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Abstract: Cultural tourism helps preserve cultural heritage and provides economic opportunities
for local communities. A walkable cultural tourism route has been developed for the old town of
Ratchaburi, Thailand. Here, we assessed changes in PM1 after cars were banned from the walkable
tourist route. A near-roadway dispersion model, R-LINE, was evaluated and used to explore the base
case (BC) and two scenarios, S1 and S2. In the BC, road traffic activities reflected the current situation;
in S1, all vehicles were banned from the walkable route; and in S2, all drivers were encouraged to park
their vehicles outside the study area. The road traffic activities in the study area were observed and
used to calculate the PM1 emission rates for the model inputs. The model was capable of simulating
PM1 concentration, especially the average PM1 concentration over the monitoring period. An increase
in PM1 concentration was seen at the main road in S1 due to the increased traffic volume that had
been redirected from the walkable route, with an increase in daily PM1 of 4.5% compared to BC.
S2 showed a decrease in the PM1 concentration of 8.9%. These findings suggest the need for traffic
mitigation measures prior to initiating a walkable route for cultural tourism, to meet environmental
sustainability requirements.

Keywords: submicron particulate matter; PM1; R-LINE model; traffic air pollution; cultural tourism;
old town; traffic rerouting; walkable route; Ratchaburi

1. Introduction

Global tourism has been increasing for decades. In 2022, the travel and tourism sector
contributed 7.6% to global GDP, an increase of 22% from 2021 [1]. This contributes to
economic benefits for both local communities and host countries [2]. An important aspect
of this is cultural tourism, i.e., tourism for cultural motivations, such as attending festivals
and other cultural events, visiting monuments, and traveling to learn about nature, folklore,
or art [3]. Many countries, including Thailand, are promoting cultural tourism to stimulate
tourism following the COVID-19 pandemic [2,4].

An old town is defined as a historic inhabited area, with unique characteristics, both
physical and sociocultural, that has been continuously developed from the past to the
present [5]. Old towns are beneficial for enhancing cultural tourism in a city. Thailand has
approximately 39 areas that are officially designated as old towns [6].

Ratchaburi’s old town, in western Thailand, dates back thousands of years and remains
a livable area today. The main old town area includes various cultural heritage sites,
including a museum, an old market, old residential and commercial buildings, and a
historical bridge [7,8]. This area has the potential to promote cultural tourism, and a
walkable cultural tourism route has been proposed for the central part of the old town [9].
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Increased tourism may, however, lead to the deterioration of old towns, e.g., increased
road traffic can degrade air quality [10,11], affecting both the residents and tourists [12,13],
while the atmospheric pollutants from vehicles can degrade historic buildings [14,15], with
adverse consequences for the sustainability of cultural tourism in old towns. Decision-
makers are therefore increasingly promoting car-free tourism routes, with all motor vehicles
prohibited. Providing walkable routes helps reduce vehicle emissions and alleviate air pol-
lution [16,17], although it may require traffic rerouting, resulting in increased air pollution
near roadways where traffic has been rerouted.

Road transportation is a key source of submicron particulate matter (PM1), i.e., par-
ticles with a diameter of ≤1 µm. PM1 and PM2.5 (PM with aerodynamic diameter of
≤2.5 µm) have deleterious impacts on human health [18,19], as they can remain suspended
in the air for extended periods of time, include high quantities of hazardous chemicals,
and penetrate deep into the lungs [20–22]. Furthermore, fine PM from vehicle exhaust
emissions includes elemental carbon, which plays a key role in global warming [23,24].
Although PM2.5 has been widely used as a general marker for fine-particle air pollutants,
it is less useful in measuring traffic emissions [25], and vehicle exhaust contains a much
larger proportion of PM1 than PM2.5 [22,26–32]. Most researchers have focused on road
traffic-induced PM2.5, while studies on PM1 air pollution in cities remain limited, especially
in the field of dispersion modeling applications.

Here, we assessed the impact on air quality due to traffic rerouting to support the
walkable route in the historical area of Ratchaburi’s old town. Changes in PM1 from
traffic in the study area were examined using a near-roadway dispersion model, a research
line source (R-LINE) model [33], which has been used in several recent studies of the
near-roadway environment (e.g., [34–36]). We began by conducting an evaluation of the
model’s performance using onsite observations from the study area. Scenario studies
were then carried out to investigate the effect of traffic rerouting. Our results will support
decision-makers in developing sustainable, walkable cultural tourism routes in old towns.

2. Materials and Methods
2.1. Study Area

The study site, covering an area of 0.315 km2 (900 × 350 m) (Figure 1), was in
Ratchaburi’s old town, which in 2018 covered 1.57 km2, with a population of 5117 in
1905 households [8]. The old town’s cultural heritage and iconic landscape, located along-
side the Mae Klong River, made the area ideal for promotion as an iconic cultural tourism
destination [7]. Based on recent work [9], the road along the embankment (the yellow line
in Figure 1) was to become a walking street. All vehicles were to be banned from driving
on this road, while a nearby road (the green line in Figure 1) was intended to carry traffic
from the walking street. However, this road frequently experiences traffic congestion in
the morning and evening. Hence, further increases in traffic may lead to elevated levels of
atmospheric pollutants in the study area.
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2.2. Model Application

We used R-LINE (version 1.2) to simulate changes in PM1 air pollutants from road
traffic under the specified scenarios. R-LINE is a steady-state Gaussian dispersion model
specifically developed to simulate mobile source dispersion in near-roadway environments.
The current version of R-LINE is suitable for modeling flat roadways and has been for-
mulated for near-surface releases [33]. The model can also deal with meandering plumes
under low wind-speed conditions, which occur frequently in the study area.

We collected the data required for R-LINE from both onsite observations and secondary
data sources. The road link type was determined via an onsite survey and its height (m)
was assumed to be at ground level. The road links’ geometries (start and finish coordinates)
and link carriageway widths (m) were determined using Google Earth. The grid receptor
resolution was 10 × 10 m with a height of 1.5 m, and discrete receptors were placed at the
five measurement points described in Table 1. After obtaining the model’s outputs, we
generated a GIS-based spatial distribution of PM1 concentrations using Surfer software
(version 8). The interpolation technique used in Surfer was inverse distance weighting
(IDW), which is suitable for estimating spatial air pollution [37].

Table 1. Locations and dates when vehicles were counted.

Location Coordinates Characteristics Monitoring Date

Point 1 47P 589142 1496921

T-junction, 11.8 m in width,
the main entrance to
Ratchaburi’s old town on the
eastern side. High traffic flows
due to connecting to a highway.

14 October 2021

Point 2 47P 588413 1497270
T-junction, 7.5 m in width,
the minor entrance to the old
town on the western side.

28 October 2021

Point 3 47P 588720 1496981
Crossroad, 16.1 m in width,
the main entrance to the middle
part of the old town.

4–5 and 13–14
November 2021

Point 4 47P 588949 1497045

T-junction, 9.1 m in width,
the middle part of the walking
street. Adjoined to tourist
attractions, e.g., old markets and
the river embarkment.

11 November 2021

Point 5 47P 588539 1497011
T-junction, 9.9 m in width,
a minor road located in the
residential area of the old town.

20 October 2021

2.2.1. Traffic Activities and Emissions

Data required to calculate road traffic emissions comprise emission factors and road
traffic activities for each type of vehicle (Equation (1)).

ERi = Ai × EFi (1)

where ERi represents the emission rate of vehicle type i (g h−1); Ai is the traffic activities
of vehicle type i (number of vehicles km h−1); and EFi represents the emission factors of
vehicle type i (g km traveled−1 vehicle−1).

