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Abstract: To ensure water use and water resource security along “the Belt and Road”, the runoff
and hydrological droughts and floods under future climate change conditions in the upper Heihe
River Basin were projected in this study, based on the observed meteorological and runoff data
from 1987 to 2014, and data from 10 GCMs from 1987 to 2014 and from 2026 to 2100, using the
SWAT model, the Standardized Runoff Index, run length theory, and the entropy-weighted TOPSIS
method. Both the multi-GCM ensemble (MME) and the optimal model were used to assess future
hydrological drought and flood responses to climate change. The results showed that (1) the future
multi-year average runoff from the MME was projected to be close to the historical period under
the SSP245 scenario and to increase by 2.3% under the SSP585 scenario, and those from the optimal
model CMCC-ESM2 were projected to decrease under both scenarios; (2) both the MME and the
optimal model showed that drought duration and flood intensity in the future were projected to
decrease, while drought intensity, drought peak, flood duration, and flood peak were projected to
increase under both scenarios in their multi-year average levels; (3) drought duration was projected
to decrease most after 2080, and drought intensity, flood duration, and flood peak were projected
to increase most after 2080, according to the MME. The MME and the optimal model reached a
consensus on the sign of hydrological extreme characteristic responses to climate change, but showed
differences in the magnitude of trends.

Keywords: hydrological drought and flood; SWAT; Standardized Runoff Index; Heihe River Basin;
entropy-weighted TOPSIS; GCM

1. Introduction

The Sixth Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC) points out that climate change is affecting every region on Earth in various ways,
and that global average temperature is expected to increase by 1.5 ◦C or more in the next
20 years. The intensified water cycle caused by climate change leads to some areas facing
stronger rainfall and floods, and others facing more severe droughts. Strong evidence
shows that climate change will increase drought and flood risk and severity, although
these conclusions depend on the regions, seasons, and drought or flood metrics being
considered [1,2]. In contrast with the changes in the mean state of water resources, changes
in their extreme states often have more devastating social and economic impacts on natural
resources and ecosystems. Therefore, extreme states, including droughts and floods, have
become one of the most concerning hydrological phenomena for research (e.g., [3–7]).
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The Heihe River Basin (HRB), the second-largest inland river basin in the northwest of
China, belongs to a typical continental arid climate with low precipitation, high evaporation,
and large temperature differences [8]. This basin has attracted much attention from scholars
from various fields so far (e.g., [8–13]), due to its vulnerability to climate change, fragile
ecological environments, water resource shortages, and some problems arising therefrom
like prominent water conflicts between the upper reach and middle and lower reaches.

Large numbers of glaciers, as well as snow and permafrost, makes the basin sensitive
and vulnerable to global climate change. Research has shown that the impact of climate
change on runoff changes in the basin is significant, with contributions reaching 56% in
1980, increasing to 61% in 1990, and reaching as high as 93% in 2000 [14,15]. Against a
background of climate warming, Shang et al. [16] assessed the runoff in the basin and
showed an increasing trend from 1958 to 2014; Yin et al. [17] revealed that the total runoff
during the period from 1964 to 2013 increased by 30.5%; Yang et al. [18] concluded that the
runoff exhibited an upward trend between 1980 and 2010, and found that climate factors
accounted for notable effects on hydrological processes in the upper HRB. In the coming
decades, climate change may further intensify. How the runoff will change, especially how
the runoff extremes will change in the future, is still a matter of great concern.

Much attention has been given to future runoff in this basin. For example, Wu et al. [19]
concluded that the water yield would increase by 9.8% from 2006 to 2030. Zhang et al. [14]
projected that the runoff would increase by 11.4% under the RCP4.5 scenario and increase
by 12.5% under the RCP8.5 scenario in the near future from 2021 to 2050. Li et al. [20]
estimated that projected runoff would increase by 5.6% from 2021 to 2050 and increase by
6.7% from 2051 to 2080. Note that not all the future runoff in this basin was projected to
increase compared to historical periods. Wang et al. [21] investigated the simulated runoff
changes under global warming by using the Soil and Water Assessment Tool (SWAT) and
concluded that the simulated annual runoff in this basin would decrease by 3% and 4%
under 1.5 ◦C and 2.0 ◦C of global warming, compared with the period from 1976 to 2005.
It is clear from previous studies that more researchers focused on total runoff projection
under climate change scenarios [14,19–21], while there is a significant lack of research on
the response of extreme runoff to future climate change [8,12].

This basin is a high-risk area for natural disasters such as drought, floods, hail, and
frost [22,23]. Research showed that, in the 20th century, drought and floods were more
frequent than in other centuries, with an average of 4.2 droughts and 1.8 floods every
10 years [23]. In 2001, the basin experienced the most severe successive drought in nearly
60 years, starting in the autumn of 2001 and ending in the next spring [22]. Drought can
aggravate water scarcity and challenges to food security, and may sometimes induce other
natural disasters, such as sandstorms, forest fires, and insect infestations [24]. Floods are
prone to cause life-threatening damage to infrastructure and property (such as houses,
buildings, farmland, roads, bridges, etc.), and even to ecosystems. Therefore, in this paper,
we aim to explore how runoff extremes, including both hydrological droughts and floods,
are expected to change in the future as a result of climate change in the upper HRB.

As numerical models describing natural mechanisms in the atmosphere, land surface
and ocean, Global Climate Models (GCMs) are widely used in research in many fields
related to global warming such as climatology and hydrology [25–27]. GCMs can provide
an important data basis for hydrological process simulation and prediction under climate
change conditions. Many factors like initial and boundary conditions, parameters, model
structures, etc., could lead to variability across GCM outputs of future climate data [28],
and thus single GCM–driving may bring large errors to the simulation and prediction
results. Some research prefers to use a multi-model ensemble (MME) as a potential solution
for reducing the reliance of climate projections on a single model and the possible errors
caused by an inferior choice of GCM (e.g., [2,29–31]). Some believe that to abandon some
GCMs with poor performance in projections and to select a few optimal GCMs from a pool
is very necessary [32], and they regard the optimal GCM as generally corresponding to the
best performance and less uncertainty [33,34]. However, undeniably, the selection of the
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optimal GCM usually depends on many factors such as evaluation methods and evaluation
indicators [34,35]. Since not much evidence suggests that the MME and the optimal GCM
will agree on the sign and magnitude of hydrological extreme responses, we will use both
of them to assess the future drought and flood responses to climate change in this study,
and then visit the similarities and differences on the conclusions arising therefrom.

Consequently, this study will probe into the following two issues: (1) How do runoff
and hydrological extremes (drought and flood) change under future (from 2026 to 2100)
climate change conditions? and (2) What are the similarities and differences between the
hydrological extreme characteristics obtained from the MME and the optimal GCM?

As many as 10 GCMs were used to provide information, to avoid possible large errors
caused by a single model or inferior model, and to help to reduce the uncertainty caused
by data deviation. The entropy-weighted TOPSIS method was used to select the optimal
GCM from the 10 alternatives. Future runoff and hydrological drought and floods were
projected using the SWAT model and the Standardized Runoff Index (SRI). Based on the
SRI series, the duration, intensity, and the peak of hydrological drought and flood events
were mainly focused on.

