric conditions is ensured by various protective
means, due to the production of extracellular polymeric substances and pigments, the
formation of spores or other dormant structures, association with vectors, and also due to
osmo- and thermo-protectors, antioxidants, or specific enzymes [63]. The long-held view
of atmospheric transport as neutral to dispersal outcomes in ecology is no longer tenable.

Noteworthy is the presence in Arctic aerosols of bacteria of the genus Staphylococcus,
which belong to the fourth pathogenicity group (Table 2). Species such as S. epidermidis, S.
warneri, and S. hominis isolated from aerosols are detected primarily in hospital-acquired
infections. Found as a harmless commensal on the skin of humans and animals, these
bacteria, having increased virulence and pathogenicity as well as frequent resistance to
antibiotics, are capable of causing infections in patients with weakened immune systems.
The presence of staphylococci in aerosols of cold habitats was previously shown in the
literature [64].

Bacteria of the genus Acinetobacter isolated from the studied aerosols are free-living
saprophytes, but can cause meningitis and septicemia in humans against the background
of suppressed immune system function [65]. Among the isolated microbial isolates, similar
information about the possibility of causing diseases is known for microorganisms of the
genus Kocuria, which cause infections in patients with weakened immune systems [66];
for bacteria of the genus Curtobacterium of the order Actinomycetales, isolated from clinical
material during infectious processes of various localizations; for bacteria of the genus Rothia
from the family Micrococcaceae [67]; as well as for bacteria of the genus Comamonas, isolates
of which are obtained mainly from plants and soil habitats, but are also capable of causing
an infectious disease [68]. Opportunistic bacteria of the genus Brevundimonas have been
isolated; they are usually isolated from patients with impaired immunity and concomitant
chronic diseases [69]. Saprotrophic microorganisms of the genus Pseudarthrobacter, repre-
sentatives of the widespread genera Bacillus, Lysinibacillus, Nocardia, and symbiotic bacteria
of the genus Rhizobium were also isolated from Arctic aerosols. Facultatively anaerobic,
halotolerant bacteria of the genus Jeotgalicoccus, known for their ability to grow at NaCl
concentrations from 0.1 to 16%, were isolated too [70].

Pathogenic microorganisms use a number of genetic strategies to invade the host,
and the secretion of aggression enzymes is one of them. As mentioned above, testing for
signs of pathogenicity of 145 bacterial isolates from different samples revealed 30 spore-
forming bacteria, 15 cocci, and 20 non-spore-forming bacteria that secrete hemolysins that
destroys red blood cells. Fifty-five cultures possessed lipolytic enzymes of varying activity
and specificity involved in the destruction of cell membranes. Bacteria belonging to the
genera Bacillus and Staphylococcus were found to produce highly active phospholipases
that determine the invasiveness of microorganisms [71]. Such a sign of pathogenicity as
the production of alkaline phosphatase was found in most of the tested strains. Among
them, the most active were 20 cultures of the genus Bacillus, 17 cocci of the genus Staphylo-
coccus and Jeotgaliococcus, and 15 non-spore-forming bacteria of the genera Acinetobacter,
Brevundiomonas, and Microbacterium.

Global climatic changes and increasing anthropogenic load imply further changes
in the Arctic biota and enrichment of the air environment with microorganisms that was
not typical before. The results obtained are preliminary and need further research. For
an objective assessment of the data obtained, additional flights with route repetition are
required. Further studies of the Arctic microbiota are planned as part of a comprehensive
expedition using the Tu-134 Optik laboratory aircraft. Unfortunately, aircraft sounding is
an expensive research method and cannot be used as much as researchers would like in
order to obtain the most correct data. We hope that integration of international research
programs will help to obtain comprehensive monitoring results.
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5. Conclusions

Analysis of the studied samples of Arctic atmospheric aerosols revealed a significant
diversity of culturable bacteria and fungi with concentrations averaging 5.5 × 103 CFU/m3,
regardless of altitude and sampling location at altitudes from 200 m to 10,000 m.

The presence in aerosols of opportunistic fungi and bacteria, including representatives
of the genus Staphylococcus and antibiotic-resistant bacteria, makes it necessary to control
the microbiological composition of aerosols to prevent infectious diseases.

The discovered highly effective psychrotolerant bacteria—oil destructors—are suitable
for the creation of consortia of microorganisms and for use in the remediation of oil-
contaminated areas of Siberia and the Arctic.
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trajectories of air masses from which an air sample was taken at altitudes of 200–500 m above the Kara
Sea; Figure S3: Backward trajectories of air masses from which an air sample was taken at altitudes
of 200–300 m above the Laptev Sea; Figure S4: Backward trajectory of air masses from which an air
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strain of Candida albicans determined using the diffusion method on an agarized nutrient medium;
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