Traffic activity consists of traffic volume per unit of time and the average distance
traveled. Hourly traffic volumes (vehicles h−1) were observed using D-Cam D2 video
recorders at five points (Figure 1) with different schedules (Table 1). The recordings at
points 1, 2, 4, and 5 were performed over 12 h (07:00–19:00) on a workday; at point 3, traffic
volumes were recorded over 24 h, from 07:00 to 07:00 (the next day), covering a period of
workdays (Thursday 4–Friday 5 November 2021) and a weekend (Saturday 13–Sunday
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14 November 2021). Hourly traffic volumes were determined from the video files and
categorized in accordance with the European Environment Agency (EEA) guidance into
four categories, i.e., motorcycles (MCs), passenger cars (PCs), light-duty vehicles (LDVs),
and heavy-duty vehicles (HDVs). For points 1, 2, 4, and 5, their hourly traffic data for
the remaining 12 h (19:00–07:00 the next day) on working days, as well as weekends,
were estimated based on the recorded traffic volumes at point 3. Thus, all five points had
a complete set of hourly traffic volumes over a 24 h period for both working days and
weekends. It should be noted that the observations were performed during the COVID-19
pandemic, when citizens were urged to spend time outdoors from 04:00–23:00, leading to
lighter traffic activity than usual at night.

For the average distance traveled, we assumed the travel distance equaled the length
of the road segment. The road networks in the study area were segregated into 33 segments
based on road widths. The hourly traffic volumes recorded at each of the five individual
points described above, both on working days and on the weekend, were then averaged into
a single hourly traffic volume and allocated to their nearest road segments to represent the
traffic activities in the study area. An emission height of 0.3 m (representing the distance
from exhaust to the ground) was specified in the model. To set the physical road link
network, we selected the link type as flat terrain and its height as ground level.

PM1 emission factors were obtained from Kupiainen and Klimont [38] and estimated
from the EEA database [39]. The selections were in accordance with the observed vehicle
categories and their relative fuel consumption shares. The composition of fuel types, i.e.,
gasoline, diesel, liquified petroleum gas (LPG), and compressed natural gas (CNG), used to
estimate fuel consumption, was obtained from the Department of Land Transport’s statisti-
cal report [40]. The EEA emission factors database generally reports PM2.5; however, a much
greater proportion of PM1 than PM2.5 is emitted from vehicle exhausts [22,26–30,32]. Thus,
for this study, we assumed EEA-reported PM2.5 emission factors were PM1 emission factors.

2.2.2. Meteorological Data

We generated hourly meteorological files for the R-LINE model using data from
2019. We used a meteorological processor, AERMET (version 10.2.0) in AERMOD view
(version 10.2.0, Lakes Environmental Consultants Inc., Ontario, Canada) to construct the
meteorological data for R-LINE. The input data for AERMET comprised surface air (i.e.,
wind speed, wind direction, temperature, ceiling height, and cloud cover) and upper air
(i.e., wind speed, wind direction, and temperature) conditions. For surface air, we collected
data from Ratchaburi Meteorological Station, while upper air data were obtained from
the Thai Meteorological Department (TMD) [41] and a meteorological database service
(meteoblue AG, Basel, Switzerland) [42].

2.2.3. Model Performance Evaluation

To ensure the results of the dispersion simulation, we tested R-LINE’s performance by
comparing the modeled results of PM1 concentrations against the data collected at the five
traffic counting points. Hourly measurements of PM1 and PM2.5 were made in parallel from
8:00 to 15:00 (7 h) on 18 May 2022, using WP6910 portable light-scattering sensors. Prior
to conducting onsite measurements, zero calibration of the sensors was performed inside
a chamber filled with filtered air at Silpakorn University’s Department of Environmental
Science. We conducted statistical analyses to assess the model’s results. The statistical
indices used to evaluate the air quality model were fractional bias (FB), normalized mean
square error (NMSE), correlation coefficient (R), and the fraction of predictions within a
factor of two of observations (FAC2):

FB =
Co − Cp

0.5
(
Co + Cp

) , (2)
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NMSE =

(
Co − Cp)2

CoCp
, (3)

R =

(
Co − Co

)(
Cp − Cp

)
σCpσCo

, (4)

FAC2 = fraction of data that satisfies 0.5 ≤
Cp

Co
≤ 2.0, (5)

where Cp is the model-predicted value; Co is the observed value; Cp is the average of the
model-predicted values; Co is the average of the observed values; σcp is the standard devia-
tion of the model-predicted value; and σco is the standard deviation of the observed values.

Background concentrations are defined as the proportion of measured ambient air
pollution levels that is not attributable to emissions within the study area [43]. It was
necessary to add the background concentrations to the model results. The background
concentration can be obtained from the 20th percentile hourly minimum concentration
values over the year of interest, measured at the nearest ambient air quality monitoring
station to the area of investigation [44]. However, the monitoring station was generally as-
signed to measure PM2.5 only, as representative of human exposure to particle air pollution.
We therefore specified the PM1 background concentration based on the PM2.5 background
values obtained from an ambient air quality monitoring station operated by the Pollution
Control Department of Thailand, located approximately 2 km southwest from the study
area. The 20th percentile hourly minimum concentration of PM2.5 during days in 2019
was selected first. With the PM1 and PM2.5 values obtained from the onsite observations,
the PM1 background concentration was then obtained by multiplying the selected PM2.5
background concentration by the ratio of PM1 to PM2.5.

2.3. Scenario Study

Using the model, we explored two scenario studies based on cultural tourism planning:
the implementation of a walking street and the banning of all vehicles from the cultural
tourism route [9].

Scenario 1 (S1) involved all vehicles present in the cultural tourism route (the yellow
line in Figure 1) being switched to the main road (green line in Figure 1). Scenario 2 (S2)
was assumed to involve traffic reduction, with existing vehicles from the cultural tourism
route not driving on any roads in the study area, i.e., they were excluded from the model
simulation. This assumption required additional traffic planning, which was beyond the
scope of the current study.

To examine the impacts on air quality, the dispersion simulations of PM1 obtained
from S1 and S2 were compared with a reference base case (BC), where traffic activities
remained in the existing condition.

3. Results and Discussion
3.1. Traffic Activities and Emissions
3.1.1. Traffic Activities

The results of the existing vehicle fleet composition observed in the study area are
presented in Figure 2. Motorcycles (MCs) comprised the highest share of vehicles (53.2%),
followed by passenger cars (PCs) (45.6%), light-duty vehicles (LDVs) (0.7%), and heavy-
duty vehicles (HDVs) (0.5%). The proportion of MCs in the study area was comparable
to the national level in Thailand, which was 52.7% in 2022 (approximately 22 million
motorcycles) [40], with an increase of 6.4% between 2019 and 2023 [45]. MCs are also
becoming more prevalent globally, even in high-income countries, because they are cheaper
than PCs, provide flexibility and speed for urban deliveries, and ease traveling in areas with
traffic congestion [46]. PCs represented the next highest proportion of vehicles. PCs are
more suitable for traveling greater distances than MCs, so the number of PCs we observed
may have been a combination of those from the study area, from adjoining areas of the old
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town, and those belonging to travelers from further away. This was reflected by the high
number of vehicles at point 1, where the greatest number of PCs were observed. This point
was located at the main road, where vehicles from other areas pass by. Note that pickup
trucks were included in the PC category, according to the EEA’s vehicle categories. (The
overall share of pickup trucks was 39.3% of all PCs).
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3.1.2. Vehicle Particulate Emission Factors

The emission factors used in the current study are presented in Table 2. The combustion
of different fuel types results in different degrees of fine PM emissions. Under equivalent
conditions, fine PM emissions from compression-ignition (diesel) engines are generally
higher than the emissions from spark-ignition (gasoline) engines [38]. Spark-ignited engines
can be modified to consume various fuels, e.g., gasoline, LPG, and CNG. Here, we assumed
that PM1 emission factors of MCs (gasoline), PCs (LPG and CNG), LDVs (CNG), and HDVs
(CNG) corresponded to PM2.5 emission factors for these vehicle types. This was based
on the findings of previous studies, indicating that the PM emissions from these vehicles
contribute to almost all particles in the PM1 range [22,26–30,32].