2. Study Area and Data Description
2.1. Study Area

The HRB is located in the central part of the Hexi Corridor, between 98◦–102◦ E and
38◦–42◦ N, with an area of approximately 14.29 × 104 km2. Geographically, it includes the
Yingluoxia watershed (i.e., the upper reach of the basin, above the Yingluoxia hydrological
station), the middle Hexi Corridor (i.e., the middle reach), and the northern Alxa high plain
(i.e., the lower reach) from south to north. The climate of the basin is characterized by cold
and dry winters and hot and arid summers. The Yingluoxia watershed, with an area of
approximately 10,000 km2, is the main runoff-producing area of the basin (Figure 1), and
thus was selected as our study area. The upper reach has an altitude of 2000–5500 m, an
annual average temperature of less than 2 ◦C, and an annual precipitation of 200–500 mm,
gradually decreasing from east to west spatially, and mainly concentrated from June to
August temporally (accounting for more than half of the total annual precipitation).
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The Heihe River and its tributaries are primarily fed by precipitation and snowmelt
in mountainous areas of the upper reach. According to the observed runoff data from the
Yingluoxia station, the multi-year average annual runoff of the upper reach is 1.61 billion m3.
The inner annual distribution of runoff is uneven, with over half concentrated in the flood
season (from July to September) and about 10% in the dry season (from November to the
next February) [20].

2.2. Data Description

Three types of data were used in this study: geographic information data, meteorolog-
ical and runoff observation data, and GCM simulation data.

The geographic information data includes the DEM data, land use type data, and
soil data, with detailed descriptions shown in Table 1. The meteorological and runoff
observation data include the daily precipitation, relative humidity, average wind speed,
and maximum and minimum temperatures from the Tuole, Yeniugou, and Qilian stations
from 1987 to 2014, as well as daily runoff data from the Yingluoxia hydrological station at the
outlet of the watershed during the same period. The locations of the stations are presented
in Figure 1 and Table 2. The GCM data include the daily precipitation, relative humidity,
average wind speed, and maximum and minimum temperatures derived from 10 GCMs
provided by CMIP6 during two periods, 1987–2014 and 2026–2100, under two scenarios,
SSP245 and SSP585. The details are shown in Table 3. The above data are all released by
official international or domestic institutions.

Table 1. The data used in this study and their sources.

Data Spatial and Temporal Resolution Data Source

DEM 90 m http://www.gscloud.cn/ (accessed on 26 March 2021)

Land use type data 1 km https://www.resdc.cn/DOI/DOI.aspx?DOIID=54 (accessed on
26 March 2021)

Soil data 1 km
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-

databases/harmonized-world-soil-database-v12/en/
(accessed on 19 April 2021)

Meteorological data 1987–2014, daily http://data.cma.cn/site/index.html (accessed on 19 April 2021)
Runoff data 1987–2014, daily Hydrologic manual

Table 2. Locations of meteorological and hydrological stations in the study area.

Station Type Station Name Longitude (◦) Latitude (◦)

Meteorological station
Tuole 38.8 98.42

Yeniugou 38.42 99.58
Qilian 38.18 100.25

Hydrological station Yingluoxia 38.82 100.18

Table 3. List of GCMs selected in this study.

GCM Organization Spatial and Temporal Resolution

ACCESS-CM2 Commonwealth Scientific and Industrial Research Organization and Australian
Research Council Centre of Excellence for Climate System Science

1.875◦ × 1.25◦, daily
ACCESS-ESM1-5 1.875◦ × 1.25◦, daily

CanESM5 Canadian Centre for Climate Modelling and Analysis 2.8125◦ × 2.8125◦, daily
CMCC-ESM2 Euro-Mediterranean Centre on Climate Change 1.25◦ × 0.9375◦, daily

MIROC6 Japan Agency for Marine-Earth Science and Technology 1.40625◦ × 1.40625◦, daily
MPI-ESM1-2-LR Max Planck Institute for Meteorology 1.875◦ × 1.875◦, daily

MRI-ESM2-0 Meteorological Research Institute 1.125◦ × 1.125◦, daily
NorESM2-LM Norwegian Climate Service Centre 2.5◦ × 1.875◦, daily
NorESM2-MM 1.25◦ × 0.9375◦, daily

TaiESM Research Center for Environmental Changes, Academia Sinica 1.25◦ × 0.9375◦, daily

http://www.gscloud.cn/
https://www.resdc.cn/DOI/DOI.aspx?DOIID=54
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://data.cma.cn/site/index.html
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3. Study Methods
3.1. SWAT Model and Performance Evaluation

The SWAT model is a watershed hydrological model with strong physical mechanisms,
suitable for simulating the impacts of climate change and human activities on watershed
hydrological cycles. This study used the SCS runoff curve method for surface runoff
estimation, the Muskingum algorithm for river flow calculation, and the Penman–Monteith
method for potential evapotranspiration estimation. The runoff series of the Yingluoxia
station was divided into three periods: a warmup period from 1987 to 1989, a calibration
period from 1990 to 2000, and a validation period from 2001 to 2014. The coefficient of
determination R2 (Equation (1)) and the Nush efficiency coefficient NSE (Equation (2))
were used to evaluate the simulation performance of the model.

R2 =

 ∑n
i=1
(
Qi − Q

)(
Mi − M

)√
∑n

i=1
(
Qi − Q

)2
√

∑n
i=1
(

Mi − M
)2

2

(1)

NSE = 1 − ∑n
i=1(Qi − Mi)

2

∑n
i=1
(
Qi − Q

)2 (2)

Here, Qi and Mi mean the observed and simulated values of the runoff at the time,
i, Q, and M mean the average observed and simulated runoff over many years, and n
means the length of the time series. Moriasi et al. [36] provided the specific performance
evaluation criteria, as detailed in Table 4.

Table 4. Model performance evaluation criteria (Moriasi et al. 2007 [36]).

Model Performance R2 NSE

Very good 0.75–1.00 0.75–1.00
Good 0.65–0.75 0.65–0.75

Satisfactory 0.50–0.65 0.50–0.65
Not satisfactory <0.50 <0.50

3.2. Data Bias Correction

It is necessary to perform bias correction on GCM output data before using them. The
commonly used methods for the bias correction of such data include the Delta method,
the linear scaling method, and the QM family of methods [37–41]. The QM family of
methods are considered to be the most important, popular, and promising bias-correction
methods [40].

The QM methods implement statistical transformations for the post-processing of
GCM outputs. The statistical transformations involve transforming the distribution func-
tions of the modeled variables into the observed ones using a mathematical function. Both
parametric and nouppln-parametric transformation functions have been proposed. A typi-
cal non-parametric QM method is the Empirical quantile mapping method (EQM), which
uses a non-parametric transformation function. EQM estimates the values of the empirical
cumulative distribution functions of observed and modeled time series for regularly spaced
quantiles. Accordingly, EQM uses interpolations to adjust a datum with unavailable quan-
tile values [40,41]. EQM uses the empirical distributions of the data and does not require
any initial assumptions of specific theoretical distributions about the data, and is not bound
by any predetermined functions, which makes this method more flexible. Hence, this
method was chosen in this study for the bias correction of the GCM outputs. Details about
this method can be found in the references (see Enayati et al. [40] and Li et al. [41]). The
indicator PBIAS (Equation (3)) was used for evaluating the performance of bias correction,

PBIAS =
1
n ∑n

i=1
Si − Oi

Oi
× 100% (3)



Atmosphere 2024, 15, 439 6 of 21

where Si and Oi indicate the simulated values from GCMs and the observed values of the
variable, and n is the sample size of the data series.

