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Abstract: As the second most predominant greenhouse gas, methane-targeted emission mitigation
holds the potential to decelerate the pace of global warming. Satellite remote sensing is an important
monitoring tool, and we review developments in the satellite detection of methane. This paper
provides an overview of the various types of satellites, including the various instrument parameters,
and describes the different types of satellite retrieval algorithms. In addition, the currently popular
methane point source quantification method is presented. Based on existing research, we delineate
the classification of methane remote sensing satellites into two overarching categories: area flux
mappers and point source imagers. Area flux mappers primarily concentrate on the assessment
of global or large-scale methane concentrations, with a further subclassification into active remote
sensing satellites (e.g., MERLIN) and passive remote sensing satellites (e.g., TROPOMI, GOSAT),
contingent upon the remote sensing methodology employed. Such satellites are mainly based on
physical models and the carbon dioxide proxy method for the retrieval of methane. Point source
imagers, in contrast, can detect methane point source plumes using their ultra-high spatial resolution.
Subcategories within this classification include multispectral imagers (e.g., Sentinel-2, Landsat-8) and
hyperspectral imagers (e.g., PRISMA, GF-5), contingent upon their spectral resolution disparities.
Area flux mappers are mostly distinguished by their use of physical algorithms, while point source
imagers are dominated by data-driven methods. Furthermore, methane plume emissions can be
accurately quantified through the utilization of an integrated mass enhancement model. Finally, a
prediction of the future trajectory of methane remote sensing satellites is presented, in consideration
of the current landscape. This paper aims to provide basic theoretical support for subsequent
scientific research.

Keywords: satellite remote sensing; retrieval algorithm; methane; climate change; point source detection

1. Introduction

Over the past few years, the climate crisis caused by the greenhouse effect has aroused
continuous concern, and the existing scientific knowledge has realized the severity and
urgency of the climate challenge. As the second largest greenhouse gas in the world,
methane (CH4) has emerged as a focal point in societal discourse, with increased scrutiny
focused on its emission and the resulting alterations in atmospheric balance [1,2]. The IPCC
Sixth Assessment Report from Working Group I [3] reveals a global surface temperature
warming of more than 1 ◦C in 2010–2019 compared to that of 1850–1900, with a radiative
forcing from methane of 0.5 (0.3–0.8) ◦C. In contrast to carbon dioxide (CO2), which has a
lifespan of hundreds of years in the atmosphere, methane exhibits a considerably shorter
average atmospheric lifespan of merely 11.8 years, approximately one-tenth that of carbon
dioxide. Its global warming potential (GWP) is 84 times that of carbon dioxide over a
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20-year period. Furthermore, beyond its role as a greenhouse gas, methane also plays a
crucial role as a significant contributor to tropospheric ozone production and is intricately
linked to the dynamics of air pollutants [4]. Therefore, the mitigation of methane emissions
holds the potential to curb excessive global warming and reduce environmental risks within
a relatively short time frame.

In the 26th meeting of the Conference of the Parties to the UN Framework Convention
on Climate Change (CoP26), numerous countries sponsored the Global Methane Pledge,
which calls for a reduction of at least 30% of anthropogenic methane emissions by 2030
relative to 2020. The reduction of methane emissions has subsequently become a focal point
in climate negotiations among major international stakeholders. Methane emissions come
from diverse sources, which can be mainly categorized as natural or anthropogenic. Natural
sources encompass wetlands [5] and freshwater systems (lakes, ponds, reservoirs) [6], which
are located in predominantly anaerobic environments. Natural sources also include geology,
wildfires, and termites [7]. In addition, some studies have pointed out that heat wave
events may linked to increased methane concentrations in polar permafrost regions. [8]. The
melting of permafrost may release an unknown amount of methane into the atmosphere,
creating a positive climate feedback effect [9–11].

Anthropogenic sources, on the other hand, are predominantly associated with animal
husbandry, waste management, the oil and gas industry, and coal mining [1]. Among
these, the oil and gas industry stand out as the predominant contributor to methane
emissions [12], with a notable focus on point source emissions. Specifically, small facilities
emit high concentrations of methane gas plumes [13]. The surge in methane observed over
the past three decades correlates closely with human activities [3]. To a certain extent, this
surge shows that taking emission reduction actions regarding anthropogenic methane offers
certain feasibility in mitigating the greenhouse effect. Notably, undertaking abatement
actions targeting methane emissions from coal mines and the oil and gas industry can
achieve a “zero net cost” [14]. Meanwhile, challenges arise in responding effectively to
sporadic and unpredictable methane emissions resulting from incidents such as methane
escapes, blowouts, and pipeline ruptures in the oil and gas industry, which are difficult to
realistically and effectively observe using traditional means. The inherent uncertainty and
complexity of methane emissions present formidable challenges to monitoring practices.

Currently, the monitoring of XCH4 (the monitoring of the column-averaged dry air
mixing ratio of CH4) can be primarily categorized into land-based monitoring, space-
based monitoring, and satellite-based monitoring [15]. The fundamental international
ground-based methane observation networks encompass the Total Carbon Column Observ-
ing Network (TCCON) [16], the Network for the Detection of Atmospheric Composition
Change (NDACC) [17], and the Global Atmosphere Watch (GAW) program of the World
Meteorological Organization (WMO) [18]. While ground-based observations yield high-
precision monitoring data [19], the limited number and uneven distribution of methane
monitoring stations present challenges in obtaining comprehensive, large-scale methane
monitoring information. Space-based monitoring methods mainly include the Airborne
Visible Infrared Imaging Spectrometer (AVIRIS) and the Airborne Visible InfraRed Imag-
ing Spectrometer-Next Generation (VIRIS-NG) [20,21]. However, these instruments face
limitations arising from factors like flight speed, impeding comprehensive and ubiquitous
detection capabilities. At the same time, the devices experience a time lag, and disor-
dered emissions cannot be monitored. On the contrary, satellite remote sensing enables
multi-scale observations at specific spatial resolutions, thereby providing a crucial scien-
tific foundation for understanding the circulation dynamics of methane within the earth’s
system. In addition, discrepancies in methane emission data among different governments
and sectors arise due to diverse observation methods, statistical approaches, and other
factors [22]; thus, the utilization of satellites for monitoring can achieve unified quantitative
targets for global methane emissions. Consequently, satellites have become an important
means of monitoring methane emissions and a powerful technical support for establishing
top-down emission source inventories.
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Methane exhibits absorption characteristics in both short wavelength infrared (SWIR)
and thermal infrared (TIR) spectra, as shown in Figure A1. In the SWIR spectrum, methane
absorbs radiation primarily through fundamental vibrational transitions in its molecular
bonds. These transitions are associated with relatively narrow absorption bands. Because of
shorter wavelengths in SWIR spectrum there is a stronger interaction between the absorbed
radiation and the methane concentration in the atmosphere, which results in a more
consistent profile of vertical sensitivity [23]. A more uniform vertical sensitivity thus helps
to obtain surface information more efficiently. Meanwhile, emission sources are mostly
concentrated at the surface, and information from SWIR spectrum can be used to investigate
natural and anthropogenic methane emissions, which is crucial for understanding climate
change and developing effective mitigation strategies [24,25].

In the SWIR spectrum, methane exhibits strong absorption bands near 1.65 µm and
2.3 µm, affording distinct characterizations of methane information. Therefore, in recent
years, the majority of methane remote sensing satellites have performed retrieval based
on the SWIR spectrum. Meanwhile, methane also shows strong absorption bands in the
TIR spectrum (near 3.3 µm and 7.66 µm), but information retrieved from this spectrum
is primarily focused on the middle troposphere. The methane weight in different bands
is shown in Figure A2. In this paper, we will introduce the current main satellite remote
sensing instruments and give a more detailed description of the retrieval algorithms used
by the satellites. At the same time, a new satellite-based technology developed in recent
years for the detection of methane point sources is introduced. Based on the current status
of satellite development, we can predict future development trends regarding the two
types of satellites and provide certain theoretical support for subsequent scientific research.
This paper is organized as follows. Section 2 will focus on introducing different types of
satellites and their retrieval algorithms. Section 3 presents specific quantification methods
for methane point source emissions. Conclusions and the outlook for the future will be
presented in Section 4.

2. Introduction for Methane Remote Sensing Satellites

Presently, satellite methane remote sensing technology is undergoing rapid develop-
ment and is widely used. According to different retrieval requirements, it can be divided
into area flux mappers for climate change and point source imagers for methane point
sources [26]. Area flux mappers exhibit high-precision and low-bias detection capabilities,
focusing on the retrieval of XCH4; such instruments could achieve the global or large-
regional scale remote sensing of methane distribution. Data from these devices is usually
employed as a priori information for an atmospheric chemical transport model, enabling
the discernment of changes in methane sources and sinks [27,28]. Additionally, these data
also serve as valuable references for point source imagers, offering essential information on
hotspot areas. Point source imagers are characterized by relatively low spectral resolution
and specialize in achieving the quantitative estimation of single methane plume emissions
through ultra-high spatial resolution, mainly focusing on small areas.