Table 2. Emission factors of PM1 (g vehicle−1 km−1) used in the current study.

Vehicle Category Fuel PM1

Motorcycle (MC) Gasoline 0.09608 b

Passenger car (PC)

Gasoline 0.02312 a

Diesel 0.20325 a

LPG 0.01301 b

CNG 0.01235 b

Light-duty vehicle (LDV)
Gasoline 0.01156 a

Diesel 0.10162 a

CNG 0.01125 b

Heavy-duty vehicle (HDV) Diesel 0.67150 a

CNG 0.02250 b

a Adopted from databases reported by Kupiainen and Klimont (2004) [38]; b assumed to be equivalent to PM2.5
emission factors reported by the European Environment Agency (EEA) (2019) [39]. CNG, compressed natural gas;
LPG, liquified petroleum gas.

3.1.3. Temporal Variations in Traffic Emissions

Changes in hourly traffic flows at the five traffic counting points throughout the
working day and on the weekend, as well as their corresponding PM1 emission rates per
distance traveled (g h−1 km−1) are illustrated in Figure 3. As expected, PM1 emission
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rates per distance traveled varied in accordance with traffic activity. Times with less traffic
resulted in emission rates notably lower than during peak hours because vehicles were
more polluting in congested traffic, due to frequent low speed and idling [47,48]. The
highest number of vehicles was recorded at point 1, with the fewest recorded at point 5.
This is because point 1 was located at the main inbound and outbound route and had a
fresh market each morning, while point 5 was linked to the low-density residential zone in
the old town.

Atmosphere 2024, 15, x FOR PEER REVIEW 8 of 21 
 

 

 
(a) Working day’s hourly traffic flow and PM1 emissions variations. 

Figure 3. Cont.



Atmosphere 2024, 15, 377 8 of 20

Atmosphere 2024, 15, x FOR PEER REVIEW 9 of 21 
 

 

 
(b) Weekend’s hourly traffic flow and PM1 emissions variations. 

Figure 3. Variations in hourly traffic flow and PM1 emissions during working days (a) and on the 
weekend (b). 

In addition, we used a multiple-linear regression model in Microsoft Excel to exam-
ine the contribution of the various categories of vehicles on PM1 emissions. The least 
squares method was used to fit a line through the data. The dependent variable was PM1 
emissions per kilometer. The independent variables comprised the hourly numbers of 
MCs, PCs, LDVs, and HDVs combined for both working days and weekends at all obser-
vation points. The results can be seen in Equation (6). 

PM1 = 0.096 MC + 0.252 PC + 0.136 LDV + 0.716 HDV  (6)

(n = 240, p-value < 0.01). 
In Equation (6), HDVs had the highest coefficient values (0.719), followed by PCs 

(0.252), LDVs (0.136), and MCs (0.096). Each coefficient is interpreted as the estimated 
change in PM1 corresponding to a one-unit change in a vehicle type, when all others are 
held constant. In other words, in our study, HDVs had the greatest influence on PM1 

Figure 3. Variations in hourly traffic flow and PM1 emissions during working days (a) and on the
weekend (b).

On working days (Figure 3a), more traffic was observed in the morning (07:00–11:00)
and evening (16:00–18:00), as people went shopping at the morning market and traveled
to work, then returned home in the evening. On the weekend, more traffic was observed
at midday, lasting until nighttime (Figure 3b). Both residents and tourists spent their
time outdoors during these periods, with many people engaged in sightseeing, eating,
and shopping in the study area. If point 1 is taken to represent the traffic conditions in
the study area, the variations on workdays and at weekends are comparable to those in
Nakhon Pathom municipality, a city located in an adjacent province [49], and in Bangkok,
Thailand’s capital [50], suggesting homogeneous traveling behaviors in Bangkok and its
surrounding cities.

In addition, we used a multiple-linear regression model in Microsoft Excel to examine
the contribution of the various categories of vehicles on PM1 emissions. The least squares
method was used to fit a line through the data. The dependent variable was PM1 emissions
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per kilometer. The independent variables comprised the hourly numbers of MCs, PCs,
LDVs, and HDVs combined for both working days and weekends at all observation points.
The results can be seen in Equation (6).

PM1 = 0.096 MC + 0.252 PC + 0.136 LDV + 0.716 HDV (6)

(n = 240, p-value < 0.01).
In Equation (6), HDVs had the highest coefficient values (0.719), followed by PCs

(0.252), LDVs (0.136), and MCs (0.096). Each coefficient is interpreted as the estimated
change in PM1 corresponding to a one-unit change in a vehicle type, when all others are
held constant. In other words, in our study, HDVs had the greatest influence on PM1
emissions, while MCs had the least. This suggests that consideration should be given to
banning HDVs from accessing the old town, although it was the least proportion found in
the fleet.

3.2. Evaluation of R-LINE

Figure 4 shows a comparison between PM1 concentrations yielded by R-LINE and
the values obtained from the five measurement sites, averaged over monitoring hours
(Figure 4a) and locations (Figure 4b). The simulated PM1 showed greater deviations on a
temporal basis than on a spatial basis. The greatest difference between the observed values
(10.3 ± 1.3 µg m−3) and the simulated values (8.6 ± 0.5 µg m−3) occurred during rush hour
at 08:00. Spatially, the simulated PM1 values showed good agreement with the observed
values (Figure 4b). R-LINE was also able to capture the highest PM1 concentration, as
observed at point 2.

For the statistical analyses, the results were also plotted as single hours (SH) and the
average hourly value over the measurement period of 7 h (AH), as shown in Figure 5a,b,
respectively. The NMSE values of SH and AH were 0.01 and 0.06, respectively, and the
FB values of SH and AH were −0.01 and 0.21, respectively. These model performance
evaluation indicators were all close to the ideal values (NMSE and FB = 0.0) [51]. The results
were comparable to previously reported PM levels due to road traffic activities, simulated
using a line source dispersion model, CALINE 4 (NMSE = 0.08 and FB = −0.01) [52], and
a Lagrangian particle model, (GRAL) (NMSE = 0.04 and FB = 0.13) [53]. The simulation
performance in our study is better than the performance reported in previous work using
the WinOSPM, ADMS-Urban, and AEOLIUS models (in which NMSE ranged from 0.11 to
0.23 and FB ranged from −0.08 to 0.26) [54].

The scatter plots for both SH and AH were within the factor of 2 (FAC2) boundary.
However, the AH plot (Figure 5b) was closer to a 1:1 line than that of SH (Figure 5a). The
linear regression equations indicated that R-LINE’s predictions tended to be underestimates,
especially in the case of SH. These underestimates may be due to the absence of a chemical
transformation function in the current version of R-LINE [33,55], despite the fact that
atmospheric chemical reactions play a vital role in forming secondary PM in the air [21].
The AH results from the simulations ranged from 8.2 to 10.1 µg m−3, which were close to
the observations ranging from 7.8 to 9.7 µg m−3. Additionally, the R value of AH (0.89)
was higher than that of SH (0.51), implying that AH was more suitable to be specified as
the temporal basis for the R-LINE simulation.

It should be noted that we applied R-LINE on a daily basis, not on specific periods of
time, such as AH. Due to the COVID-19 pandemic, however, we were unable to conduct
monitoring for a longer period, which was a limitation of this study. Nevertheless, based
on the model evaluation results of our work, as well as the results of previous studies
(e.g., [33]), we believe that R-LINE was appropriate for our case study.