3.3. Optimal GCM Selection and MME

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a de-
cision technique used in the multi-objective decisional analysis of finite schemes, proposed
by Rau and Wassenberg [35]. The method is based on the principle that the chosen alter-
native should have the shortest distance from the ideal solution and the furthest distance
from the anti-ideal solution. In this study, we use the entropy-weighted TOPSIS method
to prioritize the 10 bias-corrected GCM outputs [34,35] according to their performances in
simulating the observed precipitation and the maximum and minimum temperatures from
1987 to 2014. The procedures are as follows [34]:

I. Build the original decision matrix X =
(

xij
)

m×n according to the selected indicators
which are evaluated, and then normalize it based on Equation (4) to form the normalized
decision matrix Y =

(
yij
)

m×n,

yij =
xij − xmin(j)

xmax(j) − xmin(j)
(4)

where xij represents the value of indicator j for the GCM i (i = 1, 2, 3 . . . m, j = 1, 2, 3 . . . n,
m = 10, n = 5), and xmax(j) and xmin(j) represent the maximum and minimum values of
indicator j for all GCMs, respectively.

II. The weight of each indicator is determined by the information entropy, namely,
based on the evaluation of the variation degree of each indicator value, and then forms the
weighted normalized decision matrix Z =

(
zij
)

m×n, where Z =
(
zij
)

m×n = Wj × yij, and
Wj is given by:

Wj =
1 − Hj

n − ∑n
j=1 Hj

, ∑n
j=1 Wj = 1 (5)

Hj =
1

− ln m
×
(

∑m
i=1

1 + yij

∑m
i=1
(
1 + yij

) ln
1 + yij

∑m
i=1
(
1 + yij

)) (6)

III. The distance of positive and negative ideal solutions D+
i and D−

i are calculated
following the ideal value (z∗j ) and anti-ideal values (z∗∗j ) of each indicator for GCM i:

D+
i =

√
∑n

j=1

(
zj − z∗j

)2
(7)

D−
i =

√
∑n

j=1

(
zj − z∗∗j

)2
(8)

This technique is designed to minimize the distance of a data object from the positive
ideal solution (D+

i ) and maximize the distance from the negative ideal solution (D−
i ).

IV. The relative closeness degree (Ci) of each GCM is calculated as follows:

Ci =
D−

i
D+

i + D−
i

, Ci ∈ (0, 1) (9)

The performance of bias-corrected GCMs can be ranked according to Ci. The larger
the values of Ci, the better the performance of the GCM. Five evaluation indicators, includ-
ing the mean, standard deviation, coefficient of variation, normalized root mean square
error, and the Pearson correlation coefficient are used to evaluate the performance of bias-
corrected GCMs in simulating the monthly precipitation and maximum and minimum
temperatures [35].
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The MME was constructed using the simple arithmetic averaging approach; i.e., the
arithmetic mean of a climate variable given by all the alternative GCMs is used as the
output of the MME.

3.4. Standardized Runoff Index and Drought/Flood Characteristic Variables

The Standardized Runoff Index (SRI) proposed by Shukla and Wood was selected to ana-
lyze the hydrological drought and flood characteristics of the study area. Many studies have
shown the efficacy of this index in depicting hydrological droughts (e.g., [42–44]). To obtain
this index, fit the runoff series for a certain period by first using Gamma distribution, and then
transform it into a standard normal distribution through an equal probability transformation.

According to the rating standard of the SRI, when the index is between −0.5 and 0.5,
it indicates a normal state. When the SRI ≤ −0.5, it indicates drought, and the smaller the
value, the stronger the degree of drought. When the SRI ≥ 0.5, it indicates flood, and the
larger the value, the stronger the degree of flood [43].

In terms of the SRI series, the drought and flood events and their characteristics
(i.e., duration, intensity, and peak) were identified using run length theory [43]. Taking
drought as an example, set the threshold R0 as −0.5, where a positive run occurs when
the SRI value is greater than this threshold, and a negative run occurs when it is lower.
One negative run represents one drought event. Drought duration, indicating the duration
of one drought event, refers to the length of a negative run. Drought intensity, representing
the cumulative value of the SRI in one drought event, refers to the area of a negative run.
Drought peak, representing the minimum value of the SRI in one drought event, refers
to the extreme value of a negative run. The three characteristics are shown in Figure 2.
Similarly, the flood events and their corresponding characteristics were determined as well,
with a threshold of +0.5 for flood events.
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Figure 2. The definition of drought characteristics based on run length theory.

Drought duration, intensity, and peak in one year was defined as the total duration,
the average intensity, and the minimum peak of all drought events within this year, re-
spectively. Flood duration, intensity, and peak in one year was defined similarly to above,
corresponding to the total duration, the average intensity, and the maximum peak of all
flood events within this year, respectively.

4. Results and Analysis
4.1. Historical Runoff Simulation and Hydrological Drought and Flood Assessment
4.1.1. Historical Runoff Simulation

Figure 3 shows the simulated daily runoff from the calibrated SWAT model and the
observed values at Yingluoxia station. It can be seen that the simulated values are in good
agreement with the observed ones. The R2 reaches 0.87 and the NSE reaches 0.68 in the
calibration period, showing good performance in the simulation according to Table 3. The
R2 reaches 0.89 and the NSE reaches 0.71 in the validation period, showing very good
performance in the simulation. This indicates that the model achieved high accuracy in
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simulating the runoff process in the study area, and the simulation performance is good.
Hence, the model can be used for predicting future runoff processes.
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Figure 3. Runoff observation at the Yingluoxia station and its simulation from the SWAT model.

4.1.2. Historical Hydrological Drought and Flood Assessment

According to the measured runoff data, the SRI series was calculated and then the du-
ration, intensity, and peak values of hydrological drought and flood events were extracted
based on run length theory. The multi-year average hydrological drought duration in the
basin was 2.83 months, the drought intensity was −0.83, and the drought peak was −1.01
from 1987 to 2014. The multi-year average flood duration was a little longer, 5.15 months,
the flood intensity was 1.23, and the flood peak was 1.87.

Figure 4 shows the hydrological drought and flood characteristics during the historical
periods in detail. It can be seen that, after 2000, the drought duration became shorter, and
the drought peak also decreased, but the flood duration increased, and the flood peak also
increased. That is, after 2000, hydrological drought in the study area was alleviated, while
floods were enhanced.
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Figure 4. Hydrological drought and flood characteristics in historical period (1987–2014) in the upper
HRB (the purple dashed line corresponds to the year 2000).

4.2. Future Runoff Projection and Analysis
4.2.1. Bias Correction of GCM Output

Figure 5 shows the box plot of the GCM output from 1987 to 2014, before and after
the bias correction. Before the bias correction, the meteorological variables from the
GCMs were largely overestimated; especially for precipitation, the simulated values reach
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about four times the observed ones. After the bias correction, all data deviations were
significantly reduced.

Atmosphere 2024, 15, x FOR PEER REVIEW 9 of 22 
 

 

also increased. That is, after 2000, hydrological drought in the study area was alleviated, 

while floods were enhanced. 

  

Figure 4. Hydrological drought and flood characteristics in historical period (1987–2014) in the up-

per HRB (the purple dashed line corresponds to the year 2000). 

4.2. Future Runoff Projection and Analysis 

4.2.1. Bias Correction of GCM Output 

Figure 5 shows the box plot of the GCM output from 1987 to 2014, before and after 

the bias correction. Before the bias correction, the meteorological variables from the GCMs 

were largely overestimated; especially for precipitation, the simulated values reach about 

four times the observed ones. After the bias correction, all data deviations were signifi-

cantly reduced. 