Due to differences in absorption band selection, area flux mappers can be further
classified as SWIR methane remote sensing satellites and TIR methane remote sensing
satellites. Figure 1 illustrates the two distinct satellite remote sensing methods which
developed round the beginning of the 21st century, based on the absorption properties
of the TIR band, the distribution of upper tropospheric methane in large-scale regions
was obtained [29]. Subsequently, more SWIR methane remote sensing satellites have been
launched, contributing to enhanced observation efficiency and improved detection accuracy.
This advancement has resulted in the availability of more detailed methane research data.
Based on area flux mappers, Maasakkers et al. [30] estimated the methane emissions
and performed its trend analysis in North America using GOSAT (the Greenhouse Gases
Observing Satellite). Building upon GOSAT observation data, Zhang et al. [31] optimized
the hydroxyl (OH) concentration in the inversion model, leading to a more precise analysis
of the factors governing atmospheric methane and the reasons behind its accelerated
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growth from 2010 to 2018. Moreover, numerous researchers worldwide have conducted
atmospheric inversion and quantitative analyses of methane emissions in North America
and China, drawing on data from TROPOMI (Tropospheric Monitoring Instrument). Their
findings indicate that top-down emission inventory data based on satellite remote sensing
were higher than the National Emissions Inventory reported by the United Nations [32–34].
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Regarding methane point source detection, satellites equipped with multispectral
and hyperspectral imagers have been extensively employed for plume monitoring and
quantification. Currently, research on methane point sources predominantly focuses on oil
and gas industry regions, mainly in Europe, America, and the Middle East. For Asia, large
methane emission events have also been detected in the Shanxi region of China and India,
based on satellite detection [35,36]. Varon et al. [37], for instance, harnessed the synergy
between GHGSat-D (Greenhouse Gas Satellite-Demonstrator) and TROPOMI to achieve
a more intricate tracing of methane point source emissions. Ehret et al. [38] conducted a
power-law analysis using multi-source satellite and airborne data, suggesting that high
XCH4 observed on a global scale may indicate relatively small but undetected methane
emissions, and Cusworth et al. [39] monitored a methane blowout event using multi-source
satellites to capture the short-term dynamics of methane leakage. Irakulis-Loitxate et al. [40]
realized the quantitative attribution of methane point sources in the Permian Basin by using
China’s hyperspectral satellites, such as Gaofen-5 (GF-5) and ZiYuan-1 (ZY-1), and pointed
out that the inefficient flaring of new facilities in the region is the main reason for the
large amount of methane emissions. Additionally, Irakulis-Loitxate et al. [41] used the
sun-glint mode to mitigate the effect of water vapor on methane retrieval and to achieve
the monitoring quantification of methane point sources near the offshore Gulf of Mexico.
Furthermore, satellites dedicated to methane point source detection play a crucial role
in addressing international events. Jia et al. [42] used Sentinel-2 to quantify the methane
leakage event of the Nord Stream pipeline in 2022, pointing out that the emission rate of
the methane leakage point is about 72 ± 38 t/h, which provides a scientific reference for
the quantitative estimation of the Nord Stream pipeline explosion event.

2.1. Satellite Retrieval Algorithms for Area Flux Mappers

Table 1 outlines the current major area flux mappers, showcasing the parameters
of the global methane monitoring satellites. The world’s first global methane column
concentration map was obtained by the retrieval of the GMI (green gas monitoring instru-
ment) on board ADEOS (Advanced Earth Observing Satellite), which was launched in
1996. Subsequently, SCIAMACHY (scanning imaging absorption spectrometer for atmo-
spheric cartography), on board Envisat (Environmental Satellite), became the first satellite
instrument to use the SWIR band to detect atmospheric methane (2003–2009), achieving
near-surface methane detection. GOSAT, developed by Japan as the first global greenhouse
gas remote-sensing satellite, has been operating well since its launch in January 2009.
Equipped with a TANSO-FTS (thermal and near-infrared sensor for carbon observations-
Fourier transform spectrometer), GOSAT provides valuable data for investigating global
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methane sources and sinks, as well as their climate effects. The subsequent launch of
GOSAT-2 in 2018 and the planned launch of GOSAT-GW (Global Observing Satellite for
Greenhouse Gases and Water Cycle) in 2023 further expand the capabilities for observing
methane and the water cycle.

Table 1. Parameters of area flux mappers.

Instrument Launch
Time

Spatial
Resolution

(km2)

Revisit Time
(Days)

Absorption
Band (µm)

Spectral
Resolution

(nm)
Precision

Passive Detection
ADEOS/IMG 1996 8 × 8 16 3.3 0.91 4%
Aqua/AIRS 2002 13.5 1.5 7.6 6.33 1.4~0.1%
Aura/TES 2004 5.3 × 8.3 16 7.6 0.59 1.4%

MetOp-A/IASI 2006 12 0.5 7.6 2.96 1~2.5%
Envisat/SCIAMACHY 2003 60 35 2.3 0.2 6%
GOSAT/TANSO-FTS 2009 10 3 1.65/2.3 0.06 0.7%

S5P/TROPOMI 2017 5.5 × 7 1 2.3 0.25 0.8%
GOSAT-2/TANSO-FTS-2 2018 9.7 × 9.7 6 1.65/2.3 0.05 0.26%

GaoFen-5/GMI 2018 10.3 × 10.3 1.65 0.07 -
GOSAT-GW/TANSO-3 2023 1 × 1–10 × 10 3 1.65 0.06 0.6%

MethaneSAT 2023 0.1 × 0.4 3–4 1.65 0.3 0.1–0.2%
Sentinel-5/UVNS 2024 7.5 × 7.5 1 1.65/2.3 0.25 0.8%

CO2M 2025 2 × 2 5 1.65 0.3 0.6%
Active Detection

MERLIN 2027 0.1 × 50 28 1.65 3 × 10−4 1.5%

TROPOMI, launched by the Copernicus Sentinel-5 Precursor in 2017, enhances spatial
resolution for global methane distribution (5.5 × 7 km2) and ensures global daily coverage.
Among its advantages, TROPOMI can not only achieve remote sensing of global methane
distribution but also monitor some methane point sources [43,44]. However, compared
with the spatial resolution of within a hundred meters of the point source imagers, there are
still many limitations in the performance of methane point source detection due to factors
such as coarse spatial resolution and cloud coverage. Compared with GOSAT and TCCON
data, TROPOMI data has been proven to provide higher data quality [45,46].

China’s Gaofen-5 satellite, equipped with GMI, has likewise contributed to global
methane concentration monitoring. However, passive methane remote sensing satellites
encounter some limitations. Since passive remote sensing obtains methane data based
on reflected solar radiation information, the solar altitude angle, i.e., the influence of sun-
light, is one of the important factors for detection. At the same time, there is no solar
radiation at night, so it is difficult to achieve night detection. Winter in high latitudes is
also affected by sunlight, and it is difficult for satellites to receive enough solar radiation
under these conditions. Moreover, observation efficiency is adversely affected by inter-
ference from clouds and aerosols. Addressing these challenges, the scheduled launch of
MERLIN (Methane Remote Sensing Lidar Mission) in 2028 will bridge these gaps through
active methane remote sensing, thereby reducing uncertainties in exploring the global
methane cycle.

Currently, there are many differences in the satellite retrieval algorithms for area
flux mappers. However, a majority of these algorithms are based on the SWIR spectrum
and are dominated by physical models, as well as carbon dioxide proxy models. The
algorithmic flow of most physical model-based methods is delineated in Figure 2. In this
process, known a priori atmospheric state parameters are utilized, and simulated spectra
are generated by combining non-retrieval parameters (such as the atmospheric model, solar
spectrum, etc.) into a retrieval model. Iterative calculations, often employing methods like
the Gauss–Newton or Levenberg–Marquardt techniques, are then applied to minimize or
regularize the cost function. When the iterative calculation converges the simulated values
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to the observed spectrum, the output value is the retrieval result. The physical model-based
algorithms are widely used in area flux mappers [47–49], but also in point source imagers
like AVIRIS and AVIRIS-NG [50]. Furthermore, point source imagers such as GHGSats rely
on a physical model, allowing for the detection of methane plumes without considering
scattering and thermal radiation. The carbon dioxide proxy method is retrieved, based on
the presence of absorption bands around 1.65 for both CH4 and CO2.
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2.1.1. Optimization Algorithms

The optimal estimation method (OEM) stands as a frequently employed algorithm for
satellite retrieval. Assuming that the observed spectrum received by the satellite instrument
is y, and the atmospheric state vector is x, considering an atmospheric model and simulating
the observation spectrum by the forward model F, the atmospheric state can be expressed
as [51]:

y = F(x) + ey + eF, (1)

where ey represents the instrument noise error, and eF represents the error caused by the
forward model. In the forward model, the simulated top-of-atmosphere (TOA) radiation
can be obtained from the radiative transfer model. The state vector x contains several
elements, such as the vertical stratified column concentration of methane, the total column
concentration of CO, the total column concentration of water vapor, and so forth. Neglecting
the error, Equation (1) is linearized as:

y = F(xa) + K(x − xa), (2)

Among these, K is the Jacobian matrix, which represents the sensitivity of the forward
model to the true value profile; xa is the a priori parameter of the atmospheric state. This
method implements retrieval based on Bayesian estimation of the atmospheric states. It
combines observation data with model information through Bayesian estimation. Notably,
this method requires prior information for the constraints.

P(x|y ) = P(y|x)P(x)
P(y)

, (3)

where P(x) is the probability distribution of the real atmospheric parameters, i.e., the
known a priori information, and P(y) is the probability distribution of the observed spectra.
Given the state vector x, the probability distribution of P(y|x), that is, the theoretical
observation error, and P(x|y ) represents the probability distribution of x obtained under
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the condition of observing spectrum y. It is assumed that in the real state, the vector x
follows a Gaussian distribution:

P(x) =
1

(2π)
n
2 (Sx)

1
2
· exp

[
−1

2

(
x − ¯

x
)T

S−1
x

(
x − ¯

x
)]

, (4)

where S is the vector covariance. Equation (4) is varied to give the following equation:

−2 ln P(x|y ) = (y − Kx)TS−1
ε (y − Kx) + (x − xa)

TS−1
a (x − xa) + C1, (5)

where C1 is an independent constant of x, Sε is the covariance matrix of the measurement
error, and Sa is the a priori covariance matrix of the atmospheric parameters. Considering
that the forward model is usually nonlinear, the methane information is obtained by
minimizing the cost function, in which J(x) is set to be:

J(x) = [y − F(x)]TS−1
ε [y − F(x)] + [x − xa]

TS−1
a [x − xa], (6)

Subsequently, the Gauss–Newton iteration method is employed to ascertain the opti-
mal solution:

xi+1 = xi +
(

S−1
a + KT

i S−1
ε Ki

)−1[
KT

i S−1
ε (y − F(xi))− S−1

a (xi − xa)
]
, (7)

In addition, the Levenberg–Marquardt iterative method is extensively employed [50].
The iterative process is illustrated by the following equation:

xi+1 = xi +
[
(1 + η)S−1

a + KT
i S−1

ε Ki

]−1{
KT

i S−1
ε [y − F(xi)]− S−1

a [xi − xa]
}

. (8)

where η is the parameter that determines the step size of each iteration. It is worth noting
that aerosols are not included in the real and simulated state vectors, as they are considered
in the simulated forward model.