To examine the impact of meteorological conditions on PM1 concentrations, the daily
PM1 values simulated over the year were compared with wind speed (WS) and atmo-
spheric ventilation rates (VRATE), as shown in Figures 6 and 7, respectively. The model
results were categorized into two groups according to the wind speed conditions, i.e., low
(WS ≤ 0.6 m s−1) and high (WS > 0.6 m s−1) wind-speed conditions. The low wind-speed
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classification was defined based on Ling and colleagues’ 2020 study [53], in which they
carried out simulations of road-traffic PM in an Asian micro-scale urban environment,
similar to our study.
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in the model results.
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was even more pronounced at higher wind speeds (Figure 7). VRATE is principally ob-
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Hence, a combination of high wind-speed and high PBL promotes good ventilation, re-
sulting in better dispersion conditions and allowing PM1 to be diluted [56,57]. The results 
of the correlations of PM1 and the dynamic atmospheric parameters imply that the R-LINE 
model yielded reasonable results. However, the low statistical correlation suggested by 
the low Pearson correlation coefficients (the r values are provided in Figures 6 and 7) im-
plies that there are additional factors influencing the PM1 concentration in the air. Thus, 
further research is necessary to explore air pollution dispersion, particularly under low 
wind-speed conditions. 
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Figure 7. Variations in calculated PM1 at the atmospheric ventilation rate (VRATE), categorized into
low wind-speed (WS ≤ 0.6 m s−1) (a) and higher wind-speed (WS > 0.6 m s−1) (b) conditions at the
fixed monitoring site (around point 3 in Figure 1); solid line, linear trendline; r, Pearson correlation
coefficient. The ventilation rates were estimated from the Global Forecast System (GFS), National
Centers for Environmental Prediction (NCEP), USA, and provided by TMD.

As seen in Figure 6a, PM1 concentrations increased during the low wind-speed regime
and considerably declined when the wind speed was higher (Figure 6b). Low wind-
speed conditions restricted the transport of air pollution, inducing the accumulation of air
pollutants, especially at the extremely low wind-speed of less than 0.6 m s−1 present in
the study area. As expected, the PM1 concentration was inversely correlated with VRATE;
this was even more pronounced at higher wind speeds (Figure 7). VRATE is principally
obtained by multiplying the wind speed by the height of the planetary boundary layer
(PBL). Hence, a combination of high wind-speed and high PBL promotes good ventilation,
resulting in better dispersion conditions and allowing PM1 to be diluted [56,57]. The results
of the correlations of PM1 and the dynamic atmospheric parameters imply that the R-LINE
model yielded reasonable results. However, the low statistical correlation suggested by
the low Pearson correlation coefficients (the r values are provided in Figures 6 and 7)
implies that there are additional factors influencing the PM1 concentration in the air. Thus,
further research is necessary to explore air pollution dispersion, particularly under low
wind-speed conditions.
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3.3. Comparisons with Similar Studies

A comparison of PM1 concentrations at our site and previously reported results is
presented in Table 3. The differences in PM1 levels in a specific area depend on various
factors, including emission sources; meteorological conditions; topography (e.g., complex
or flat terrain) and land use (e.g., urban, suburban, rural); receptors (distances and heights
in relation to the emission sources); and the timeframe under consideration (e.g., daily,
seasonal, annual). Changes in behavior due to the COVID-19 pandemic could also have
led to a decrease in road traffic-related particles [58] in our study area.

Table 3. PM1 concentrations observed in the current study and in other studies.

Location Source PM1
(µg m−3) *

PM1/PM2.5
Ratio Monitoring Period Temporal

Basis

Thailand (Ratchaburi
old town/roadside)

This study

8.7 ± 0.8 a

(7.8–9.7) 0.69
18 May 2022 (08:00–15:00,
7 h in total)

7 h
average8.8 ± 0.7 b

(8.2–10.1)
NA

Italy
(Venice) [21]

34 ± 24 a

(winter)
6.4 ± 2.2 a

(summer)

NA
December 2013–
February 2014 (winter)
May–July 2014 (summer)

Seasonal average

Algeria
(Algiers/roadside) [59] 5.93–46.08 a 0.55 1 January–

30 September 2015 Daily average

China
(Hong Kong/roadside) [60] 26.1 ± 0.7 a NA 2 November–

13 December 2017 Daily average

China
(Taichung, Taiwan) [61] 11.05 ± 5.03 a

(3.96–23.32) 0.73 15–22 April
14–23 May 2021 Daily average

China
(73 cities across the
entire mainland)

[62] 4.8–84.0 a 0.75–0.88 1 November 2013–
31 December 2014 Daily average

Europe
(12 cities) [63] 12.2 ± 9.3 a NA October 2015–April 2019

Average of
different periods in
each city

Austria
(Graz) [64]

20 ± 11.9 a

(winter)
14.1 ± 6.5 a

(summer)

0.78
(winter)
0.91
(summer)

October
2000–March 2001 (winter)
April–September 2001
(summer)

Seasonal average

Turkey
(Istanbul) [65] 22.1 ± 6.4 a

(7.6–30.2) 0.55 11 December
2009–9 April 2010 Daily average

India
(Varanasi) [66] 89.9 ± 44.4 a 0.84 April 2019–March 2020 Over the

monitoring period

* Average value (single number); average value ± standard deviation; minimum value–maximum value;
a monitoring results; b modeling results; NA, not available.

The ratios of PM1 to PM2.5 from our observations compared with other studies are
also presented in Table 3. Our ratio (0.69) was lower than those obtained in studies from
cities in China (0.75–0.88); Graz, Austria (0.78–0.91); and Varanasi, India (0.84); however, it
was higher than those recorded in Istanbul, Turkey (0.55) and Algiers, Algeria (0.55), while
it was comparable to that in Taichung, in Taiwan (0.73). High PM1/PM2.5 ratios imply that
fine PM mainly comprises submicronic particles (PM1) and has a greater health impact [59].
High PM1/PM2.5 ratios are often observed on days with high levels of pollution; high ratios
are also more likely in urban areas than in rural areas, and in winter rather than summer.
It also indicates the role of combustion processes and secondary particle formation [62].
As we conducted measurements at the roadside, the PM1/PM2.5 ratio implied that PM1
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mainly originated from internal combustion vehicles rather than the formation of secondary
particles. This emphasized the importance of controlling these vehicles.

3.4. Changes of Vehicles in Our Case Studies’ Road Network

Observed hourly traffic volumes, both during the working day and on the weekend,
on different road types (33 road segments in total) are averaged into daily mean values
representing current traffic flows of the base case (BC), as presented in Figure 8. The
switching of traffic activities from the cultural tourism road to the main road for S1 and
S2 is also included. In BC, there were 44,903 vehicles daily on the cultural tourism route,
slightly more than those on the main road, which had 42,187 vehicles. In S1, vehicles were
assumed to be banned from driving on the cultural tourism route. Therefore, they were
combined with those from the main road, resulting in an increased daily number of vehicles
to 87,065. Traffic congestion, as well as high emissions of PM1 due to road traffic, can be
expected on the main road. In S2, the number of vehicles on the main road was assumed
to decrease due to the mitigation measures, discussed later. Note that traffic activities on
both the road connected to the highway and the secondary road were assumed to remain
the same in all cases. In addition, note that the traffic activities in Figure 8 were previously
allocated to the road segments, then multiplied by the corresponding PM1 vehicle emission
factors and incorporated in the R-LINE model to simulate changes in PM1 concentration.
The results are described later, in Section 3.5.
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types, with a total of 33 segments. (The locations of the roads in the study area are shown in Figure 1,
with the colors of the bars in this figure being the same as the road line colors.)