Table 5 shows the values of indicator 𝑃𝐵𝐼𝐴𝑆. All the values decreased after the bias 

correction. For example, the 𝑃𝐵𝐼𝐴𝑆 decreased from 2.45 to −0.04 for the precipitation data 

from ACCESS-CM2, decreased from 1.18 to 0.00 for the maximum temperature from 

CMCC-ESM2, and decreased from 2.18 to 0.00 for the minimum temperature from AC-

CESS-ESM1-5. After the bias correction, the multi-year average values of all variables sim-

ulated by each GCM were closer to the measured ones (Figure 5). 
A

C
C

E
S

S
-C

M
2

A
C

C
E

S
S

-E
S

M
1
-5

C
a
n
E

S
M

5

C
M

C
C

-E
S

M
2

M
IR

O
C

6

M
P

I-
E

S
M

1
-2

-L
R

M
R

I-
E

S
M

2
-0

N
o
rE

S
M

2
-L

M

N
o
rE

S
M

2
-M

M

T
a
iE

S
M

1

0

500

1000

1500

P
re

c
ip

it
a
ti
o

n
(m

m
)

 Before

 After

0

500

1000

1500

 A
C

C
E

S
S

-C
M

2

A
C

C
E

S
S

-E
S

M
1
-5

C
a
n
E

S
M

5

C
M

C
C

-E
S

M
2

M
IR

O
C

6

M
P

I-
E

S
M

1
-2

-L
R

M
R

I-
E

S
M

2
-0

N
o
rE

S
M

2
-L

M

N
o
rE

S
M

2
-M

M

T
a
iE

S
M

1

−10

0

10

20

30

40

M
a
x
im

u
m

 t
e
m

p
e
ra

tu
re

(º
C

)

 Before

 After

−10

0

10

20

30

40

 

Atmosphere 2024, 15, x FOR PEER REVIEW 10 of 22 
 

 

A
C

C
E

S
S

-C
M

2

A
C

C
E

S
S

-E
S

M
1
-5

C
a
n
E

S
M

5

C
M

C
C

-E
S

M
2

M
IR

O
C

6

M
P

I-
E

S
M

1
-2

-L
R

M
R

I-
E

S
M

2
-0

N
o
rE

S
M

2
-L

M

N
o
rE

S
M

2
-M

M

T
a
iE

S
M

1

−30

−20

−10

0

10

20

30

M
in

im
u
m

 t
e
m

p
e
ra

tu
re

(º
C

)

 Before

 After

−30

−20

−10

0

10

20

30

 

A
C

C
E

S
S

-C
M

2

A
C

C
E

S
S

-E
S

M
1
-5

C
a
n

E
S

M
5

C
M

C
C

-E
S

M
2

M
IR

O
C

6

M
P

I-
E

S
M

1
-2

-L
R

M
R

I-
E

S
M

2
-0

N
o
rE

S
M

2
-L

M

N
o
rE

S
M

2
-M

M

T
a

iE
S

M
1

0.2

0.4

0.6

0.8

1.0
R

e
la

ti
v
e
 h

u
m

id
it
y
(%

)
 Before

 After

0.2

0.4

0.6

0.8

1.0

 

A
C

C
E

S
S

-C
M

2

A
C

C
E

S
S

-E
S

M
1
-5

C
a
n
E

S
M

5

C
M

C
C

-E
S

M
2

M
IR

O
C

6

M
P

I-
E

S
M

1
-2

-L
R

M
R

I-
E

S
M

2
-0

N
o
rE

S
M

2
-L

M

N
o
rE

S
M

2
-M

M

T
a
iE

S
M

1

0

2

4

6

W
in

d
 s

p
e
e
d
(m

/s
)

 Before

 After

0

2

4

6

 

 

Figure 5. Box plots of comparisons of GCM output from 1987 to 2014 before and after bias correction 

(the dashed lines indicate the multi-year average observed values). 

Table 5. Comparisons of indicator PBIAS for GCM output before and after bias correction (%). 

GCM 

Precipitation  

(mm) 
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Relative Humidity  

(%) 

Wind Speed 

(m/s) 

Before After Before After Before After Before After Before After 
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ing the meteorological variables varies, even after the bias correction. Thus, the optimal 

model was selected from the 10 models using the entropy-weighted TOPSIS method. 

Figure 5. Box plots of comparisons of GCM output from 1987 to 2014 before and after bias correction
(the dashed lines indicate the multi-year average observed values).

Table 5 shows the values of indicator PBIAS. All the values decreased after the bias
correction. For example, the PBIAS decreased from 2.45 to −0.04 for the precipitation
data from ACCESS-CM2, decreased from 1.18 to 0.00 for the maximum temperature from
CMCC-ESM2, and decreased from 2.18 to 0.00 for the minimum temperature from ACCESS-
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ESM1-5. After the bias correction, the multi-year average values of all variables simulated
by each GCM were closer to the measured ones (Figure 5).

Table 5. Comparisons of indicator PBIAS for GCM output before and after bias correction (%).

GCM
Precipitation

(mm)
Maximum

Temperature (◦C)
Minimum

Temperature (◦C)
Relative Humidity

(%)
Wind Speed

(m/s)

Before After Before After Before After Before After Before After

ACCESS-CM2 2.45 −0.04 0.67 0.00 1.59 0.00 0.49 0.00 −0.12 0.00
ACCESS-ESM1-5 2.63 −0.02 1.08 0.00 2.18 0.00 0.61 0.00 0.03 0.00

CanESM5 2.39 0.05 0.91 0.00 1.87 0.00 0.41 0.00 0.31 0.00
CMCC-ESM2 2.39 0.03 1.18 0.00 1.80 0.00 0.47 0.00 −0.21 0.00

MIROC6 2.35 −0.08 1.01 0.00 1.95 0.00 0.47 0.00 −0.13 0.01
MPI-ESM1-2-LR 2.47 0.01 0.56 0.00 1.64 0.00 0.62 0.00 0.82 0.00

MRI-ESM2-0 2.62 −0.06 0.87 0.00 1.82 0.00 0.36 0.00 0.47 0.00
NorESM2-LM 2.11 0.02 1.18 0.00 1.98 0.00 0.33 0.00 0.34 0.00
NorESM2-MM 2.13 −0.01 1.19 0.00 1.90 0.00 0.30 0.00 0.26 0.00

TaiESM1 2.24 0.01 1.18 0.00 1.63 0.00 0.40 0.00 −0.22 0.00

4.2.2. Optimal GCM Selection

From Figure 5, it can also be seen that the performance of different GCMs in simulating
the meteorological variables varies, even after the bias correction. Thus, the optimal model
was selected from the 10 models using the entropy-weighted TOPSIS method.

The monthly precipitation, maximum temperature, and minimum temperature, from
1987 to 2014, was selected as the basic data to be analyzed. For the indicators of mean,
standard deviation, and the coefficient of variation, the absolute value of the difference
between the bias-corrected GCM output and the measured data was taken for better
comparison. The results of the evaluation indicators are shown in Table 6. After normalizing
each indicator, the entropy-weighted method was applied to determine the weight of each
indicator, and the results are shown in Table 7. By taking the set of evaluation indicators
from the measured data as the positive ideal solution, and that farthest from the measured
data as the negative ideal solution, the relative closeness degree Ci between different GCMs
and the ideal solution can be obtained from Formulas (6) and (7), which is shown in Table 8.
The larger the value of Ci, the better the simulation performance and the higher the ranking
of the model. According to Table 8, CMCC-ESM2 has the best performance in simulating
monthly precipitation, maximum temperature, and minimum temperature in the study
area, followed by the NorESM2-MM model and the MRI-ESM2-0 model.