2.1.2. Regularization Algorithms

The RemoTeC (Remote sensing of greenhouse gases for carbon cycle modeling) fully
physical retrieval algorithm, developed by the Netherlands Institute for Space Research
(SRON), uses Philips–Tikhonov regularization to handle the objective function and employs
Gauss-Newton iterative linearization for retrieval. This algorithm could reduce the impact
of measurement noise on the retrieval state vector and does not require prior information
to constrain the retrieval [47]:

x̂ = min
x

(
∥S−1/2

y (F(x)− y)∥2
+ γ∥W(x-xa)∥2

)
, (9)

where Sy is the diagonal measurement error variance matrix, containing the noise estimates,
γ is the regularization parameter, and W is the diagonal weighting matrix with side
constraints on the dimensionless data, ensuring that only the methane parameter and the
scattering parameter play a role in the model. The data product of methane retrieval is
given in the form of XCH4. According to the retrieved state vector, it can be discerned
as follows:

XCH4 =

n
∑

i=1
xi

Vair,dry
, (10)

where Vair,dry represents the dry air column (derived from meteorological elements, surface
pressure, and water vapor profile). Simultaneously, to ensure the precision of the retrieval,
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the averaging kernel Acol needs to be used to describe its sensitivity to changes in the real
methane profile:

Acol,i =

∂
n
∑

i=1
xi

∂xtrue,i
, (11)

The XCH4 obtained from the retrieval is correlated with the true methane profile xtrue
as well as the a priori profile xa:

XCH4 =

n
∑

i=1
(Acol,ixtrue,i + (1 − Acol,i)xa,i)

Vair,dry
+ ∆XCH4,F + ∆XCH4,y. (12)

The algorithm assumed a cloud-free and plane-parallel atmosphere, with thin-layer
scattering. Lorente et al. [46] upgraded the full physical algorithm in TROPOMI in terms
of the regularization scheme, the selection of the spectral database, and the updating of
the elevation maps. These enhancements have led to improved retrieval precision and, to
some extent, have mitigated the influence of albedo.

2.1.3. Improved Retrieval Algorithm for Differential Absorption Spectroscopy

Differential optical absorption spectroscopy (DOAS) is designed to separate the high-
frequency information (fast-changing part), caused by optical thickness change induced
by rapidly varying molecular absorption characteristics of the wavelength, from the low-
frequency information (slowly changing part), caused by Rayleigh scattering and Mie
scattering. This method has been widely applied in the retrieval of various atmospheric
components, and the absorption cross-section can be expressed as [52]:

σj(λ) = σjo (λ) + σ′
j(λ), (13)

where σj0 is the absorption cross-section obtained from low-frequency information, mainly
attributable to Rayleigh and Mie scattering, and σ′

j(λ) is the fast-rotating part, primarily
arising from various absorbing gas molecules.

I(λ) = I0(λ) · exp

[
−L ·

(
∑

j

(
σ′

j(λ) · cj
))]

· exp

−L ·

 ∑
j

(
σj0(λ) · cj

)
+εR(λ) + εM(λ)

 · A(λ),

(14)
Equation (14) represents the three main factors affecting radiation intensity in the atmo-

sphere, which encompass the impacts induced by the rapid absorption of trace gases, Rayleigh
scattering, and Mie scattering. Additionally, A(λ) is expressed as an effect caused by systemic
and atmospheric turbulence, where cj denotes the concentration of jth gas; εR(λ) and εM(λ)
represent the extinction effects of Rayleigh scattering and Mie scattering, respectively.

I′(λ) = I0(λ) · exp

−L ·

 ∑
j

(
σj0(λ) · cj

)
+εR(λ) + εM(λ)

 · A(λ), (15)

To simplify the calculation, in this algorithm, the radiation change I′(λ) caused by low-
frequency information can be approximated by a polynomial. This is one of the commonly
used methods to remove the influence of low-frequency information. Then, the differential
optical thickness D′ can be expressed as:

D′ = ln
I′0(λ)
I(λ)

= L∑
j

cj · σjo (λ). (16)



Atmosphere 2024, 15, 449 9 of 31

while D′ can be obtained through observation. By combining multiple bands and perform-
ing least squares fitting of the gas absorption cross-section through differential absorption
spectra, the gas concentration can be obtained. In addition, it is necessary to correct the
integral of the gas concentration in the optical path. However, in the SWIR spectrum,
the problem will become more complicated. In the next sub-section, we will explain this
in detail.

Weighting Function Modified Differential Absorption Spectroscopy

In the NIR or SWIR spectrum, accurately approximating radiance becomes challenging
when using the linear model of the Beer–Lambert relationship. The weighting function
modified differential optical absorption spectroscopy retrieval algorithm (WFM-DOAS)
is a modification of the DOAS algorithm, addressing the sensitivity of the infrared band
absorption cross-section to temperature and pressure. In addition, there is a strong overlap
of absorption lines in the same band for several gases. Moreover, atmospheric scattering
complicates the optical flow, and it is not possible to express the absorption characteristics
of gases in terms of a simple exponential function. This algorithm employs the gas column
concentration weight function to replace the absorption cross-section reference spectrum
and can only be used to retrieve the methane column concentration, but not the methane
profile. SCIAMACHY uses this algorithm to realize methane column concentration detec-
tion. This method is based on the linear radiative transfer model Imod and the logarithm of
the low-order polynomial P to fit the logarithm of the ratio of nadir radiation and the solar
radiation spectrum [53]:

∥ln Iobs
i − ln Imod

i

(
^
V
)
∥

2

≡ ∥RESi∥2 → min, (17)

The normalized linear radiative transfer model is:

ln Imod
i

(
^
V
)
= ln Imod

i

(
¯
V
)
+

J
∑

j=1

∂ ln Imod
i

∂Vj

∣∣∣V j
×
(
V̂j − V j

)
+ Pi(am). (18)

where
^
V is the atmospheric column concentration of methane obtained by retrieval,

V is an estimate of methane obtained from irradiance simulation, Vj denotes the col-
umn concentration of the jth gas, Vj and the polynomial parameter am are obtained by a
linearized least-squares fit of the observations to the model values, and Pi(am) is a low-
order polynomial used to represent the effect of low-frequency information, i.e., aerosol,

ground albedo, cloud cover, etc. The column weight function
J

∑
j=1

∂ ln Imod
i

∂Vj

∣∣∣V j
×
(
V̂j − V j

)
denotes the radiative derivative of the fitted parameter, which is the change in TOA caused
by the change in total gas absorption. Additionally, the algorithm avoids time-consuming
calculations for radiative transfer modeling by establishing a lookup table (LUT) method
and assumes that the reference spectra are established under clear weather conditions in
the U.S. Standard Atmosphere. Notably, the method does not require a priori information
to constrain the column concentrations for retrieval. The WFM-DOAS method is more
suitable for cloud-free conditions. However, for thin clouds, whose radiative properties are
equivalent to those of aerosols, the low-order polynomials in the WFM-DOAS retrieval can
be well-fitted.

Iterative Maximum A Posteriori Differential Absorption Spectrum Retrieval Algorithm

Based on the differential absorption algorithm, Frankenberg et al. [54] introduced
the iterative maximum a posteriori differential absorption spectral retrieval algorithm,
denoted as IMAP-DOAS, which takes into account the nonlinearities caused by changes in
atmospheric temperatures and pressure profiles, as well as spectral resolving ability. The
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algorithm was employed for determining the XCH4 using data from the SCIAMACHY
satellite [54,55]. Furthermore, it has found widespread application in point source imagers
such as EnMAP (Environmental Mapping and Analysis Program) and PRSIMA (Precursore
Iperspettrale della Missione applicativa) for determining methane point sources [56].

The retrieval algorithm is grounded in the Beer–Lambert theorem and is coupled with
an optimization algorithm to attain consistency between the observed and the simulated
spectrum. The forward model of the IMAP-DOAS algorithm is:

Fh(x) = I0(λ) exp

(
−A

n

∑
n=1

sn

l

∑
l=1

τn,l

)
·

K

∑
k=0

akPk(λ), (19)

where Fh is the high-resolution backscattered TOA radiation at wavelength λ, I0 is the
intensity of the incident radiation, τn,l is the default optical thickness of a constant amount
of gaseous elements in the U.S. Standard Atmosphere, sn is the scaling factor of the default
optical thickness in the optimal retrieval process, Pk denotes the kth polynomial, and ak is a
polynomial coefficient used to account for the low-frequency spectral variations. Similarly,
since the forward model is nonlinear, the Gauss–Newton iteration is utilized to solve the
optimal state vector solution, and the iteration process is shown below:

xi+1 = xa +
(

KT
i S−1

ε Ki + S−1
a

)−1
KT

i S−1
ε · [y − F(xi) + Ki(xi − xa)], (20)

The algorithm optimizes the scaling factor relative to the a priori profile, setting the
scaling factor to 1 for the initial estimate of the gas in two layers of vertical space.

Moreover, for the detection of methane point sources, Thorpe, Frankenberg, and
Roberts [57] proposed using a hybrid method involving IMAP-DOAS and singular value
decomposition (SVD) to better characterize the underlying surface characteristics and
atmospheric absorption. SVD is closely related to principal component analysis (PCA)
and can effectively summarize high-dimensional data, providing the potential to reduce
computing time (see Section 2.1.5 for details).

2.1.4. Carbon Dioxide Proxy Method

This method is based on the existence of absorption bands around 1.6 µm (CO2:1.61 µm,
CH4:1.65 µm) for both carbon dioxide and methane. It disregards the impact of scattering in
the atmosphere in the retrieval and assumes that the optical paths of the target gas methane
and the proxy gas carbon dioxide in the atmosphere are the same and are known a priori.

XCHproxy
4 =

VCH4

VCO2

· XCOmod
2 , (21)

The parameter XCO2 can be assimilated from the CarbonTracker dataset [58], while
VCH4 and VCO2 denote the vertical column density concentrations, respectively. Carbon-
Tracker, an assimilative dataset initiated by the National Oceanic and Atmospheric Admin-
istration Earth System Research Laboratories (NOAA ESRL), is designed for the monitoring
and estimation of global carbon emissions. The data assimilation set for monitoring and
estimating global carbon emissions is coupled to an ensemble Kalman filter for assimilation
using an atmospheric transport model. The assimilation process encompasses fossil com-
bustion, heat sources, terrestrial biosphere, and oceanic exchanges, with diverse emission
data derived from distinct emission inventories. The instantaneous fluxes, considering the
four emission processes, can be expressed as follows:

F(x, y, t) = λr · Fbio(x, y, t) + λr · Foce(x, y, t) + λr · Ff f (x, y, t) + λr · Ff ire(x, y, t), (22)

Herein, λr symbolizes the set of linear scale factors to be estimated in the interval r
assimilation. This retrieval method also needs to first remove the effect of clouds, wherein
clear-sky surface pressure is a prerequisite, relying specifically on the O2-A band. Subse-
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quently, this value is interpolated for comparison with air pressure data furnished by the
European Centre for Medium-Range Weather Forecasts (ECMWF) at corresponding time
and spatial coordinates. In instances where a discernible discrepancy of 20 hPa in pressure
exists between the two datasets, the meteorological conditions are classified as overcast,
precluding methane retrieval [16]. Schepers et al. [49] conducted a comparative analysis
between the full physical methodology and the carbon dioxide proxy approach in the
processing of GOSAT satellite data, highlighting the capability of both methods to replicate
the variability trend. Furthermore, Lorente et al. [46] pointed out that the carbon dioxide
proxy method achieves the highest data output between the two. Since TROPOMI does
not include the 1.6 µm absorption band, it cannot be retrieved using the carbon dioxide
proxy method.