3.5. Spatial Distribution of PM1 in the Case Studies

The simulations of PM1 in BC, S1, and S2 are illustrated in Figure 9. Overall, they were
consistent with the results of previous studies [34,67], showing high levels of traffic-induced
fine PM pollution at roadsides, which rapidly decrease with increasing distance from roads.
The fine PM contributed by road traffic can be heavily influenced by curbside traffic. A
previous study involving a micro-scale PM simulation in an Asian community found that
curbside traffic can contribute up to 40% of fine PM during rush hour [53]. The greatest
PM1 concentration was observed for the road connecting to the highway (the blue line in
Figure 9). This was due to the large numbers of vehicles driven by residents and visitors,
as seen in Figure 9 at point 1. Note that we added a PM1 background concentration of
9.23 µg m−3, derived from the methodology mentioned earlier, to the model results.
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In the short term, based on all of our case studies (BC, S1, and S2), policymakers can
utilize the results to initiate ad hoc practical mitigation measures. For instance, high PM1
concentrations regularly appeared on the western side (the red-colored band in Figure 9).
Traffic management, e.g., switching traffic lanes to enhance traffic flows on connected-to-
highway roads during traffic rush hours (seen in Figure 3) is recommended. Furthermore,
pedestrians should be advised to minimize their outdoor activities to prevent exposure to
PM near roadsides. Providing an air pollution monitoring system with a digital display
screen showing the current air quality situation in this high pollution zone is recommended.

Interestingly, the PM1 concentration along the river section was lower compared with
the PM1 concentrations in other parts of the study area. One reason for this is that it was
away from the road-traffic emission sources. Another reason is that it supports the city’s
aeration. This agrees with a recent study [68], in which black carbon was measured along
bicycle routes in Wrocław, Poland. The study’s authors found that black carbon levels near
to the river were noticeably lower than the levels near other routes in their study area.
Rivers and embankments provide open spaces that promote better ventilation, which can
dilute air pollution. Therefore, urban developers should incorporate open spaces. This will
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not only help in dispersing high concentrations of air pollution but also provide recreation
areas for the public, including local citizens and visitors, and potentially further promoting
tourism activities such as those in Ratchaburi’s old town.

The changes in PM1 air contaminants in S1 and S2, compared to the reference BC, can
be described as follows. For S1, all vehicles on the cultural tourism route (the yellow line in
Figure 9) were made to drive on the main road (the green line in Figure 9); subsequently,
there was an accumulation of vehicles and their emissions on the main road. Thus, elevated
PM1 levels were detected near the main road, while lower levels were detected near the
cultural tourism route compared to BC.

For S1, vehicles were banned from the cultural tourism route, and visitors used another
route, as closely as possible to the walking route. Therefore, it was not possible to avoid an
accumulation of traffic and vastly increased levels of PM1 on the main road. This would
result in potentially adverse health outcomes for both the population living close to this
road [69] and those traveling along footpaths [70]. In addition, this may cause the negative
outcome of tourists ceasing to visit the cultural tourism route [12,71], which, in turn, affects
the long-term success of car-free cultural tourism routes.

For the S2 scenario, it was assumed that none of the vehicles used to drive through
the cultural tourism route would enter the study area. The overall number of vehicles and
their PM1 emissions were therefore reduced. Hence, clear decreases were seen in simulated
PM1 concentrations, both on the cultural tourism route and the main road. The changes in
PM1 concentrations at the five observation points are compared among the BC, S1, and S2
scenarios, as shown in Figure 10.

Atmosphere 2024, 15, x FOR PEER REVIEW 16 of 21 
 

 

can dilute air pollution. Therefore, urban developers should incorporate open spaces. This 
will not only help in dispersing high concentrations of air pollution but also provide rec-
reation areas for the public, including local citizens and visitors, and potentially further 
promoting tourism activities such as those in Ratchaburiʹs old town. 

The changes in PM1 air contaminants in S1 and S2, compared to the reference BC, can 
be described as follows. For S1, all vehicles on the cultural tourism route (the yellow line 
in Figure 9) were made to drive on the main road (the green line in Figure 9); subsequently, 
there was an accumulation of vehicles and their emissions on the main road. Thus, ele-
vated PM1 levels were detected near the main road, while lower levels were detected near 
the cultural tourism route compared to BC. 

For S1, vehicles were banned from the cultural tourism route, and visitors used an-
other route, as closely as possible to the walking route. Therefore, it was not possible to 
avoid an accumulation of traffic and vastly increased levels of PM1 on the main road. This 
would result in potentially adverse health outcomes for both the population living close 
to this road [69] and those traveling along footpaths [70]. In addition, this may cause the 
negative outcome of tourists ceasing to visit the cultural tourism route [12,71], which, in 
turn, affects the long-term success of car-free cultural tourism routes. 

For the S2 scenario, it was assumed that none of the vehicles used to drive through 
the cultural tourism route would enter the study area. The overall number of vehicles and 
their PM1 emissions were therefore reduced. Hence, clear decreases were seen in simu-
lated PM1 concentrations, both on the cultural tourism route and the main road. The 
changes in PM1 concentrations at the five observation points are compared among the BC, 
S1, and S2 scenarios, as shown in Figure 10. 

 
Figure 10. Differences in simulated daily PM1 levels in the BC, S1, and S2 scenarios at the observation 
sites. (Figures with a minus sign indicate percentage reductions in PM1 compared to the BC values.) 

The S2 scenario was shown to be more suitable for the cultural tourism route than 
the S1 scenario. Mitigating road traffic was crucial to supporting the walkability of the 
cultural tourism route and achieving better air quality. However, S2 was more challenging 
in terms of traffic planning than S1. The S2 simulation suggested further traffic reduction 
measures would be needed, such as providing sufficient parking sites outside the focal 
area of the old town and appropriate vehicles, possibly electric buses, to shuttle visitors to 
the destination. Fortuitously, a new double-track railroad near the walkable cultural tour-
ism route is almost complete, providing an ideal opportunity to minimize the number of 
personal vehicles in the area and promote the use of mass transit. Feasibility studies of 
such issues were beyond the scope of our work; however, we recommend conducting fu-
ture studies to investigate this issue. 

Figure 10. Differences in simulated daily PM1 levels in the BC, S1, and S2 scenarios at the observation
sites. (Figures with a minus sign indicate percentage reductions in PM1 compared to the BC values.)

The S2 scenario was shown to be more suitable for the cultural tourism route than the
S1 scenario. Mitigating road traffic was crucial to supporting the walkability of the cultural
tourism route and achieving better air quality. However, S2 was more challenging in terms
of traffic planning than S1. The S2 simulation suggested further traffic reduction measures
would be needed, such as providing sufficient parking sites outside the focal area of the old
town and appropriate vehicles, possibly electric buses, to shuttle visitors to the destination.
Fortuitously, a new double-track railroad near the walkable cultural tourism route is almost
complete, providing an ideal opportunity to minimize the number of personal vehicles in
the area and promote the use of mass transit. Feasibility studies of such issues were beyond
the scope of our work; however, we recommend conducting future studies to investigate
this issue.