Table 6. Evaluation indicators of bias-corrected GCMs in simulating monthly precipitation and
temperatures in the study area.

Meteorological
Variables GCM Difference in

Mean
Difference in

Standard
Deviation

Difference in
Coefficient of

Variation

Normalized Root
Mean Square

Error

Pearson
Correlation
Coefficient

Precipitation

ACCESS-CM2 1.223 5.228 0.122 0.575 0.820
ACCESS-ESM1-5 0.714 0.601 0.005 0.028 0.982

CanESM5 2.181 0.251 0.059 0.006 0.997
CMCC-ESM2 0.763 0.238 0.030 0.024 0.985

MIROC6 3.368 3.885 0.016 0.019 0.986
MPI-ESM1-2-LR 2.778 3.062 0.009 0.030 0.977

MRI-ESM2-0 2.285 1.017 0.042 0.038 0.974
NorESM2-LM 2.575 1.721 0.030 0.090 0.939
NorESM2-MM 0.984 1.570 0.018 0.003 0.998

TaiESM1 0.668 2.681 0.062 0.067 0.948

Maximum
Temperature

ACCESS-CM2 0.013 0.073 0.011 0.260 0.967
ACCESS-ESM1-5 0.011 0.035 0.006 0.008 0.998

CanESM5 0.011 0.046 0.004 0.015 0.997
CMCC-ESM2 0.001 0.019 0.002 0.006 0.999

MIROC6 0.012 0.085 0.009 0.028 0.993
MPI-ESM1-2-LR 0.009 0.081 0.009 0.007 0.999

MRI-ESM2-0 0.010 0.013 0.000 0.021 0.995
NorESM2-LM 0.006 0.041 0.004 0.021 0.995
NorESM2-MM 0.009 0.009 0.002 0.020 0.995

TaiESM1 0.016 0.047 0.004 0.013 0.997
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Table 6. Cont.

Meteorological
Variables GCM Difference in

Mean
Difference in

Standard
Deviation

Difference in
Coefficient of

Variation

Normalized Root
Mean Square

Error

Pearson
Correlation
Coefficient

Minimum
Temperature

ACCESS-CM2 0.008 0.085 0.011 0.198 0.980
ACCESS-ESM1-5 0.023 0.022 0.001 0.016 0.997

CanESM5 0.020 0.024 0.006 0.010 0.998
CMCC-ESM2 0.007 0.002 0.001 0.007 0.999

MIROC6 0.011 0.074 0.007 0.019 0.996
MPI-ESM1-2-LR 0.006 0.074 0.008 0.010 0.998

MRI-ESM2-0 0.006 0.001 0.001 0.008 0.999
NorESM2-LM 0.001 0.023 0.003 0.007 0.999
NorESM2-MM 0.005 0.030 0.003 0.005 0.999

TaiESM1 0.005 0.052 0.006 0.008 0.998

Table 7. The weights of evaluation indicators determined by the entropy-weighted method.

Evaluation Indicators Precipitation Maximum Temperature Minimum Temperature

Mean 0.087 0.093 0.072
Standard deviation 0.068 0.109 0.103

Coefficient of variation 0.051 0.091 0.070
Normalized root mean square error 0.042 0.042 0.042

Pearson correlation coefficient 0.045 0.043 0.042

Table 8. Performance ranking of different GCMs in simulating monthly precipitation and maximum
and minimum temperatures based on the entropy-weighted TOPSIS method.

GCM Ci Rank GCM Ci Rank

ACCESS-CM2 0.27 10 MPI-ESM1-2-LR 0.43 8
ACCESS-ESM1-5 0.64 5 MRI-ESM2-0 0.74 3

CanESM5 0.57 6 NorESM2-LM 0.66 4
CMCC-ESM2 0.89 1 NorESM2-MM 0.76 2

MIROC6 0.37 9 TaiESM1 0.56 7

4.2.3. Future Projected Runoff

After inputting the future bias-corrected meteorological variables into the calibrated
SWAT model, the future runoff was then projected. Table 9 gives the multi-year average
projected runoff and its comparison with the historical period. The projected runoff from
2026 to 2100 from different GCMs varies significantly. Under the SSP245 scenario, five GCMs
(ACCESS-CM2, MIROC6, MRI-ESM2-0, NorESM2-LM, and TaiESM1) projected an increase
in the future runoff compared to the historical period, with increases of 1.6% to 10.8%. The
other five GCMs projected a decreased future runoff, decreasing by 0.9% to 13.0%. Under the
SSP585 scenario, six GCMs (ACCESS-CM2, CanESM5, MIROC6, MRI-ESM2-0, NorESM2-LM,
and TaiESM1) projected an increased future runoff, increasing by 1.0% to 19.8%, and the other
four models projected a decreased runoff, decreasing by 0.9% to 11.0%.

Table 9. Multi-year average future runoff projection (2026–2100) and the changes compared to
historical period (1987–2014).

GCM
SSP245 SSP585

Runoff (m3/s) Change Rate (%) Runoff (m3/s) Change Rate (%)

ACCESS-CM2 45.0 10.8 46.5 14.5
ACCESS-ESM1-5 40.2 −0.9 40.2 −0.9

CanESM5 40.2 −1.0 41.0 1.0
CMCC-ESM2 37.7 −7.1 37.3 −8.1

MIROC6 42.0 3.6 41.4 2.0
MPI-ESM1-2-LR 35.3 −13.0 37.3 −8.2

MRI-ESM2-0 42.4 4.4 48.6 19.8
NorESM2-LM 43.7 7.7 44.3 9.1
NorESM2-MM 37.3 −8.2 36.1 −11.0

TaiESM1 41.2 1.6 42.3 4.4

MME 40.5 —— 41.5 2.3%



Atmosphere 2024, 15, 439 12 of 21

Figure 6 shows the ranges of annual runoff projected by all the GCMs, the annual
runoff projected by the MME and by the optimal model CMCC-ESM2, and their multi-year
average values. It is clear that the ranges of projected annual runoff are large and vary a lot
in their multi-year average level, from 27.5 m3/s to 57.2 m3/s under the SSP245 scenario
and from 27.0 m3/s to 59.8 m3/s under the SSP585 scenario, indicating that the projected
runoff has great uncertainty. The MME, combining the projections of large numbers of
GCMs, may reduce this uncertainty to a certain extent. Under the SSP245 scenario, the
multi-year average annual runoff projected by the MME is 40.5 m3/s, close to the historical
period. Under the SSP585 scenario, the projected runoff is 41.5 m3/s, an increase of 2.3%
compared to the historical period. The optimal model CMCC-ESM2 projected a lower
runoff than the MME, with a multi-year average of 37.7 m3/s under the SSP245 scenario
and 37.3 m3/s under the SSP585 scenario, which is a decrease of 7.1% (SSP245) and 8.1%
(SSP585), respectively.
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Figure 6. Future runoff projection under SSP245 and SSP585 scenarios in the study area (2026–2100).

4.3. Future Hydrological Drought and Flood Projection and Analysis

The SRI series was calculated based on the future runoff series, and then the drought
and flood events and characteristics were derived from the SRI series using run length theory.
Figure 7, taking the results of the SSP245 scenario as an example, shows the projections of
drought/flood duration, intensity, and peak from 2026 to 2100. It shows that the variations
of all characteristics are great, indicating that large differences exist in the projections given
by different GCMs. Figure 8 shows the changes in the projected characteristics compared to
the historical period. Tables 10 and 11 show the changes in future runoff and hydrological
drought and flood characteristic projections compared to the historical period.
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Figure 7. Future hydrological drought and flood characteristic ((a1): Drought duration, (a2): Drought
intensity, (a3): Drought peak, (b1): Flood duration, (b2): Flood intensity, (b3): Flood peak) projection
under SSP245 scenario (2026–2100) and the comparison with the historical period (1987–2014).