2.1.5. Singular Value Decomposition Retrieval Algorithm

This algorithm endeavors to diminish data from higher dimensions to lower dimen-
sions, thereby simplifying the complexity of data processing and analysis. It accomplishes
this by transforming a multitude of potentially pertinent vectors into a series of more
concise, uncorrelated vectors, denoted as singular vectors—an approach closely aligned
with principal component analysis (PCA). Both AIRS (atmospheric infrared sounder) and
IASI (infrared atmospheric sounding interferometer) sensors achieve precise detection of
atmospheric methane through the application of this algorithm.

The following is an m × n order matrix L, where the matrix U contains the left singular
vectors and the matrix V contains the right singular vectors.

L=UΛVT , (23)

In this method, the retrieval of methane is based on the successful retrieval of various
atmospheric parameters, including temperature profiles, water vapor profiles, surface
temperature, albedo, and so on. These variables serve as inputs to the forward model.

Through the calculation of the difference of ∆R between the radiance obtained from
the simulation and the radiance in the absence of clouds, the resulting disparity can be
employed for the determination of methane profiles ∆X [29,59]:

∆Rn = Sn,L·∆XL + ε, (24)

In the provided equation, Rn presents the observed irradiance in the absence of clouds,
Rn represents the observed irradiance under cloud-free conditions, ∆Rn expresses the
difference between the observed and simulated values in the spectral band, and ∆XL is the
vector of methane differences from the initial profile on the different Lth vertical planes. Sn,L
denotes the sensitivity of the irradiance in the spectral band to changes in methane on the
Lth layer, and ε denotes the error vector in the different spectral bands. Equation (23) can
be solved by the singular value decomposition (SVD) of the sensitivity covariance matrix,
which is obtained by weighting the precision and accuracy estimates obtained from the
retrieval of the radiative transfer model, as well as the error and noise in the measurement.
The variation of methane can be written as:

∆X = U · Λ · UT · ST · W · (∆R-Φ). (25)

Here, W is the retrieval error matrix, and Φ denotes the background term. Λ is a
diagonal matrix whose elements are ∆λ/(∆λ + λ), and ∆λ serves as the damping variable.
This retrieval method minimizes the dependence on the initial value profile and covariance
matrix, and strongly relies on the signal-to-noise ratio of the observations. When processing
real satellite data, we also need to combine optimization methods with dimensionality
reduction to achieve the inversion of a large amount of hyperspectral data [60].
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2.1.6. Fast Atmospheric Trace Gas Retrieval

The fast atmospheric trace gas retrieval (FOCAL) algorithm was originally developed
for the retrieval of the OCO-2 (Orbiting Carbon Observatory-2) satellite of the United States,
offering an approximation to the analytical solution of the radiative transfer problem.
This approximation focuses on multiple scattering from an optically thin scattering layer,
resulting in reduced computational costs. Significantly, FOCAL has been adopted as the
retrieval algorithm for the CO2M (Copernicus Anthropogenic Carbon Monitoring) satellite,
which represents the next generation of greenhouse gas detection satellites under the
European Space Agency (ESA). In this algorithm, it is assumed that the spectral signals
generated by absorption within the scattering layer cannot be easily separated from the
albedo and scattering signals; consequently, only the effect of extinction from scattering is
considered [61]:

It is assumed that the radiance reaching the satellite instrument consists of the following:

I = IC + ISD + ICD + ISI + ICI + ISIF, (26)

where IC is the radiation directly dispersed from the scattering layer to the satellite, ISD
denotes the direct radiation from the surface, ICD denotes the radiation from the surface
subsequent to the scattering layer, ISI denotes the diffuse radiation from the surface, ICI
denotes the diffuse radiation subsequent to the scattering layer, and ISIF denotes the
radiation from the solar-induced chlorophyll fluorescence. Assuming that the incident
solar radiation is F0, considering the Lambertian body, the above radiation components are
part of the following equation:

I0 =
F0

πζ0
Tg

I
(
τ↑, ζ0 + ζ

)
, (27)

The goal of the algorithm is not to retrieve the absorption within the scattering layer,
but to approximate the optical thickness of the absorption as 0. Consequently, the albedo
and the quantity of scattered radiation may exhibit slight deviations. Also, it is assumed that
light is dispersed at the scattering layer in equal parts to the upper and lower hemispheres.

Subsequently, the methane concentration is modeled and resolved utilizing the ob-
served spectra from satellite instruments, incorporating a priori information. In the model,
three scattering-related vectors—scattering layer height ps, scattering optical thickness τs,

and the Ångström exponent
◦
A, collectively termed as 3-Scat—are considered. This configu-

ration ensures that the scattering information is exclusively derived from the absorption
band of the target gas. The algorithm has been applied to the OCO-2 retrieval of CO2, but
also to the GOSAT retrieval of XCH4, with good data quality [62].

2.1.7. Integral Path Differential Absorption Algorithm

In contrast to passive remote sensing satellite retrieval, active remote sensing methane
satellites operate independently of solar radiation or earth infrared radiation. Consequently,
they possess the capability to monitor methane concentrations both day and night, through-
out all seasons, and across all latitudes. The forthcoming MERLIN satellite planned to
be launched in 2028 is equipped with lidar, which can complete the measurement based
on the integrated path differential absorption method (IPDA). This satellite sensor emits
laser pulses at two frequencies near 1.64 µm, referred to as online and offline frequencies.
Specifically, the online frequency is strategically chosen within the trough of the 1.64 µm
methane absorption line to enhance sensitivity to ground-level methane concentration
changes. Simultaneously, the offline measurement serves as a reference frequency, posi-
tioned where methane absorption is negligible. Online and offline frequencies are emitted
with a very short time delay (∆t ∼ 250 µs), resulting in nearly identical optical path and
surface scattering characteristics. The measurement process is illustrated in Figure 3 [63].
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Following the Beer–Lambert law, the differential absorption optical thickness of
methane can be given by the measured lidar signal Pp f f /Pon:

DAOD(rT) =
∫ rT

TOA mCH4(r
′)
[
1 − qH2O(r′)

]
nair(r′)

[(
σon(r′)− σo f f (r′)

)]
dr′

= 1
2 ln
[ Po f f (rT)Eon

Pon(rT)Eo f f

]
− DAODother gases,

(28)

Among these, Pp f f /Pon represent the measured lidar signals, respectively. rT is the
measuring height, mCH4 is the methane dry air mixing ratio at height r′, qH2O is the water
vapor mixing ratio, nair is the air number density, and σon,o f f is the corresponding molecular
absorption cross-section of online and offline results. The integration is carried out from
the top of the atmosphere to the target altitude rT . The second term in the equation
aggregates the contributions of other atmospheric components, particularly water vapor
and carbon dioxide, in the form of differential optical depth (DAOD). It is noteworthy that
the interference of water vapor can be further reduced by mitigation through the water
vapor compensation mode. This mode is based on the idea of selecting an offline position
within the water vapor absorption line so that the differential absorption of water vapor can
be measured. Subsequently, the water vapor contribution relevant to the dry air mixture
ratio calculation is then compensated.

Considering the hydrostatic equations, XCH4 can be calculated from the measured DAOD:

XCH4 =

∫ pT
0 mr(p)WF(p)dP∫ pT

0 WF(p)dP
=

DAOD∫ pT
0 WF(p, T)dp

=
ln
[ Po f f (rT)Eon

Pon(rT)Eo f f

]
− DAODother gases

2
∫ pT

0 WF(p, T)dp
.

(29)

where WF(P) =
σon(p,T)−σo f f (p,T)

g(p)Mair

(
1+MH2Oq(p)dry

) is the weight function, characterized as a function

of air pressure and temperature, and g is the gravitational acceleration. Mair and MH2O
are the masses of the dry air and water vapor molecules, and qdry is the water vapor
mixing ratio compared to dry air, which describes the contribution of the atmosphere to
the concentration of the trace gas mixing ratio columns at pressure P and temperature T.

In addition to the methane data acquired through retrieval, MERLIN is poised to
furnish information about other climate-relevant parameters, encompassing cloud-top
heights, surface retro-reflectivity, and potentially, canopy heights. The primary scientific
objective of MERLIN is to contribute to the refinement of source and sink estimations
through atmospheric inversion, thereby mitigating uncertainties in the global methane
cycle. Moreover, alongside the two-pulse lidar, retrieval based on the ASCENDS (ac-
tive sensing of CO2 emission over nights, days, and seasons) data, multi-pulse lidar
sounding has been realized [64], and XCH4 retrieval can be obtained based on the same
retrieval theory.
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2.2. Satellite Retrieval Algorithms for Point Source Imagers