The practical implications of the environmental and economic aspects of implementing
a walkable cultural tourism route in Ratchaburi’s old town are beyond the scope of our
study and findings; however, it is crucial that they are discussed. From an environmental
perspective, it is not only air pollution but also thermal comfort that can greatly influence
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pedestrians’ decision to walk [16]. Well-ventilated and shaded walkways along a pedestrian
street can improve connectivity and comfort for tourists. Ensuring good sanitation and good
practice in waste management (reduce, reuse, and recycle) are also recommended. From an
economic perspective, tourism activities can provide income for local people. Increasing
cultural tourism by using the Bio-Circular-Green Economic Model (BCG), introduced by
the Thai research community and promoted by the Thai government as a new economic
model [72], is feasible. For instance, the community could continue creating unique
products with a history that reflects the local culture of Ratchaburi. Their production
should also take into account the environment and sustainability, e.g., using local renewable
biological resources and bio-based materials, with minimal pollution during production.
Moreover, goods and services for tourism must be reasonably priced. Marketing via
online applications is also encouraged to enhance product awareness at the same time
as promoting tourism activities in the area. Finally, the income generated from tourism
should be reinvested to support conservation programs for both tangible and intangible
cultural resources in the old town. Multilateral collaboration among stakeholders, including
relevant government organizations, local communities, nongovernmental organizations,
and local enterprises, will be crucial for the creation and operation of the proposed plans.
This aspect should also be considered in future studies.

Our study yielded several benefits. First, we evaluated the R-LINE model to ensure the
trustworthiness of the simulation results, applying the model with high spatial resolution
and refined traffic activity observations. Second, we investigated PM1, a more useful tracker
of traffic-induced air pollution than larger PM. Third, we demonstrated the possibility of
determining the contribution of road vehicles to the reduced urban air quality, essential as
PM1 is now of great concern worldwide. Finally, this work supports the development of
cultural tourism to help the environment, which is a key element if sustainable development
of cultural tourism is to be achieved in urban areas [3].

Our study also had some limitations. First, the R-LINE model is unable to consider
the arrangement of buildings, which can potentially obstruct air flow and the dispersion of
air pollutants. This impact can be considerable under low wind-speed conditions. Second,
the measurements used to evaluate the model’s performance were conducted during just
a single day, due to restrictions imposed during the COVID-19 pandemic. Additionally,
the measurement devices were based on light scattering, which is an alternative method
to the method used for the official measurements of fine PM. Lastly, our study did not
consider PM1 emissions from other local sources, such as wood stoves for local streetside
cooking and smoke from open air incense and joss paper burning. These are related to
traditional activities in Asian communities and may become potentially important sources
of emissions if visitor numbers increase.

4. Conclusions

Varying traffic activities to create a car-free cultural tourism route could affect the
occurrence of PM1 emissions and contribute to reduced air pollution in Ratchaburi’s old
town. We found a consistency between hourly variations in traffic activities and PM1 vehicle
emissions in the old town, both on the working day and on the weekend. Our evaluation
of the R-LINE model indicated its performance was acceptable to simulate PM1 levels in
the study area. Our study suggested that remarkable changes in PM1 concentrations could
be achieved through alterations in road traffic mitigation measures: promoting the use of
a new double-track railroad near the walkable cultural tourism route; providing parking
sites outside the central area of the old town; and using well-organized shuttle vehicles to
transport visitors from both services to the walking street. These types of changes should
be considered in future studies. We suggest that decision-makers and relevant stakeholders
establish traffic management plans to sustainably develop the cultural tourism route in
Ratchaburi’s old town.



Atmosphere 2024, 15, 377 17 of 20

Author Contributions: Conceptualization, R.O.; methodology, R.O.; software, R.O. and O.I.; valida-
tion, R.O., D.B. and P.P.; formal analysis, R.O. and O.I.; investigation, R.O. and O.I.; resources, R.O.;
data curation, O.I. and R.O.; writing—original draft preparation, R.O. and O.I.; writing—review and
editing, R.O.; visualization, O.I. and R.O.; supervision, R.O.; project administration, R.O.; funding
acquisition, R.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Faculty of Science, Silpakorn University, and the Program
Management Unit on Area-Based Development (PMU A), Ministry of Higher Education, Science,
Research and Innovation, Thailand.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Acknowledgments: The authors would like to thank the local community in Ratchaburi’s old town for
supporting us and providing space to set up the measurement sites. We acknowledge the assistance
of the Thai Meteorological Department, the Pollution Control Department, the Department of Land
Transport, and meteoblue AG for providing their valuable data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Travel & Tourism Council (WTTC). Economic Impact Research. 2023. Available online: https://wttc.org/research/

economic-impact (accessed on 7 December 2023).
2. Eslami, F.; Namdar, R. Social, Environmental and Economic Impact Assessment of COVID-19 on Rural Tourism. Front. Public

Health 2022, 10, 883277. [CrossRef] [PubMed]
3. Istoc, E. Urban cultural tourism and sustainable development. Int. J. Responsible Tour. 2012, 1, 38–57.
4. World Tourism Organization (UNWTO). Cultural Tourism and COVID-19. 2020. Available online: https://www.unwto.org/

cultural-tourism-covid-19 (accessed on 18 December 2023).
5. The Royal Thai Government Gazette. Regulation of the Prime Minister’s Office on the Conservation and Development of

Rattanakosin Area and Old Towns 2021. 2021. Available online: https://dl.parliament.go.th/handle/20.500.13072/584997
(accessed on 18 December 2023). (In Thai)

6. Office of Natural Resources and Environmental Policy and Planning (ONEP). Environmental Quality Situation in 2022 (Infographic
Edition). 2023. Available online: https://www.onep.go.th/book/info-soe2565/ (accessed on 26 July 2023).

7. Chaiyapotpanit, A.; Khaokhiew, C.; Thamrungraeng, R.; Chantaruphan, P.; Sinvuttaya, S.; Preamkulanan, P.; Tangcharatwong, K.;
Jitpaisarnwattana, N.; Maneechote, M.; Rujirotvarangkul, C. Cultural capital for the development and conservation of ancient
cities in western Thailand: A case study of the Ratchaburi and Phetchaburi provinces. Humanit. Arts Soc. Sci. Stud. 2023, 23,
528–538. [CrossRef]

8. Preyawanit, N. Ratchaburi old town: A preservation and development study. NAJUA Hist. Archit. Thai Archit. 2023, 20, 160–197.
(In Thai)

9. Silpakorn University. The Conservation and Development of Ratchaburi Old Town Towards Creative and Livable City for Cultural-Based
Economic Advancement and Sustainable Living; Silpakorn University Research, Innovation and Creativity (SURIC) Administration
Office: Phetchaburi, Thailand, 2020. (In Thai)

10. Sunlu, U. Environmental impacts of tourism. In Local Resources and Global Trades: Environments and Agriculture in the Mediterranean
Region; Camarda, D., Grassini, L., Eds.; CIHEAM: Bari, Italy, 2003; pp. 263–270.

11. Belsoy, J.; Korir, J.; Yego, J. Environmental Impacts of Tourism in Protected Areas. J. Environ. Earth Sci. 2012, 10, 64–73.
12. Eusébio, C.; Carneiro, M.J.; Madaleno, M.; Robaina, M.; Rodrigues, V.; Russo, M.; Relvas, H.; Gama, C.; Lopes, M.; Seixas, V.; et al.

The impact of air quality on tourism: A systematic literature review. J. Tour. Futures 2020, 7, 111–130. [CrossRef]
13. Zhao, S.; Li, Q.; Kong, Y.; Chen, X. The coupling relationship between tourism economy and air quality in China: A province-level

analysis. J. Environ. Econ. Manag. 2023, 11, 1111828. [CrossRef]
14. Oliveira, M.L.; Neckel, A.; Pinto, D.; Maculan, L.S.; Dotto, G.L.; Silva, L.F. The impact of air pollutants on the degradation of two

historic buildings in Bordeaux, France. Urban Clim. 2021, 39, 100927. [CrossRef]
15. Daengprathum, N.; Onchang, R.; Nakhapakorn, K.; Robert, O.; Tipayarom, A.; Sturm, P.J. Estimation of Effects of Air Pollution

on the Corrosion of Historical Buildings in Bangkok. Environ. Nat. Resour. J. 2022, 20, 505–545. [CrossRef]
16. Baobeid, A.; Koç, M.; Al-Ghamdi, S.G. Walkability and its relationships with health, sustainability, and livability: Elements of

physical environment and evaluation frameworks. Front. Built Environ. 2021, 7, 721218. [CrossRef]
17. Jeong, I.; Choi, M.; Kwak, J.; Ku, D.; Lee, S. A comprehensive walkability evaluation system for promoting environmental benefits.