Atmosphere 2024, 15, x FOR PEER REVIEW 14 of 22 
 

 

2030 2040 2050 2060 2070 2080 2090 2100

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

D
ro

u
g

h
t 

in
te

n
s
it
y

 SSP245

 MME

 CMCC-ESM2

Historical mean

  
(a2) (b2) 

2030 2040 2050 2060 2070 2080 2090 2100

−4

−3

−2

−1

0

D
ro

u
g

h
t 

p
e

a
k

 SSP245

 MME

 CMCC-ESM2

Historical mean

  
(a3) (b3) 

Figure 7. Future hydrological drought and flood characteristic ((a1): Drought duration, (a2): 

Drought intensity, (a3): Drought peak, (b1): Flood duration, (b2): Flood intensity, (b3): Flood peak) 

projection under SSP245 scenario (2026–2100) and the comparison with the historical period (1987–

2014). 

 

 
(a) (b) 

Figure 8. Changes in future hydrological drought (a) and flood (b) characteristic projections (2026–

2100) compared to the historical period (1987–2014). 

  

2030 2040 2050 2060 2070 2080 2090 2100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
lo

o
d
 i
n
te

n
s
it
y

 SSP245

 MME

 CMCC-ESM2

Historical mean

2030 2040 2050 2060 2070 2080 2090 2100

0

1

2

3

4

5

F
lo

o
d
 p

e
a

k

 SSP245

 MME

 CMCC-ESM2
Historical mean

Figure 8. Changes in future hydrological drought (a) and flood (b) characteristic projections (2026–
2100) compared to the historical period (1987–2014).
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Table 10. Percentages of changes in the multi-year average future runoff and hydrological extreme
characteristic projections (2026–2100) compared to the historical period (1987–2014) (%).

Variables
MME CMCC-ESM2

SSP245 SSP585 SSP245 SSP585

Runoff 0.0 −7.1 2.3 −8.1

Hydrological
drought

Duration −8.8 −6.8 −6.7 −8.0
Intensity 11.0 11.0 3.8 3.2

Peak 15.4 16.2 9.3 10.5

Flood
Duration 0.4 0.6 3.2 1.9
Intensity −4.6 −4.6 −5.3 −6.5

Peak 1.5 1.1 1.3 2.5

Table 11. Percentages of changes in future runoff and hydrological extreme characteristic projections
in different periods compared to the historical period (1987–2014) (%).

Hydrological
Extreme Scenario Time Period

Duration Intensity Peak

CMCC-ESM2 MME CMCC-ESM2 MME CMCC-ESM2 MME

Drought

SSP245

2026–2049 24.2 5.4 5.8 11.4 21.4 20.0
2050–2079 −20.0 −15.0 3.3 8.8 7.5 11.3
2080–2100 −21.4 −16.1 2.6 13.3 −1.3 15.8
2050–2100 −20.6 −15.4 3.0 10.7 3.9 13.2

SSP585

2026–2049 16.7 5.9 0.3 10.8 15.3 18.5
2050–2079 −9.2 −8.0 12.2 9.5 22.6 14.5
2080–2100 −33.2 −19.5 −6.2 17.0 −11.7 15.9
2050–2100 −19.3 −12.7 4.5 12.6 8.2 15.1

Flood

SSP245

2026–2049 5.4 −8.6 −3.7 −1.7 1.9 1.7
2050–2079 −2.7 2.4 −11.2 −9.7 −5.4 −3.0
2080–2100 9.2 7.6 1.4 −0.7 10.4 7.8
2050–2100 2.2 4.6 −6.1 −6.0 1.1 1.4

SSP585

2026–2049 −6.8 −11.5 −10.6 −6.9 −1.9 −2.9
2050–2079 7.5 0.5 −1.6 −4.8 10.6 0.4
2080–2100 3.7 14.8 −8.9 −1.7 −4.4 6.8
2050–2100 5.9 6.3 −4.6 −3.5 4.5 3.1

4.3.1. Hydrological Drought
Drought Duration

According to Figures 7 and 8, all the GCMs projected a shorter drought duration in
multi-year average value than the historical period (blue bars in Figure 8a) and, among
them, model MPI-ESM1-2-LR projected the shortest multi-year average duration, which
decreased by 15.2% and 10.3% under the SSP245 and SSP585 scenarios, respectively. In
terms of the result of the MME, although some years before 2050 were projected to have a
longer drought duration than the historical period, after 2050 they were basically shorter
(Figure 7(a1) and Table 11). The MME projected the multi-year average drought duration
to be 3.77 months under the SSP245 scenario and 3.86 months under the SSP585 scenario, a
decrease of 0.39 months (8.8%) and 0.30 months (6.8%) under the two scenarios, respectively.
The optimal model CMCC-ESM2 projected a multi-year average drought duration of
3.86 months and 3.81 months, a decrease of 0.28 months (6.7%) and 0.33 months (8.0%)
under the SSP 245 and SSP585 scenarios compared to the historical period (Table 10). In
addition, the annual drought duration projected by the optimal model CMCC-ESM2 shows
a decreasing trend over time overall (Figure 7(a1)). The above results indicate that the
average duration of drought events in the study area will be shortened in the future.

Drought Intensity

Contrary to drought duration, the drought intensity projected by all the GCMs
increased in multi-year average value compared to the historical period (gray bars in
Figure 8a), with an increasing rate from 3.8% to 19% under the SSP245 scenario and a
lower rate from 3.2% to 16.8% under the SSP585 scenario. Model TaiESM1 projected the
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largest increases (19%) under the SSP245 scenario, and model ACCESS-ESM1-5 projected
the largest increases (16.8%) under the SSP585 scenario. The optimal model CMCC-ESM2
projected the least increases (3.8% and 3.2%) under both scenarios. The MME projected the
multi-year average drought intensity to be −1.0, an 11% increase compared to the historical
period (Table 10). From Figure 7(a2), it can also be observed that most of the annual drought
intensity projected by the MME was greater than the historical mean value (black curve
basically lower than the horizontal dashed line). The increase in drought intensity can
reflect that drought in the future will become more severe to some extent.

Drought Peak

Similar to drought intensity, the multi-year average drought peak projected by all
the GCMs also increased compared to the historical period (green bars in Figure 8a), with
a greater increasing rate than drought intensity, ranging from 7.3% (CanESM5) to 25.3%
(TaiESM1) under the SSP245 scenario, and 10.5% (CMCC-ESM2) to 19.5% (NorESM2-LM)
under the SSP585 scenario. The multi-year average drought peak projected by the MME
showed an increase of 15.4% under the SSP245 scenario and 16.2% under the SSP585
scenario (Table 10). The annual drought peak projected by the MME was also greater than
the historical mean value in most years (black curve basically lower than the horizontal
dashed line in Figure 7(a3)). The increase in drought peak indicates that the severity of
extreme drought will strengthen in the future.

4.3.2. Flood
Flood Duration

Unlike drought characteristics, flood characteristics projected by the different GCMs
are not so consistent in trends. For flood duration, four GCMs projected a decreased multi-
year average flood duration, and six GCMs projected the opposite under both scenarios
(blue bars in Figure 8b). Due to great differences between them, we mainly analyzed the
results from the MME and the optimal model.