Numerous studies have consistently demonstrated that methane point source emis-
sions and their frequency exhibit a heavy-tailed distribution, wherein super point source
emission events are characterized as low probability occurrences, but instances of super
emissions do exist [39,65]. Therefore, effective monitoring of methane emission point
sources can successfully promote the achievement of methane emission reduction objec-
tives. Considering the challenges faced by area flux mappers in remotely sensing point
source emissions, the advent of point source imagers has substantially bridged the gap in
regards to methane monitoring. As far as the current point source imagers are concerned,
they can be divided into multispectral remote sensing satellites (Landsat-8, Sentinel-2, etc.)
and hyperspectral remote sensing satellites (PRISMA, EnMAP, GF-5, etc.). Notably, the
GHGSats networking satellite is specifically designed for the detection and quantifica-
tion of point source greenhouse gas emissions. Comprising six networking satellites, all
equipped with wide-angle Fabry–Perot imagers (WAF-P), these satellites can sample the
methane band near 1700 nm, facilitating the detection of methane column concentration in
vertical space. Noteworthy among them are the GHGSat-D (Claire), launched in June 2016,
and September 2020, as well as the GHGSat-C1 (Iris) satellites, capable of simultaneously
monitoring methane and carbon dioxide. PRISMA was launched in March 2019 as the
successor satellite of HypSEO (Hyperspectral Satellite for Earth Observation). The satellite
is equipped with a hyperspectral camera that can achieve observations in near-infrared and
short-wave infrared spectra. Its 2110–2450 nm band is suitable for methane monitoring and
is currently widely used in methane point source detection. Moreover, visible short-wave
infrared hyperspectral cameras, such as the Advanced Hyperspectral Imagers (AHSIs)
aboard China’s GF-5 and ZY-1 satellites, exhibit significant promise for methane monitoring
applications. The Sentinel-2 satellite, featuring a multispectral imager (MSI), currently
comprises two identical satellites: Sentinel-2A, launched in June 2015, and Sentinel-2B,
launched in March 2017. Furthermore, a third satellite, Sentinel-3C, is anticipated to be
launched in 2024. The joint utilization of Sentinel-2A and Sentinel-2B has significantly
reduced revisit times to approximately five days. Each satellite is equipped with an MSI cov-
ering 13 bands, from near-infrared to short-wave infrared, encompassing band-11 (1613.7
nm (S2A)/1610.4 nm (S2B)) and band-12 (2202.4 nm (S2A)/2185.7 nm (S2B)) in the SWIR
spectrum. Launched in November 2013, Landsat-8 carries the Operational Land Imager
(OLI), which covers the visible, near-infrared, and short-wave infrared bands, enabling
detection of methane point sources, but the satellite has a revisit time of up to 16 days.
Compared to the low revisit rate of Landsat-8, Worldview-3, which was launched in August
2014, this technology shows a very short revisit time (less than 1 day). In contrast, the
WV110 (WorldView-110 camera) on board contains eight bands in the infrared band, with a
spatial resolution of up to 3.7 m, enabling the detection of small methane point-source emis-
sions that may not be easily revealed by other satellites [36]. For point source imagers, the
primary concept underlying retrieval involves transforming the three-dimensional spatial
methane plume into a two-dimensional image and subsequently conducting retrieval based
on the Beer–Lambert law. The current major point source imagers for methane detection
are shown in Table 2.

Table 2. Parameters of point source imagers.

Instrument Launch
Time

Spatial
Resolution

(m2)

Revisit
Time
(Day)

Absorption
Band (µm)

Spectral
Resolution

(nm)
Precision

Landsat-8/OLI 2013 30 × 30 16 2.3 200 30–90%
WorldView-3/WV110 2014 3.7 × 3.7 <1 2.3 50 6–19%

Sentinel-2/MSI 2015 20 × 20 5 2.3 200 30–90%
GHGSat/WAF-P 2016 25 × 25 1–7 1.65 0.3 1.5%
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Table 2. Cont.

Instrument Launch
Time

Spatial
Resolution

(m2)

Revisit
Time
(Day)

Absorption
Band (µm)

Spectral
Resolution

(nm)
Precision

PRISMA/HYC 2019 30 × 30 4 2.3 7.8–17.9 3–9%
EnMAP/HSI 2022 30 × 30 4 2.3 7.3–11.4 3–9%

EMIT 2022 60 × 60 3 2.3 9 2–6%
CarbonMapper 2023 30 × 30 1–7 2.3 6 1.2–1.5%
Gaofen-5/AHSI 2018 30 × 30 51 1.65 8.5 3%

ZY-1/AHSI 2019 30 × 30 55 1.65 16.8 5%

2.2.1. Retrieval Algorithms Based on Multispectral Imagers

In the case of multispectral imagers, even though the detailed analysis of SWIR spectral
information may not be feasible, inferences regarding methane column concentration
enhancement can still be derived from methane transmittance images. Furthermore, owing
to the global coverage afforded by multispectral imagers, they exhibit distinct advantages
in the detection of methane point sources. In this context, the main point of the retrieval
for methane column concentration enhancement by multispectral imagers focuses on the
calculation of the methane background concentration value, as well as the consideration
only of the absorption of the gas. This section provides an overview of the current principal
algorithms for multispectral imagers. The differences between the algorithms mainly focus
on the solution of the background value, which is predominantly obtained by comparing
the transmittance of the absorption band, with or without the presence of methane. The
reference value can be approximated by other bands that are not sensitive to methane, or
can be estimated by using the concentration values of the same band, during periods when
no methane emission is occurring.

SBMP, MBSP, and MBMP Algorithms

It is recognized that band-11 and band-12 in the Sentinel-2 satellite are located near
the methane absorption band. Varon et al. [37] developed three retrieval algorithms for
calculating the methane column concentration enhancement of intermittent point source
emissions, namely the SBMP retrieval algorithm (single-band–multi-pass retrieval), the
MBSP retrieval algorithm (multi-band–single-pass retrieval), and the MBMP retrieval
algorithm (multi-band–multi-pass retrieval). In the context of the SBMP retrieval method,
the albedo changes in band-12 caused by the presence or absence of a methane plume at
the same location is analyzed, and then the methane column concentration enhancement
(∆Ω) is derived. The variation in radiance can be expressed as follows:

∆RSBMP =
cR12 − R′

12
R′

12
, (30)

where c is the proportional coefficient of the radiance changes at the same location on
different days. The proportional coefficient can be obtained by the least squares fitting of
the radiances of R12 (with methane emissions) and the R′

12 (without methane emissions) in
the target area. Further comparison with the absorption model is performed, as follows:

mSBMP(∆Ω) =
T12(Ω + ∆Ω)− T12(Ω)

T12(Ω)
, (31)

where T12 signifies the simulated value of spectral radiance, with and without methane
emissions. Then the observed and simulated values are combined, and the objective
function F(∆Ω) = ∆RSBMP − mSBMP(∆Ω) is minimized through iteration to obtain ∆Ω.
Compared with Landsat-8 and Sentinel-2, Worldview-3 not only boasts higher spatial
resolution but also encompasses a more extensive array of channels within the short-
wave infrared band. Notably, these bands are characterized by narrower spectral widths
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compared to other satellites. Alternatively, estimation can be achieved through multiple
linear regression involving various bands, albeit necessitating the elimination of redundant
methane-sensitive absorption bands in the regression process [36].

The MBSP retrieval method, on the other hand, utilizes the albedo difference between
band-11 and band-12 in the single satellite pass for methane concentration enhancement
measurements with an albedo change of:

∆RMBSP =
cR12 − R11

R11
, (32)

In this equation, c is the fit of band-12 to the albedo of band-11. The absorption model,
consequently, can be articulated as:

mMBSP(∆Ω) =
T12(Ω + ∆Ω)− T12(Ω)

T12(Ω)
− T11(Ω + ∆Ω)− T11(Ω)

T11(Ω)
, (33)

The method is based on the difference in albedo between the two bands, and the
methane concentration enhancement ∆Ω can be derived through the optimization of the
objective function F(∆Ω) = ∆RMBSP − mMBSP(∆Ω).

Furthermore, the MBMP retrieval method synergistically integrates the strengths of
the aforementioned two methods to more effectively mitigate the impact of artifacts. This
algorithm can eliminate the absorption effect of the ground surface in the SWIR spectrum.
Based on two satellite passes (with and without methane emission presence, respectively),
the methane column concentration enhancement is solved using the difference in albedo in
band-12 and band-11 at different times:

∆ΩMBMP = ∆ΩMBSP − ∆Ω′
MBSP. (34)

Through the practical application of the above methods, it was found that the retrieval
capability of the algorithm depends, to a large extent, on the surface conditions. For most
scenarios, the MBMP algorithm exhibits the highest retrieval precision. Simultaneously, it
is observed that the primary source of error in the retrieval process stems from alterations
in the albedo of the underlying surface.

Time Series Model

In the pursuit of methane plume retrieval using multispectral imagers, Ehret et al. [38]
calculated the background value of the target scene based on the time series changes of
multiple satellite passes, subsequently deriving the column concentration enhancement
of the methane plume. This method is rooted in the Beer–Lambert law, assuming an
ideal atmospheric model, specifically, a pure atmospheric model, where only methane is
considered. The existing methane leakage is represented by Ileak, and the radiation intensity
received by the sensor can be expressed as:

Iplume = I0

∫
s(λ)α(λ)e−AMF∑N

i=0 Ai(λ)li · e−AMFACH4
(λ)lleak dλ, (35)

where s(λ) is the sensitivity function, while α(λ) denotes the surface albedo, A denotes
the absorption coefficient, and AMF (air mass factor) denotes the radiative transfer path
(AMF = 1

cosθsun
+ 1

cosθsat
), as illustrated in Figure 1.

The approach posits a stable and unchanging surface albedo using the ideal atmo-
spheric model. It further assumes that the occurrence of methane emissions is a stochastic
event, with no methane emissions during the remaining periods. On the basis of this
assumption, the background concentration value of no methane emission at the target
range can be estimated using long-term satellite transit scan images.

Specifically, this involves conducting a linear regression of methane concentrations
observed in images predating the target date. If the observed radiation intensity at time t is
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denoted by It, then the calculation of the optimal weights ωi for the linear regression can

be optimized as min
{ωi}

∥It −
t−1
∑

i=0
ωi Ii∥

2

, and the methane background concentration values for

the target date can be expressed as a linear combination of Ibg =
t−1
∑

i=0
ωi Ii. Then, the methane

concentration enhancement can be expressed by the optimization problem between the
observed and simulated values as:

argmin
plume

∥
Iplume

Ibg
−
∫

B12 s(λ)e−AMF∑N
i=0 Ai(λ)li e−AMFACH4(λ)lleak dλ∫

B12 s(λ)e−AMF∑N
i=0 Ai(λ)li dλ

∥
2

2

. (36)

This method employs a time window of 30 days. However, in practical applications,
the subsurface albedo of the target scene undergoes temporal variations. Consequently, an
extended time window not only proves ineffective in enhancing methane plume detection
precision, but may also introduce larger errors.

Transmittance Simplified Model

Sánchez-García et al. [36] proposed an estimation of methane concentration enhance-
ment based on methane plume transmittance. The primary foundation of this method lies
in the assessment of the ratio of radiation from the methane-sensitive band to that from the
methane-free band. The transmittance can be succinctly described as:

Tplume(λ) ≈
Iplume

Ibg
= e−AMF·σCH4

·XCH4 , (37)

where σCH4 is the methane absorption cross-section. Various methods are employed to
determine the transmittance for different satellites. For instance, in the context of the
Sentinel-2 remote sensing satellite, Gorroño et al. [66] expressed the transmittance as:

T =

R12plume
R11plume

R12plume− f ree
R11plume− f ree

, which is similar to the MSMP retrieval method mentioned by [37]. By

segregating ∆XCH4 in the equation to obtain ∆XCH4 =
− log(T)

AMF·σCH4
, the quantification of the

methane plume can be achieved, which can then be transformed into the enhancement of
the methane concentration:

∆Ω =
MCH4

Ma
ΩaXCH4. (38)

2.2.2. Retrieval Algorithms Based on Hyperspectral Imagers

Compared to the multispectral imager, hyperspectral imagers have a shorter revisit
time and a higher spectral resolution. A high revisit rate increases the coverage of the area,
which in turn enhances the probability of the discovery of undetected plumes. Consider
that in the SWIR spectrum, other gas components (carbon dioxide, water vapor, nitrous
oxide) all absorb in this spectrum, while surface features also affect the entire spectrum. The
higher the spectral resolution, the finer atmospheric methane absorption features which
can be captured, and the more complete methane information which can be received by the
sensors, thus mitigating the influence of various factors on the inversion results [67].