Sci. Rep. 2023, 13, 16183. [CrossRef] [PubMed]
18. Hu, Y.; Wu, M.; Li, Y.; Liu, X. Influence of PM1 exposure on total and cause-specific respiratory diseases: A systematic review and

meta-analysis. Environ. Sci. Pollut. Res. 2022, 29, 15117–15126. [CrossRef] [PubMed]

https://wttc.org/research/economic-impact
https://wttc.org/research/economic-impact
https://doi.org/10.3389/fpubh.2022.883277
https://www.ncbi.nlm.nih.gov/pubmed/35619823
https://www.unwto.org/cultural-tourism-covid-19
https://www.unwto.org/cultural-tourism-covid-19
https://dl.parliament.go.th/handle/20.500.13072/584997
https://www.onep.go.th/book/info-soe2565/
https://doi.org/10.14456/hasss.2023.45
https://doi.org/10.1108/JTF-06-2019.0049
https://doi.org/10.3389/fenvs.2023.1111828
https://doi.org/10.1016/j.uclim.2021.100927
https://doi.org/10.32526/ennrj/20/202200071
https://doi.org/10.3389/fbuil.2021.721218
https://doi.org/10.1038/s41598-023-43261-0
https://www.ncbi.nlm.nih.gov/pubmed/37758828
https://doi.org/10.1007/s11356-021-16536-0
https://www.ncbi.nlm.nih.gov/pubmed/34628607


Atmosphere 2024, 15, 377 18 of 20

19. Zhang, Y.; Ding, Z.; Xiang, Q.; Wang, W.; Huang, L.; Mao, F. Short-term effects of ambient PM1 and PM2.5 air pollution on hospital
admission for respiratory diseases: Case-crossover evidence from Shenzhen, China. Int. J. Hyg. Environ. Health 2020, 224, 113418.
[CrossRef] [PubMed]

20. Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56,
709–742. [CrossRef]

21. Squizzato, S.; Masiol, M.; Agostini, C.; Visin, F.; Formenton, G.; Harrison, R.M.; Rampazzo, G. Factors, origin and sources affecting
PM1 concentrations and composition at an urban background site. Atmos. Res. 2016, 180, 262–273. [CrossRef]

22. Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P.; Ntziachristos, L. Revisiting Total Particle Number Measurements for Vehicle
Exhaust Regulations. Atmosphere 2022, 13, 155. [CrossRef]

23. Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.;
et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552.
[CrossRef]

24. Grivas, G.; Stavroulas, I.; Liakakou, E.; Kaskaoutis, D.G.; Bougiatioti, A.; Paraskevopoulou, D.; Gerasopoulos, E.; Mihalopoulos,
N. Measuring the Spatial Variability of Black Carbon in Athens during Wintertime. Air Qual. Atmos. Health 2019, 12, 1405–1417.
[CrossRef]

25. International Agency for Research on Cancer (IARC). Diesel and Gasoline Engine Exhausts and Some Nitroarenes. IARC Monographs
on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2014; Volume 105,
ISBN 13-978-9283213284.

26. Fanick, E.R.; Whitney, A.K.; Bailey, K.B. Particulate Characterization Using Five Fuels. J. Fuels Lubr. 1996, 105, 647–655.
27. Ristovski, Z.D.; Morawska, L.; Hitchins, J.; Thomas, S.; Greenaway, C.; Gilbert, D. Particle emissions from compressed natural gas

engines. J. Aerosol Sci. 2000, 31, 403–413. [CrossRef]
28. Ristovski, Z.D.; Jayaratne, E.R.; Morawska, L.; Ayoko, G.A.; Lim, M. Particle and carbon dioxide emissions from passenger

vehicles operating on unleaded petrol and LPG fuel. Sci. Total Environ. 2005, 345, 93–98. [CrossRef]
29. Kwak, J.H.; Kim, H.S.; Lee, J.H.; Lee, S.H. On-road chasing measurement of exhaust particle emissions from diesel, CNG, LPG,

and DME-fueled vehicles using a mobile emission laboratory. Int. J. Automot. Technol. 2014, 15, 543–551. [CrossRef]
30. Karjalainen, P.; Pirjola, L.; Heikkilä, J.; Lähde, T.; Tzamkiozis, T.; Ntziachristos, L.; Keskinen, J.; Rönkkö, T. Exhaust particles of

modern gasoline vehicles: A laboratory and an on-road study. Atmos. Environ. 2014, 97, 262–270. [CrossRef]
31. Stavroulas, I.; Grivas, G.; Liakakou, E.; Kalkavouras, P.; Bougiatioti, A.; Kaskaoutis, D.G.; Lianou, M.; Papoutsidaki, K.; Tsagkaraki,

M.; Zarmpas, P.; et al. Online Chemical Characterization and Sources of Submicron Aerosol in the Major Mediterranean Port City
of Piraeus, Greece. Atmosphere 2021, 12, 1686. [CrossRef]

32. Biró, N.; Kiss, P. Euro VI-d Compliant Diesel Engine’s Sub-23 nm Particle Emission. Sensors 2023, 23, 590. [CrossRef] [PubMed]
33. Snyder, M.G.; Venkatram, A.; Heist, D.K.; Perry, S.G.; Petersen, W.B.; Isakov, V. RLINE: A line source dispersion model for

near-surface releases. Atmos. Environ. 2013, 77, 748–756. [CrossRef]
34. Park, Y.M. Assessing personal exposure to traffic-related air pollution using individual travel-activity diary data and an on-road

source air dispersion model. Health Place 2020, 63, 102352. [CrossRef] [PubMed]
35. Rodriguez-Rey, D.; Guevara, M.; Linares, M.P.; Casanovas, J.; Armengol, J.M.; Benavides, J.; Soret, A.; Jorba, O.; Tena, C.;

García-Pando, C.P. To What Extent the Traffic Restriction Policies Applied in Barcelona City Can Improve Its Air Quality? Sci.
Total Environ. 2022, 807, 150743. [CrossRef]

36. Ma, T.; Li, C.; Luo, J.; Frederickson, C.; Tang, T.; Durbin, T.D.; Johnson, K.C.; Karavalakis, G. In-Use NOx and Black Carbon
Emissions from Heavy-Duty Freight Diesel Vehicles and near-Zero Emissions Natural Gas Vehicles in California’s San Joaquin
Air Basin. Sci. Total Environ. 2024, 907, 168188. [CrossRef]

37. Choi, K.; Chong, K. Modified Inverse Distance Weighting Interpolation for Particulate Matter Estimation and Mapping. Atmosphere
2022, 13, 846. [CrossRef]

38. Kupiainen, K.; Klimont, Z. Primary Emissions of Submicron and Carbonaceous Particles in Europe and the Potential for their Control;
International Institute for Applied Systems Analysis: Luxembourg, 2004.

39. European Environment Agency (EEA). EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019 Technical Guidance to Prepare
National Emission Inventories; European Environment Agency: Kongens Nytorv, Denmark, 2019; Volume 13, ISSN 1977-8449.

40. Department of Land Transport (DLT). Transport Statistic Report 2022. 2023. Available online: https://web.dlt.go.th/statistics/
(accessed on 24 December 2023).

41. Thai Meteorological Department (TMD). Meteorological Measurement and Statistics Service. 2019. Available online: https://www.
tmd.go.th/service/tmdData (accessed on 9 December 2021).