The multi-year average flood duration projected using the MME was 3.77 months and
3.78 months under the SSP245 and SSP585 scenarios, very close to the historical period.
However, as shown in Figure 7(b1), differences exist in different time periods. The multi-
year average flood duration was projected to reduce by 8.6% (SSP245) and 11.5% (SSP585)
before 2050, to increase after 2050 by 4.6% (SSP245) and 6.3% (SSP585), and to increase
more after 2080, by 7.6% (SSP245) and 14.8% (SSP585) (Table 11). Those projected by the
optimal model CMCC-ESM2 were a little larger than the results of the MME for the multi-
year average values, showing increases of 3.2% and 1.9% under the SSP245 and SSP585
scenarios, respectively (Table 10). From different time periods, the optimal model projected
the highest increase (9.2%) after 2080 under the SSP245 scenario, and the highest increase
(7.5%) from 2050 to 2079 under the SSP585 scenario (Table 11). Both the MME and the
optimal model show the projected duration of flood events will be extended as a whole.

Flood Intensity

The flood intensity was projected to decrease in almost all time periods compared
to historical periods, and the MME and the optimal model CMCC-ESM2 produced the
same trends in the projections overall (Figure 7(b2)). The multi-year average flood intensity
was projected to decrease by 4.6% under both scenarios based on the MME, and decrease
by 5.3% and 6.5% based on the optimal model under the SSP245 and SSP585 scenarios,
respectively (Table 10). The most significant decline was projected to occur during the
period 2050–2079 under the SSP245 scenario, and during the period 2026–2049 under the
SSP585 scenario (Table 11). This indicates that the floods in the study area will alleviate in
the future overall; however, the changes in flood intensity vary in different future periods,
decreasing more after 2050 under the SSP245 scenario while decreasing more before 2050
under the SSP585 scenario.
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Flood Peak

There was a slight increase in the trend for the projected multi-year average flood peak
based on the results of the MME and the optimal model, but the trends were different in
different time periods (Figure 7(b3) and Table 11). For example, under the SSP245 scenario,
increases were projected during the periods 2026–2049 and 2080–2100, whereas decreases
were predicted during the period 2050–2079 (Table 11). In addition, based on the results
of the MME, the flood peak was projected to increase most (by 7.8% under the SSP245
scenario and 6.8% under the SSP585 scenario) after 2080 in its multi-year average value.
Based on the optimal model, it was projected to increase most (10.4%) after 2080 under
the SSP245 scenario, and increase most (10.6%) during the period 2050–2079 under the
SSP585 scenario (Table 11). But overall, the severity of extreme flood events after 2080 will
be enhanced, which will lead to a rise in flood risk.

4.4. Discussion
4.4.1. Historical Hydrological Drought and Floods

As mentioned above, by analyzing the drought and flood characteristics from 1978 to
2014, it was found that, after 2000, hydrological drought was eased while floods intensified.
This should be closely related to precipitation. According to the measured precipitation
data from the three stations (Tuole, Yeniugou, and Qilian), higher precipitation (an increase
of about 9%) occurred after 2000 (2000–2014) than before (1978–2009). The increase in
precipitation led to a reduction in drought and an intensification of floods. At the same
time, it would also be affected by changes in other climate factors such as temperature.
The measured temperature was found to increase after 2000. Climate warming can cause
an increase in snowmelt runoff, thereby resulting in an increase in total runoff and in
floods. In addition, Zan [45] concluded that the meteorological drought situation in this
study area was alleviated from 1967 to 2009 based on the standardized precipitation
evapotranspiration index. The alleviation of meteorological drought would restrict the
occurrence of hydrological drought, so the hydrological drought would be alleviated to
some extent.

4.4.2. Future Runoff

The future runoff projected by the MME slightly increased compared to the historical
periods under the SSP585 scenario. It is the result of the combined effects of various
factors, including climatic ones. Table 12 shows the multi-year average values of future
meteorological variables. It shows that the future precipitation and temperatures were
projected to increase, and relative humidity and wind speed were projected to decrease
overall. The increases in future precipitation will have a promoting effect on the increases
in runoff, and the changes in evapotranspiration caused by rising temperatures and other
climate factors will largely offset the impact of increased precipitation on runoff. Some
previous studies also concluded that the future runoff in the upper HRB will increase.
For example, Zhang et al. [14] projected that the future runoff would increase by 11.4%
and 12.5% under the RCP4.5 and RCP8.5 scenarios, respectively, during the period from
2021 to 2050. Li et al. [20] estimated that the runoff would increase by 5.6% and 6.7%
during the periods from 2021 to 2050 and from 2051 to 2080, respectively. Conversely, some
studies found decreasing trends in the future runoff over the study area. For example,
Wang et al. [21] estimated that the annual runoff in this basin would decrease by 3% and
4% under 1.5 ◦C and 2.0 ◦C of global warming compared with the period from 1976 to 2005.
The optimal model in our study also projected a decreasing trend in the future runoff, and
so did the second optimal model, NorESM2-MM.
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Table 12. Future meteorological variable projection (2026–2100) and the changes compared to
historical period (1987–2014).

GCM
Precipitation

(mm)
Maximum

Temperature (◦C)
Minimum

Temperature (◦C)
Relative Humidity

(%)
Wind Speed

(m/s)

SSP245 SSP585 SSP245 SSP585 SSP245 SSP585 SSP245 SSP585 SSP245 SSP585

ACCESS-CM2 414.5 430.4 10.4 11.6 −6.0 −5.0 0.51 0.50 2.26 2.24
6.9% ↑ 11.1% ↑ 2.4 ◦C ↑ 3.5 ◦C ↑ 2.3 ◦C ↑ 3.3 ◦C ↑ 5.6% ↓ 7.4% ↓ 1.3% ↑ ——

ACCESS-ESM1-5 397.9 393.3 10.9 11.7 −5.7 −4.8 0.51 0.51 2.18 2.14
2.7% ↑ 1.5% ↑ 2.9 ◦C ↑ 3.7 ◦C ↑ 2.6 ◦C ↑ 3.5 ◦C ↑ 5.6% ↓ 5.6% ↓ 2.2% ↓ 4.0% ↓

CanESM5 429.6 439.0 10.7 12.0 −5.8 −4.5 0.54 0.54 1.99 1.93
10.8% ↑ 13.3% ↑ 2.7 ◦C ↑ 3.9 ◦C ↑ 2.6 ◦C ↑ 3.9 ◦C ↑ —— —— 10.8% ↓ 13.5% ↓

CMCC-ESM2 429.8 468.3 10.69 11.1 −5.9 −5.1 0.53 0.54 2.03 2.03
10.9% ↑ 20.8% ↑ 2.7 ◦C ↑ 3.1 ◦C ↑ 2.5 ◦C ↑ 3.2 ◦C ↑ 1.9% ↓ —— 9.0% ↓ 9.0% ↓

MIROC6 374.2 395.3 10.29 11.1 −6.0 −5.1 0.53 0.52 1.85 2.16
3.4% ↓ 2.0% ↑ 2.3 ◦C ↑ 3.1 ◦C ↑ 2.3 ◦C ↑ 3.2 ◦C ↑ 1.9% ↓ 3.7% ↓ 17.0% ↓ 3.1% ↓

MPI-ESM1-2-LR 416.2 426.1 9.5 10.5 −6.8 −5.9 0.52 0.51 2.07 2.16
7.4% ↑ 9.9% ↑ 1.5 ◦C ↑ 2.4 ◦C ↑ 1.6 ◦C ↑ 2.5 ◦C ↑ 3.7% ↓ 5.6% ↓ 7.2% ↓ 3.1% ↓