Currently, physically driven and data-driven methods are widely employed in the
retrieval of methane concentration enhancement by hyperspectral imagers. Physically
driven methods hinge on the intricate interplay between subsurface features, atmospheric
conditions, and radiative transfer. The detailed algorithmic process for these methods is
expounded upon in Section 2.1. On the other hand, data-driven methods utilize target
information extracted from images to execute retrieval through statistical approaches. Data-
driven methods do not need to take into account the influence of the background value, and
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at the same time, they show a higher computational efficiency than do physically driven
methods. The data-driven methods are mainly based on the matched filter method.

Matched Filter

The matched filter method is a calculation in which the input spectral information
can be expressed as perturbations in the average spectrum caused by changes in methane
concentration. The algorithm searches for typical variations in each spatial pixel that
maximize the signal-to-noise ratio and enhance the detection of the target, while whitening
the data by considering the background covariance. This method is widely used in the
retrieval of methane point sources. Grounded in the Beer–Lambert theorem, it undergoes
Taylor first-order expansion linearization [68]:

I(∆Ω, s) = I0e−∆Ωs ≈ I0 − ∆Ωts(I0), (39)

Here, s represents the absorption spectrum of methane, and I0 can be approximately
replaced by the average radiance value µ of the sensor. The target spectrum ts(I0) is
the disturbance of the background radiation signal caused by the enhanced methane col-
umn concentration. It can be obtained from radiative transfer model, the convolution of
the instrument response function with the methane absorption spectrum is necessary in
this process. Similarly, assuming that only methane is the single gas of interest and the
absorption characteristics of methane will not change, the value of the methane column con-
centration enhancement can be obtained by applying the Gaussian logarithmic likelihood
to the above formula and optimizing the target formula, as follows:

∆Ωi =
(Ii − µ)TC−1(t(µ))

(t(µ))TC−1(t(µ))
, (40)

where Ck and µk are the values recalculated for each reweighting iteration.
Foote et al. [69] suggested that sparsification of the data and reflectance correction

during the matched filter method can eliminate the effect of background, to some extent,
and improve the detection precision. By introducing a re-weighted l1 minimization scheme
onto the same matched filter, using the iterative shrinkage threshold algorithm (ISTA), then
the solution for methane concentration enhancement becomes:

ˆ∆Ωk
i = max


(

Ii − µk
)

Ck−1t
(

µk
)
− ωk

i[
t
(
µk
)]TCk−1t

(
µk
) , 0

. (41)

In addition, Pei et al. [70] point out that the traditional matched filter algorithm is
only applicable to point sources with small emissions, and they propose a logarithmic
matched filter algorithm, i.e., using the logarithmic normal distribution as a substitute
for the spectral background model. Based on this, the iterative computation of anomaly
rejection can improve the inversion accuracy.

GHGSat Optimization Algorithm

GHGSats operates in “target” mode, a configuration in which the satellite’s attitude is
controlled to prolong the duration of target observation compared to that inherent in the
sky-bottom (downward pointing) mode. This extended viewing enhances the signal-to-
noise ratio. Multiple 2D images are captured during each observation sequence, allowing
ground targets to pass through the field of view, thus sampling the spectral information
contained in the full extent of the image.

The satellite accomplishes the methane plume retrieval through the optimization
method outlined in Section 2.1.1, where the a priori information xa used by GHGSats is the
albedo parameter of LandSat-8 for the same scene, the a priori state vectors of CO2 and
water vapor concentration values from AIRS, and the proximity time methane concentration
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values from TROPOMI. It is worth noting that there are nearly 200,000 pixel points in the
satellite’s field of view when performing Gauss–Newton iterations to minimize the cost
function. This is difficult to achieve in practice for each pixel point in order to compute
its forward model, as well as the Jacobi matrix. To address this issue, the algorithm is
streamlined into two primary steps. Firstly, the full forward model and Gauss–Newton
retrieval iteration are employed to estimate the scene-wide average state vector x̂. Then,
the retrieval of each pixel is accomplished using the linearized forward model (LFM). The
LFM model is shown below [71]:

FLFM
(

x(ij)
)

= x(ij)(1) ·
(

K1(x̂) + 1
x̂(1)

n
∑

l=2
Kl(x̂)

(
x(ij)(l)− x̂(l)

))
+

n+m
∑

l=n
Kl(x̂)

(
x(ij)(l)− x̂(l)

)
.

(42)

The first element x(ij)(1) of the state vector represents the surface reflectance, and
the methane, carbon dioxide, and water vapor column densities in pixel (i, j) can all be
retrieved. The linearized forward model (LFM) consists of two terms: one contains n
Jacobian state vectors, proportional to surface reflectance (e.g., molecular column density),
while the other contains m Jacobian state vectors, unscaled by reflectivity. By calculating
this model, the change in the state vector for each pixel is determined. This change can
then be incorporated into the forward model and fitted with the actual spectrum to obtain
the optimal state parameters. The primary advantage of using LFM is that the forward
model and the Jacobian matrix each only need to be calculated once at the beginning of
the retrieval of a tile. However, the disadvantage of this technique is that for nonlinear
parameters in the forward model, retrieval using LFM will introduce systematic deviations
away from the linearization point. Additionally, the premise of this algorithm is that the
ground elevation is flat, and it ignores the impact of terrain on the retrieval.

2.3. Application of Deep Learning in the Retrieval Algorithm

For area flux mappers, the amount of data collected by the satellite is substantial,
potentially leading to significant time requirements for data retrieval. Moreover, traditional
methods in this domain depend heavily upon prior information and rely on specific
physical assumptions. Contrary to traditional retrieval methods, deep learning eschews a
priori assumptions regarding the statistical properties of the data. Furthermore, instead of
using assumed knowledge, connections between inputs and outputs are inferred from the
data. For the neural network method, for n inputs {xi|x1, . . . xn } in the network, the output
y of a neuron is the weighted sum of its inputs transformed by its activation function S.
This process can be expressed as:

y = S

(
n

∑
i=1

wixi + b

)
. (43)

where {wi|w1, . . . wn } is the weight, b is the deviation, and the activation function is usually
a sigmoid or hyperbolic tangent function. The input layer consists of a group of neurons
representing the input features (satellite observation spectrum). Each neuron in the hidden
layer performs a weighted linear summation of the values of the previous layer, followed by
an output obtained through a nonlinear activation function. The number of neurons in the
input layer and output layer is determined by the input and output dimensions, respectively.
For different problems, there is no specific method to determine the number of hidden
layers and their neurons, which is usually selected through trial and error. The schematic
diagram of the method flow is shown in Figure 4. Fenwick, Boecsh, and Tyukin [72]
applied the neural network method to implement the retrieval of XCH4 by TROPOMI,
determining the optimal model parameters by comparing the number of different hidden
layers. David, Bréon, and Chevallier [73] demonstrated, through gas retrieval results, that
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a neural network trained on a representative dataset achieves slightly better precision than
a full physics algorithm.
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from known spectra.

In the context of point source imagers, traditional methods for detecting methane
point sources and quantifying emission rates are time-consuming, labor-intensive, and
have a certain error rate due to the need for a large amount of human intervention. In
recent years, deep learning has been used to detect and quantify point source emissions,
reducing the interference of other factors, to a certain extent. Kumar et al. [74] proposed
a hybrid technique that combines the core concepts of traditional signal processing with
deep learning, which helps in enhancing detection and removing the surface terrain con-
fusion by learning the terrain and plume shapes, training the neural network to generate
segmentation maps of methane plumes, and removing the artifacts. Kumar et al. [75]
introduced a new enhanced matched filter method integrated into a transformer-based
convolutional neural network; this approach aims to classify detected surface types and arti-
facts to facilitate signal-to-noise separation. Groshenry et al. [76] designed a plume transfer
method, transferring Sentinel-2 images to PRISMA by modifying the plume distribution of
Sentinel-2 to match the instrumental features of PRISMA, preserving the features of the
original image to compensate for the relative scarcity of PRISMA images, and employing
deep learning to achieve the retrieval of methane plumes.

While the multispectral remote sensing retrieval algorithms discussed in Section 2.2.1
are capable of detecting methane plumes, they exhibit noticeable limitations. Firstly, the
above three methods cannot eliminate artifacts caused by surface albedo and usually
require manual verification; secondly, the retrieval of plumes relies on the time series
of images. Vaughan et al. [77] used Sentinel-2 satellite data to train a machine model
and achieved the segmentation of methane plumes from a single image. The model was
trained on Sentinel-2 images and manually annotated methane plume datasets spanning
from 2017 to 2021, with a focus on areas containing super emission sources. The methane
detection frame is formulated as a binary segmentation problem, classifying pixels as 1 if
they are part of the methane plume and 0 otherwise; the MBMP algorithm is employed
as an auxiliary tool for annotation. The detection model uses U-Net architecture, which is
simple and flexible, for segmentation, taking the Sentinel-2 band as input, and the output is
a probability prediction of whether the pixel is part of a methane plume [78]. The potential
application of this model lies in the automated monitoring of areas with known methane
plumes. The evaluation of different scenes and pixels demonstrated overall high prediction
quality. However, a drawback of the current model is that the output only provides a binary
mask, rather than quantifying the methane concentration value for each tile.
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3. Quantification of Methane Point Source Emissions

A more specific quantitative analysis of methane plumes detected by point source
imagers can intuitively and clearly identify the harmfulness of abnormal methane point
source emission events. Beyond the retrieval of the methane plume spectral signal, it
becomes essential to extract the methane plume mask and subsequently, to calculate the
plume model in conjunction with wind field information for the accurate estimation of
methane plume emissions. The absence of accurate wind field information represents
a significant source of error in estimates of methane emission rates. Guanter et al. [68]
pointed out that strong winds may cause the plume to dissipate below the instrument
detection limit.