42. Meteoblue AG. Historical Weather Data 2019. 2021. Available online: https://www.meteoblue.com/weather/archive/export
(accessed on 12 December 2021).

43. Pace, T.G. Chapter 8—Receptor Modeling in the Context of Ambient Air Quality Standard for Particulate Matter. Data Handl. Sci.
Technol. 1991, 7, 255–297. [CrossRef]

https://doi.org/10.1016/j.ijheh.2019.11.001
https://www.ncbi.nlm.nih.gov/pubmed/31753527
https://doi.org/10.1080/10473289.2006.10464485
https://doi.org/10.1016/j.atmosres.2016.06.002
https://doi.org/10.3390/atmos13020155
https://doi.org/10.1002/jgrd.50171
https://doi.org/10.1007/s11869-019.00756-y
https://doi.org/10.1016/S0021-8502(99)00530-3
https://doi.org/10.1016/j.scitotenv.2004.10.021
https://doi.org/10.1007/s12239-014-0057-z
https://doi.org/10.1016/j.atmosenv.2014.08.025
https://doi.org/10.3390/atmos12121686
https://doi.org/10.3390/s23020590
https://www.ncbi.nlm.nih.gov/pubmed/36679389
https://doi.org/10.1016/j.atmosenv.2013.05.074
https://doi.org/10.1016/j.healthplace.2020.102351
https://www.ncbi.nlm.nih.gov/pubmed/32543437
https://doi.org/10.1016/j.scitotenv.2021.150743
https://doi.org/10.1016/j.scitotenv.2023.168188
https://doi.org/10.3390/atmos13050846
https://web.dlt.go.th/statistics/
https://www.tmd.go.th/service/tmdData
https://www.tmd.go.th/service/tmdData
https://www.meteoblue.com/weather/archive/export
https://doi.org/10.1016/S0922-3487(08)70131-X


Atmosphere 2024, 15, 377 19 of 20

44. Bigi, A.; Ghermandi, G. Particle Number Size Distribution and Weight Concentration of Background Urban Aerosol in a Po Valley
Site. Water Air Soil Pollut. 2011, 220, 265–278. [CrossRef]

45. Department of Land Transport (DLT). Transport Statistic Report Fiscal Year 2019–2023. 2023. Available online: https://web.dlt.
go.th/statistics/plugins/UploadiFive/uploads/6f6897ce35cd1d6a488eab4c29a548a0b5d0973421176078322eff0d7d61b5a5.pdf
(accessed on 24 December 2023).

46. Oliveira, L.K.D.; Cordeiro, C.H.D.O.L.; Oliveira, I.K.D.; Andrade, M. Exploring the relationship between socioeconomic and
delivery factors, traffic violations, and crashes involving motorcycle couriers. Case Stud. Transp. Policy 2024, 15, 101111. [CrossRef]

47. Zhang, Y.; Deng, W.; Hu, Q.; Wu, Z.; Yang, W.; Zhang, H.; Wang, Z.; Fang, Z.; Zhu, M.; Li, S.; et al. Comparison between idling
and cruising gasoline vehicles in primary emissions and secondary organic aerosol formation during photochemical ageing. Sci.
Total Environ. 2020, 722, 137934. [CrossRef] [PubMed]

48. Wang, P.; Zhang, R.; Sun, S.; Gao, M.; Zheng, B.; Zhang, D.; Zhang, Y.; Carmichael, G.R.; Zhang, H. Aggravated air pollution and
health burden due to traffic congestion in urban China. Atmos. Chem. Phys. 2023, 23, 2983–2996. [CrossRef]

49. Onchang, R.; Noisopa, K.; Pawarmart, I. Changes of Air Pollution and Climate Forcing Emissions due to Fuel Switching to
Gasohol in Motorcycle Fleet in an Urban Area of Thailand. EnvironmentAsia 2017, 10, 94–104. [CrossRef]

50. Naiudomthum, S.; Winijkul, E.; Sirisubtawee, S. Near Real-Time Spatial and Temporal Distribution of Traffic Emissions in
Bangkok Using Google Maps Application Program Interface. Atmosphere 2022, 13, 94–104. [CrossRef]

51. Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [CrossRef]
52. Yu, S.; Chang, C.T.; Ma, C.M. Simulation and Measurement of Air Quality in the Traffic Congestion Area. Sustain. Environ. Res.

2021, 31, 26. [CrossRef]
53. Ling, H.; Candice Lung, S.-C.; Uhrner, U. Micro-Scale Particle Simulation and Traffic-Related Particle Exposure Assessment in an

Asian Residential Community. Environ. Pollut. 2020, 266, 115046. [CrossRef]
54. Vardoulakis, S.; Valiantis, M.; Milner, J.; ApSimon, H. Operational Air Pollution Modelling in the UK-Street Canyon Applications

and Challenges. Atmos. Environ. 2007, 41, 4622–4637. [CrossRef]
55. Batterman, S.A.; Berrocal, V.J.; Milando, C.; Gilani, O.; Arunachalam, S.; Zhang, K.M. Enhancing models and measurements

of traffic-related air pollutants for health studies using dispersion modeling and Bayesian data fusion. Health Eff. Inst. 2020,
202, 7313251.

56. Srimuruganandam, B.; Shiva Nagendra, S.M. Analysis and Interpretation of Particulate Matter—PM10, PM2.5 and PM1 Emissions
from the Heterogeneous Traffic near an Urban Roadway. Atmos. Pollut. Res. 2010, 1, 184–194. [CrossRef]

57. Shelton, S.; Liyanage, G.; Jayasekara, S.; Pushpawela, B.; Rathnayake, U.; Jayasundara, A.; Jayasooriya, L.D. Seasonal Variability of
Air Pollutants and Their Relationships to Meteorological Parameters in an Urban Environment. Adv. Meteorol. 2022, 2022, 5628911.
[CrossRef]

58. Polednik, B. COVID-19 lockdown and particle exposure of road users. J. Transp. Health 2021, 22, 101233. [CrossRef]
59. Talbi, A.; Kerchich, Y.; Kerbachi, R.; Boughedaoui, M. Assessment of annual air pollution levels with PM1, PM2.5, PM10 and

associated heavy metals in Algiers, Algeria. Environ. Pollut. 2018, 232, 252–263. [CrossRef] [PubMed]
60. Yao, D.; Lyu, X.; Lu, H.; Zeng, L.; Liu, T.; Chan, C.K.; Guo, H. Characteristics, sources and evolution processes of atmospheric

organic aerosols at a roadside site in Hong Kong. Atmos. Environ. 2021, 252, 118298. [CrossRef]
61. Fang, G.C.; Peng, Y.P.; Zhuang, Y.J.; Huang, L.C. Monitoring ambient air particulates, VOC and CO2 pollutants concentrations,

particulates numbers by AQ Guard Ambient sampler. Environ. Forensics 2022, 24, 218–225. [CrossRef]
62. Chen, G.; Morawska, L.; Zhang, W.; Li, S.; Cao, W.; Ren, H.; Wang, B.; Wang, H.; Knibbs, L.D.; Williams, G.; et al. Spatiotemporal

variation of PM1 pollution in China. Atmos. Environ. 2018, 178, 198–205. [CrossRef]
63. Chen, G.; Canonaco, F.; Tobler, A.; Aas, W.; Alastuey, A.; Allan, J.; Atabakhsh, S.; Aurela, M.; Baltensperger, U.; Bougiatioti,

A.; et al. European aerosol phenomenology—8: Harmonised source apportionment of organic aerosol using 22 Year-long
ACSM/AMS datasets. Environ. Int. 2022, 166, 107325. [CrossRef]
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