MRI-ESM2-0 402.4 397.8 10.2 10.9 −6.4 −5.5 0.55 0.54 2.04 2.18
3.8% ↑ 2.6% ↑ 2.1 ◦C ↑ 2.8 ◦C ↑ 1.9 ◦C ↑ 2.9 ◦C ↑ 1.9% ↑ —— 8.5% ↓ 2.2% ↓

NorESM2-LM 405.9 410.1 10.3 11.3 −6.4 −5.2 0.52 0.51 2.02 1.98
4.7% ↑ 5.8% ↑ 2.3 ◦C ↑ 3.2 ◦C ↑ 2.0 ◦C ↑ 3.1 ◦C ↑ 3.7% ↓ 5.6% ↓ 9.4% ↓ 11.2% ↓

NorESM2-MM 406.5 408.9 10.1 10.9 −6.5 −5.5 0.53 0.53 2.02 1.99
4.9% ↑ 5.5% ↑ 2.0 ◦C ↑ 2.9 ◦C ↑ 1.8 ◦C ↑ 2.9 ◦C ↑ 1.9% ↓ 1.9% ↓ 9.4% ↓ 10.8% ↓

TaiESM1
440.3 429.7 11.1 6.3 −6.0 −4.6 0.52 0.51 2.26 2.26

13.6% ↑ 10.9% ↑ 3.0 ◦C ↑ −1.7 ◦C
↓ 2.4 ◦C ↑ 3.8 ◦C ↑ 3.7% ↓ 5.6% ↓ 1.3% ↑ 1.3% ↑

MME 411.7 419.9 10.4 10.7 −6.1 −5.1 0.53 0.52 2.07 2.11
6.2% ↑ 8.3% ↑ 2.4 ◦C ↑ 2.7 ◦C ↑ 2.3 ◦C ↑ 3.3 ◦C ↑ 1.9% ↓ 3.7% ↓ 7.2% ↓ 5.4% ↓

Note: “↑” and ”↓” correspond to increase and decrease. For precipitation, relative humidity, and average wind
speed, the change values are the relative values while, for the maximum and minimum temperatures, they are the
absolute ones.

It should be noted that, for the contrary trends in the future runoff projections from
the MME and the optimal model, it is hard to say which one is more accurate, since both
of them have uncertainty. The MME may involve inferior GCMs and thus reduce the
reliability of climate projections, and the optimal model depends on many factors such as
evaluation methods, evaluation indicators, and so forth, which result in the optimal model
not being uniquely determined [2,29–34]. In addition to the uncertainty involved in the
GCM selection process, we assumed that the optimal model selected based on historical
data would be applicable to future periods, which also carries some uncertainties since we
cannot judge whether the meteorological elements in the future will still follow the laws of
historical periods.

In terms of the results of the MME, the projected runoff will increase in the future,
which can to some extent alleviate the occurrence of hydrological drought and alleviate the
contradiction of water resource shortages in the study area. The increased future runoff
will result in higher water availability, which is beneficial for agricultural production in the
middle reach and the natural ecosystems in the lower reach.

4.4.3. Future Hydrological Drought and Flood

By projecting hydrological drought and floods in the study area in the future, both the
MME and the optimal model reveal that, under the SSP245 and SSP585 scenarios, although
the multi-year average duration of hydrological drought in the future was projected to
shorten compared to the historical period, especially after 2050 (decreased by 15.4% and
12.7% under the SSP245 and SSP585 scenarios from the MME, and by 20.6% and 19.3%
under both scenarios from the optimal model, Table 11), the multi-year average intensity
and peak of drought were both projected to increase. Although the multi-year average
intensity of floods was projected to decrease (decreasing most during the period 2050–2079
under SSP245 and during the period 2026–2049 under SSP585), the flood duration and
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peak were projected to increase, and increase most after 2080 overall under both scenarios
(except those projected by the optimal model under the 585 scenario).

By comparing the results of the MME and the optimal model in the multi-year average
level, the trends they projected present the same in the duration, intensity, and peak of both
hydrological drought and floods, although the magnitudes of the trends they projected
vary; in specific time periods (i.e., 2026–2049, 2050–2079, 2080–2100, and 2050–2100), most
of the trends they projected also present the same (Table 11). Comparatively speaking, the
optimal model predicted a greater reduction in drought duration under both scenarios,
and the MME predicted a greater increase in drought intensity and peak, no matter the
multi-year average level or the specific time period (Table 11). The above indicates that the
MME and the optimal model reached a consensus on the sign of the hydrological extreme
characteristic response to climate change, but showed differences in the magnitude of
the trends.

To sum up, in the future, the study area tends to suffer from hydrological drought with
short duration, high intensity, and high peak value, and floods with low intensity but long
duration and high peak value. This indicates that water resources in the study area will be
more uneven in temporal distribution in the future, and will occur in a more extreme form
(e.g., rainstorm after a long drought, or continuous drought after a rainstorm).

The uneven distribution of future runoff in the study area means that the water
resource development, utilization, management, and allocation in the basin will face some
new challenges. Therefore, it is necessary on one hand to adjust water use behavior and
water resource development and utilization strategies in the middle and lower reaches
to adapt to the changes in the total amount and the spatiotemporal distribution of water
resources in the future and, on the other hand, to strengthen defenses against extreme
hydrological risks, such as by fully leveraging the regulating capacity (e.g., the water
storage and replenishment) of water conservancy projects such as reservoirs.

5. Conclusions

This paper projected and analyzed the future runoff (from 2026 to 2100) in the upper
HRB under climate change scenarios by using 10 GCMs. Based on this, it projected and
investigated the changes in the duration, intensity, and peak of future hydrological droughts
and floods in the basin. The main conclusions are as follows:

(1) Large differences exist in future runoff projections by different GCMs. The multi-year
average runoff projected by the MME was close to the historical period (1987–2014)
under the SSP245 scenario, and increased by 2.3% under the SSP585 scenario. The
optimal model CMCC-ESM2, which was determined by the entropy-weighted TOPSIS
method, projected a decreased runoff in the future, decreasing by 7.1% and 8.1% under
the SSP245 and SSP585 scenarios, respectively.

(2) Both the MME and the optimal model projected that the drought duration in the study
area would decrease, especially after 2050, while the drought intensity and drought
peak would increase overall under both scenarios, no matter the multi-year average
level or the specific time period. It indicates that the duration of drought events in the
future will be shortened, but drought will become more severe, and the magnitude of
extreme drought will increase.

(3) Both the MME and the optimal model projected the multi-year average flood intensity
would decrease, while the flood duration and flood peak would increase on the whole
under both scenarios, and that the increase magnitudes would be greater after 2080. It
indicates that floods will become more severe after the mid- to late 21st century, with
longer durations and a higher peak for flood events.

(4) The MME and the optimal model projected the most similar trends for the duration,
intensity, and peak of hydrological drought and floods in either the multi-year average
level or in the specific time periods, although the magnitudes of the trends they
projected vary.
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We discussed the similarities and differences between the sign and magnitude of
hydrological extreme responses obtained from both the MME and the optimal GCM. It is
hoped that the relevant findings can provide ideas for the selection of GCM data in related
research. However, the MME generated here was based just on the simple arithmetic
averaging approach, without considering the weights of different models and the impacts
of inferior models, which may lead to bias and uncertainty. Han et al. (2023) [34] found
in their research that such an MME may severely compress the interannual variability
of precipitation data. Thus, in future research, efforts can be made to construct a more
accurate MME by using techniques such as random forest and machine learning.
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