3.1. Methane Point Source Plume Model

Jacob et al. [13] provided a comprehensive overview of current methods for gas plume
model calculation. Among these, the Gaussian plume model is a classic technique for point
source turbulent diffusion, but it is more suitable for similar turbulent vortex plumes [79].
Since the scale of methane plumes is typically small and often deviates from the Gaussian
shape, the Gaussian plume model is rarely employed to calculate the methane plume
emission rate [80]. Additionally, the Gaussian theorem model and the local mass balance
model lack consideration of turbulent diffusion and plume wind direction, leading to errors
in estimating emission rates, and consequently, they are limited in practical use. Although
Jongaramrungruang et al. [81] used a convolutional neural network learning model to
reduce the dependence on wind field information, the currently inferred methane emission
rate exhibits low accuracy due to the lack of real emission rates as training datasets. At
present, cross-sectional flux models and mass-enhanced integral models are predominantly
used in the calculation of methane point source emission rates.

3.1.1. Cross-Sectional Flux Model

In the case of the cross-sectional flux (CSF) model, the estimation of the point source
emission rate primarily involves calculating the fluxes of one or more plume cross-sections
orthogonal to the plume axis. Based on the principle of conservation of mass, the point
source emission rate is the product of the wind speed and the plume cross-section along
the y-axis perpendicular to the wind field [80]:

Q =
∫ +∞

−∞
U(x, y)∆Ω(x, y)dy, (44)

Since U(x, y) is not well characterized in satellite observations, an integral of the
effective wind speed Ue f f acting on the enhanced concentration of methane columns within
the image element is required.

3.1.2. Integrated Mass Enhancement Model

In contrast, the integrated mass enhancement (IME) model relates the point source
emission rate to the total mass of the plume monitored in the downwind direction of
the plume by assuming that the observed methane plume contains N image elements Pj
(j = 1, . . . N); then, the IME can be expressed as:

IME = ∑N
j=1 ∆ΩjPj, (45)

Subsequently, the relationship between IME and Q can be related to the time of
existence of the methane plume: Q = IME

τ , where the time of existence of the methane
plume (also known as the plume lifetime) τ can be expressed in terms of the effective wind
speed Ue f f and the methane plume length L:

Q =
1
τ

IME =
Ue f f

L
IME =

Ue f f

L ∑N
j=1 ∆ΩjPj, (46)
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The length of the methane plume can be derived from the plume mask area, i.e.,
L =

√
AM. It is sufficient for the success of the model that the length of the methane plume

has a geometrically related physical basis to the observed plume shape.
Both the cross-sectional flux model and the integrated mass enhancement model

involve the calculation of the effective wind speed Ue f f , which can be derived by fitting
the 10 m wind speed (U10) at the location of the methane plume, or estimated from a
meteorological database (GEOS-FP), if in situ measurements of the wind field data are
missing at the location of the emission point source. The relationship between the effective
wind speed and the 10 m wind field is typically established through fitting, often derived by
simulating the methane plume using large eddy simulation (WRF-LES). Due to differences
in instrument resolutions and simulation conditions, variations exist in the relational
equation between the 10 m wind field and the effective wind speed. Currently, many
studies are based on the following relational equation [40,68]:

Ue f f = 0.34 · U10 + 0.44. (47)

The accurate estimation of effective wind speed is crucial for minimizing errors in
methane plume quantification. Sherwin et al. [82] found that the measured methane
emission estimates were 20% higher than previous estimates obtained by performing
10 m wind speed measurements at a methane plume emission site. Additionally,
Varon et al. [83] found that GEOS-FP wind speeds provided more accurate results than
DarkSky wind directions. As a result, utilizing GEOS-FP data and replacing DarkSky’s
wind field information in areas of data overlap can enhance the precision of emission
rate estimation. Once the quantification of methane plume emissions is concluded, the
generation of cloud top radiance brightness is carried out for subsequent methane retrieval
using end-to-end simulation. The retrieval results are compared with the simulation results
to assess the influence of signal-to-noise ratio, surface, and other factors on the retrieval
results.

4. Conclusions and Future Outlook

As methane has received increasing attention in recent years, the need for methane
detection not only reflects changes in large-scale budgets, but also includes the impact of
small-scale emissions. Satellite detection can accomplish the observation of atmospheric
methane column concentration at different spatial scales. Satellite remote sensing detection
of methane has also advanced from a global scale to high spatial resolution detection of
individual plumes. This article provides an overview of the current major satellite methane
remote sensing algorithms, and a simple description is shown in Table A2.

A variety of algorithms based on the optimization algorithm methods, the most funda-
mental inversion methods, have been developed. At present, area flux mappers mainly rely
on physical models and proxy algorithms. Founded on the spectral characteristics, instru-
ment characteristics, and other factors of various satellites, different versions of the retrieval
algorithm are derived based on the basic algorithm, notably, the NIES-FP, ACOS, UoL-FP,
and RemoTeC retrieval algorithms. The NIES-FP retrieval algorithm, developed by NIES
(the National Institute for Environmental Studies) in Japan, is the standard algorithm for
processing GOSAT observation data. It utilizes two orthogonal polarization measurement
spectra to generate a total intensity spectrum, reducing the impact of polarization. The
algorithm is regularly updated, incorporating corrections for aerosol and other factors [84].

The University of Leicester Full-Physics Retrieval Algorithm (UoL-FP), developed
by the University of Leicester in the UK, is a classic algorithm for retrieving greenhouse
gases. The algorithm uses principal component analysis to speed up the retrieval of
radiative transfer flux and separates aerosols, classifying them into only two standards.
This algorithm has been employed for products and services, in collaboration with the
European Space Agency’s Climate Change Initiative (CCI) and the Copernicus Climate
Change Service (C3S).
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The RemoTeC algorithm serves as the standard for TROPOMI’s methane retrieval.
It is based on regularization operations and performs line-by-line calculations of single
scattering in the forward model. This algorithm is known for its speed, making it suitable
for the large-width scanning characteristics of TROPOMI [47].

Similarly, based on the optimization retrieval, NASA’s ACOS (Atmospheric CO2
Observations from Space) model is used for OCO-2 retrieval, employing an LUT for fast
calculation by making scattering and absorption part of the forward modeling process. In
addition, considering that surface pressure is directly related to the retrieval of greenhouse
gases, the NIESFP, ACOS, and UoL-FP algorithms use the O2-A band to synchronously
correct the surface pressure, while RemoTeC uses the equivalent surface pressure corrected
by the surface height.

The theoretical basis of the physical algorithm is basically the same, and the accuracy
of the retrieval results is also similar. Because it can more accurately simulate the atmo-
spheric radiation transfer process, the physical algorithm has become the most accurate
algorithm at this stage. Furthermore, although the classic DOAS algorithm is also suitable
for the retrieval of various atmospheric components, it is based on the assumption that the
absorption cross-section of the target component does not change with temperature and
pressure. Consequently, it is particularly well-suited for the retrieval of ozone and other
gases within the ultraviolet spectral band.

The IMAP-DOAS and WFM-DOAS algorithms address the nonlinear issues of atmo-
spheric temperature, pressure profile sensitivity, and instrument spectral capabilities. The
WFM-DOAS retrieval was originally used for SCIAMACHY to retrieve carbon dioxide
and methane, and is also implemented for TROPOMI methane retrieval. This method
involves replacing the absorption cross-section with a weighting function of the total gas
column volume when performing the fitting of the differential absorption spectrum. Also,
the algorithm allows retrieval at lower spectral resolution, but relies more on information
such as temperature and pressure profiles and is more suitable for cloud-free scenarios [85].
IMAP-DOAS can be used not only for regional retrieval, but also for methane point source
retrieval. Both methods remove the scattering effect by fitting a low-order polynomial.
Additionally, the carbon dioxide proxy method can achieve faster retrieval speed, but its
retrieval precision is greatly affected by the precision of the proxy gas carbon dioxide, and
is also limited by the selection of the methane retrieval absorption band. The applicability
of the proxy method also requires the selection of the spectral band of the sensors, and the
method is currently only applicable to instruments that can achieve retrieval through the
weak absorption band of methane. Area flux mappers can achieve a retrieval precision of
nearly less than 1%, based on the above inversion algorithm.

For point source imagers, a majority of algorithms ignore the impact of thermal
radiation and scattering in the retrieval processes. Nonetheless, given the substantial
concentration variations in methane plume emissions compared to the background, as
mentioned in Section 2.2, the point source retrieval algorithm can complete the retrieval
of point sources with a certain absolute precision. In addition, the retrieval precision of
point sources is largely influenced by the subsurface. In general, the more homogeneous
the subsurface, the smaller the emissions that can be detected. The study in Ref. [86] has
achieved the detection of a small plume, with 180 kg/h of emissions, on a uniform sea
surface. In addition to the influence of the retrieval algorithm, the detection thresholds of
point source imagers are affected by a combination of other factors, such as instrument
parameters [67]. In addition, there is another point of interest for point source imagers, as
the cost of such satellites is lower compared with that of area flux mappers. Considering
that the GeoCarb (Geostationary Carbon Cycle Observatory) had been canceled owing
to several factors, including cost and technology, the lower cost would make it easier
to form constellations, thus further increasing the revisit rate. In recent years, with the
rapid development of artificial intelligence, deep learning has also been widely used in gas
inversion. Compared with traditional algorithms, which are computationally intensive and
time-consuming, deep learning can better solve this problem and perform simulation calcu-
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lations on nonlinear problems. In addition, deep learning can also be used to automatically
monitor methane point sources and achieve the efficient segmentation of plumes. However,
deep learning requires a large amount of data for training, and current algorithms are
still immature.

The utilization of satellite remote sensing not only facilitates the long-term and large-
scale observation of methane, leading to the establishment of a unified monitoring system,
but it also enables the detection and quantification of anomalous methane point-source
emissions by overcoming temporal and spatial constraints. Nevertheless, challenges persist
in regards to methane point source detection due to instrument limitations and the impact
of complex subsurface conditions. Additionally, current methane remote sensing satel-
lites predominantly rely on passive observation methods, resulting in limited observation
frequency. The absence of monitoring during nighttime and in polar regions leaves a signifi-
cant number of methane emission areas unobserved. The upcoming launch of the MERLIN
satellite in 2028 aims to address these limitations. By introducing nighttime observation
capabilities, MERLIN will mitigate the impact of cloud cover on observations, increasing
the number of effective observations, and enabling the monitoring of the permafrost areas.
This satellite will play a crucial role in filling observational gaps in the monitoring of
polar sources of methane emissions, enhancing our understanding of methane’s role in
climate change, and reducing uncertainties regarding methane emission estimates. The
MethaneSAT satellite, which has been launched in 2024, will focus on monitoring the oil
and gas industry region, with a high revisit rate, carrying out remote sensing quantification
of high-resolution large-scale point sources on a larger spatial scale.

In the future evolution of methane remote sensing satellites, a more integrated ap-
proach is essential, combining area flux mappers and point source imagers to establish
diverse satellite networks for observation. The establishment of a unified monitoring
mechanism for emission detection and assimilation datasets is also necessary. The synergy
of active and passive satellites holds the potential to enhance detection precision, while the
integration of geostationary satellites with polar orbiting satellites can significantly improve
temporal resolution. The establishment of a network of observation satellites contributes to
the development of a globally unified and continuous methane gas observation dataset.
This network-centric approach ensures comprehensive coverage, minimizing observational
gaps and fostering a more nuanced understanding of methane dynamics. Then, it can
comprehensively observe the methane gas concentration and the temporal variations in
sources and sinks in the context of the carbon-neutral background. This will provide strong
support for the global carbon inventory, started in 2023, and reduce uncertainties in regards
to national emission inventory reports.
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The abbreviations used in this study have been summarized in Table A1.

Table A1. List of abbreviations.

Abbreviation Meaning

TCCON Total Carbon Column Observing Network
NDACC Network for Detection of Stratospheric Change

GAW Global Atmosphere Watch Program
WMO World Meteorological Organization

AVIRIS Airborne Visible Infrared Imaging Spectrometer
VIRIS-NG Airborne Visible InfraRed Imaging Spectrometer-Next Generation

SWIR short-wave infrared
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Table A1. Cont.

Abbreviation Meaning

TIR thermal infrared
GOSAT Greenhouse Gases Observing Satellite

OH hydroxyl
GHGSat-D Greenhouse Gas Satellite-Demonstrator

GF-5 Gaofen-5
ZY-1 ZiYuan-1
GMI Green Gas Monitoring Instrument

ADEOS Advanced Earth Observing Satellite

SCIAMACHY Scanning Imaging Absorption spectrometer for Atmospheric
Cartography

TANSO-FTS Thermal and Near-Infrared Sensor for Carbon Observations-Fourier
Transform Spectrometer

MERLIN Methane Remote Sensing Lidar Mission
DOAS Differential Optical Absorption Spectroscopy

WFM-DOAS Weighting Function Modified-DOAS
IMAP-DOAS Iterative Maximum A Posteriori Differential Absorption Spectroscopy

NOAA ESRL National Oceanic and Atmospheric Administration Earth System
Research Laboratories

ECMWF European Centre for Medium-Range Weather Forecasts
PCA principal component analysis
AIRS atmospheric infrared sounder
SVD singular value decomposition

FOCAL fast atmospheric trace gas retrieval
OCO-2 Orbiting Carbon Observatory-2
CO2M Copernicus Anthropogenic Carbon Monitoring
IPDA integrated path differential absorption method

DAOD differential optical depth
ASCENDS Active Sensing of CO2 Emission over Nights, Days, and Seasons

WAF-P wide-angle Fabry-Perot imagers
PRISMA PRecursore IperSpettrale della Missione Applicativa
HypSEO Hyperspectral Satellite for Earth Observation

HYC hyperspectral camera
AHSIs advanced hyperspectral imagers

MSI multispectral imager
WV110 WorldView-110 camera
SBMP single-band–multi-pass retrieval
MBSP multi-band–single-pass retrieval
MBMP multi-band–multi-pass retrieval

CSF cross-sectional flux
IME integrated mass enhancement
NIES National Institute for Environmental Studies

UoL-FP University of Leicester Full-Physics Retrieval Algorithm
CCI European Space Agency’s Climate Change Initiative
C3S Copernicus Climate Change Service

ACOS Atmospheric CO2 Observations from Space
GeoCarb Geostationary Carbon Cycle Observatory

Table A2. Algorithm summary.

Algorithm
Physical Basis Retrieval Capability

Absorption Scattering Profile
Retrieval

Global or
Regional Small Areas Calculation

Speed

Optimization • • • • • Low
Regularization • • • • # High
WFM-DOAS • # # • # Medium
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Table A2. Cont.

Algorithm
Physical Basis Retrieval Capability

Absorption Scattering Profile
Retrieval

Global or
Regional Small Areas Calculation

Speed

IMAP-DOAS • # • • • Medium
Carbon dioxide
proxy method # # # • # High

Singular value
decomposition • • • • # Medium

FOCAL # • # • # High
Integral path
differential
absorption

• # • • • High

SBMP, MBSP,
MBMP • # # # • Medium

Time series
model • # # # • Medium

Transmittance
simplified

model
• # # # • High

Matched filter • # # # • High

• presents the factor considered in the physical processes and the capability in retrieval, and # presents the
opposite.
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77. Vaughan, A.; Mateo-García, G.; Gómez-Chova, L.; Růžička, V.; Guanter, L.; Irakulis-Loitxate, I. CH4Net: A Deep Learning Model
for Monitoring Methane Super-Emitters with Sentinel-2 Imagery. EGUsphere 2023, preprint.

78. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Lec-
ture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241.
ISBN 978-3-319-24573-7.

79. Nassar, R.; Mastrogiacomo, J.-P.; Bateman-Hemphill, W.; McCracken, C.; MacDonald, C.G.; Hill, T.; O’Dell, C.W.; Kiel, M.; Crisp,
D. Advances in Quantifying Power Plant CO2 Emissions with OCO-2. Remote Sens. Environ. 2021, 264, 112579. [CrossRef]

80. Varon, D.J.; Jacob, D.J.; McKeever, J.; Jervis, D.; Durak, B.O.A.; Xia, Y.; Huang, Y. Quantifying Methane Point Sources from
Fine-Scale Satellite Observations of Atmospheric Methane Plumes. Atmos. Meas. Tech. 2018, 11, 5673–5686. [CrossRef]

81. Jongaramrungruang, S.; Thorpe, A.K.; Matheou, G.; Frankenberg, C. MethaNet–An AI-Driven Approach to Quantifying Methane
Point-Source Emission from High-Resolution 2-D Plume Imagery. Remote Sens. Environ. 2022, 269, 112809. [CrossRef]

82. Sherwin, E.D.; Rutherford, J.S.; Chen, Y.; Aminfard, S.; Kort, E.A.; Jackson, R.B.; Brandt, A.R. Single-Blind Validation of
Space-Based Point-Source Detection and Quantification of Onshore Methane Emissions. Sci. Rep. 2023, 13, 3836. [CrossRef]
[PubMed]

83. Varon, D.J.; Jacob, D.J.; Jervis, D.; McKeever, J. Quantifying Time-Averaged Methane Emissions from Individual Coal Mine Vents
with GHGSat-D Satellite Observations. Environ. Sci. Technol. 2020, 54, 10246–10253. [CrossRef] [PubMed]

https://doi.org/10.1016/j.jqsrt.2016.05.022
https://doi.org/10.3390/rs9111159
https://doi.org/10.5194/amt-15-3401-2022
https://doi.org/10.3390/rs9101052
https://doi.org/10.5194/amt-14-3909-2021
https://doi.org/10.1021/acs.est.6b04303
https://www.ncbi.nlm.nih.gov/pubmed/27740745
https://doi.org/10.5194/amt-16-89-2023
https://doi.org/10.5194/amt-14-7999-2021
https://doi.org/10.1016/j.rse.2021.112671
https://doi.org/10.1109/TGRS.2020.2976888
https://doi.org/10.1016/j.rse.2023.113652
https://doi.org/10.5194/amt-14-2127-2021
https://doi.org/10.5194/amt-14-117-2021
https://doi.org/10.1016/j.rse.2021.112579
https://doi.org/10.5194/amt-11-5673-2018
https://doi.org/10.1016/j.rse.2021.112809
https://doi.org/10.1038/s41598-023-30761-2
https://www.ncbi.nlm.nih.gov/pubmed/36882586
https://doi.org/10.1021/acs.est.0c01213
https://www.ncbi.nlm.nih.gov/pubmed/32672947


Atmosphere 2024, 15, 449 31 of 31

84. Yoshida, Y.; Ota, Y.; Eguchi, N.; Kikuchi, N.; Nobuta, K.; Tran, H.; Morino, I.; Yokota, T. Retrieval Algorithm for CO2 and
CH4 Column Abundances from Short-Wavelength Infrared Spectral Observations by the Greenhouse Gases Observing Satellite.
Atmos. Meas. Tech. 2011, 4, 717–734. [CrossRef]

85. Schneising, O.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Burrows, J.P.; Borsdorff, T.; Deutscher, N.M.; Feist, D.G.; Griffith,
D.W.T.; Hase, F.; et al. A Scientific Algorithm to Simultaneously Retrieve Carbon Monoxide and Methane from TROPOMI
Onboard Sentinel-5 Precursor. Atmos. Meas. Tech. 2019, 12, 6771–6802. [CrossRef]

86. MacLean, J.-P.W.; Girard, M.; Jervis, D.; Marshall, D.; McKeever, J.; Ramier, A.; Strupler, M.; Tarrant, E.; Young, D. Offshore
Methane Detection and Quantification from Space Using Sun Glint Measurements with the GHGSat Constellation. Atmos. Meas.
Tech. 2024, 17, 863–874. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5194/amt-4-717-2011
https://doi.org/10.5194/amt-12-6771-2019
https://doi.org/10.5194/amt-17-863-2024

	Introduction 
	Introduction for Methane Remote Sensing Satellites 
	Satellite Retrieval Algorithms for Area Flux Mappers 
	Optimization Algorithms 
	Regularization Algorithms 
	Improved Retrieval Algorithm for Differential Absorption Spectroscopy 
	Carbon Dioxide Proxy Method 
	Singular Value Decomposition Retrieval Algorithm 
	Fast Atmospheric Trace Gas Retrieval 
	Integral Path Differential Absorption Algorithm 

	Satellite Retrieval Algorithms for Point Source Imagers 
	Retrieval Algorithms Based on Multispectral Imagers 
	Retrieval Algorithms Based on Hyperspectral Imagers 

	Application of Deep Learning in the Retrieval Algorithm 

	Quantification of Methane Point Source Emissions 
	Methane Point Source Plume Model 
	Cross-Sectional Flux Model 
	Integrated Mass Enhancement Model 


	Conclusions and Future Outlook 
	Appendix A
	References

