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Abstract: Hybrid receptor models overestimate the contribution of background areas (no specific
emission sources), like the Yellow Sea in Korea. This study aimed to improve model performances
using Advanced Concentration Emission and Retention Time Weighted Trajectory (ACERWT). AC-
ERWT was combined with a positive matrix factorization (PMF), back trajectory, and Regional
Emission Inventory in Asia (REAS). The PMF receptor model used one year of data from Korea’s
Central Air Environment Research Center. In the PMF receptor model, eight sources (dust/soil,
secondary nitrate, biomass burning, vehicles, secondary sulfate, industry, coal combustion and sea
salt) influenced PM2.5 pollution at the receptor site (Daejeon, Korea). Secondary sulfate was the most
dominant source, followed by secondary nitrate and vehicle sources. ACERWT results showed high
contributions from China, Japan, and Korean regions, while the contribution from the Yellow Sea was
significantly lower. Several regions, such as the eastern and south-eastern areas of China, the southern
area of Taiwan, the western area of Tokyo, and the central area of Korea, showed high contributions
due to large-scale emission facilities and industrial complexes. In this study, the ACERWT model
significantly improved its performance regarding regional contributions to PM2.5 pollution at the
receptor site.

Keywords: PM2.5; positive matrix factorization; emission source; advanced concentration emission
and retention time-weighted trajectory; hybrid receptor model

1. Introduction

The region of East Asia emits a large amount of air pollutants owing to its high popu-
lation density, industrial activities, and energy consumption [1]. Thus, various challenges
in this region have been tried to identify high-concentration events and significant emission
sources of fine particles (PM2.5) [2]. A dispersion model based on pollution sources was
used earlier in the year. Receptor models have been developed to overcome some limita-
tions of the earlier dispersion models and have been recognized as a valuable tool in air
pollution modeling [3]. Since chemical element balance (CEB) was presented by Miller et al.
(1972), receptor models have been continuously developed and upgraded up to now [4].

Paatero (1997) studied using various methods to find out the effect of fine particles at
the receptor site and tried to calculate the relationship between the generation sources and
concentrations of fine particles. Eventually, the positive matrix factorization (PMF) model
was developed to estimate the source profile and mass contribution of fine particles [5].
Many studies using the PMF receptor model have been conducted to discover primary
sources and regions (or areas) contributing to receptor sites. Recently, hybrid receptor models
have been actively applied in East Asia to track source locations to receptor sites [2,6–12].
Most studies using the hybrid receptor model in Korea focused on the source apportionment
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of PM2.5 concentration in the capital and background areas [2,7,11,12]. Recently, various
trials were carried out to identify information about the source location. Linkage analysis
with a back trajectory model has been frequently used for tracing source locations [6–12].

Owing to the fact that the PMF receptor model has limitations in identifying the
source location, hybrid receptor models, which are a combined PMF receptor model and
back trajectory models of air masses, have been frequently studied, e.g., Potential Source
Concentration Function (PSCF), Concentration Weight Trajectory (CWT) and Residence
Time Weight Concentration (RTWC) [13–15]. However, these models tend to show the
contribution of PM2.5, especially in regions with no emission source (i.e., ocean areas), to
be unexpectedly high [16,17]. Several hybrid receptor models developed to overcome this
limitation still lack information on source locations [18–23] and need improvement.

In our previous study using the CWT model (modified CWT model, MCWT), we tried
to improve the limitation of the regional contribution of the hybrid receptor model caused
by overlapping several air masses. Although the contribution of the Yellow Sea to the
receptor site in the MCWT model was lowered, the result of the Yellow Sea contribution
was still high and should be complemented [24]. Therefore, as an improvement of the
hybrid receptor model, which identifies primary sources and regional contributions to the
receptor site, in this study, the Advanced Concentration, Emission, and Retention Time
Weighted Trajectory (ACERWT) model was newly introduced and used to identify source
locations and those contributions more clearly to the receptor site.

Moreover, it can be expected that the approach introducing the ACERWT model in
this study has a significant benefit in figuring out the PM2.5 contributions of surrounding
regions on a large scale.

2. Experimenter Method
2.1. Sampling Location and Monitoring Site

The monitoring site was one of the supersites (Central Air Environment Research
Center), which was located in the central region of Korea in the Daejeon Metropolitan
region (36◦19′21.4′′ N (latitude), 127◦24′49.7′′ E (longitude)). The location of the monitoring
site is described in Figure 1.
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Daejeon metropolitan region is one of the critical regions for interpreting Korea’s
national air pollution. This region is located in the center of Korea. Thus, it is surrounded
by the capital region (north), large industrial complexes (west), and agricultural areas
(south), and these surrounding regions influence the air pollution in this area.

2.2. Sampling and Data Analysis

This study used one year of full measurement data from the Central Air Environment
Research Center. Measurement parameters of PM2.5 are mass concentration, eight ions
(SO4

2−, NO3
−, Cl−, Na+, NH4

+, K+, Mg2+, Ca2+), organic carbon (OC), elemental carbon
(EC), and 17 heavy metals (Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Ba, and Pb).
PM2.5 mass concentration was measured in real-time by a BAM-1020 (Met One Ins., Grants
Pass, OR, USA), and ions were measured by an AIM-9000D (AIM, URG Co., Chapel Hill,
NC, USA) [25,26] and those lower detection limits were 0.0008~0.008 µg/m3. Carbona-
ceous compounds (OC and EC) were measured by a Sunset OC/EC analyzer using the
thermal/optical transmittance (TOT) method (OCEC Aerosol Analyzer, Sunset Laboratory
Inc., Oregon, USA). Those detection limits were 0.2 µg/m3 for OC and 0.0007 µg/m3 for EC,
respectively. Table 1 shows the gas and temperature conditions of the carbon analyzer [25].
Heavy metals were analyzed by an Online XRF (Xact® 625i, SailBri Cooper, Inc., Tigard,
OR, USA).

Table 1. Gas/temperature conditions of the TOT analyzer.

Program Activity Carrier Gas Ramp Time
(Second)

Program
Temperature

Oven Purge Helium 10 1
1stRamp Helium 70 310
2edRamp Helium 60 480
3rdRamp Helium 60 615
4thRamp Helium 90 840
- Helium 30 0
1stRamp O2/Helium 35 550
2ndRamp O2/Helium 105 850
Internal
Std. Calibration CH4/Helium 120 0

Cool down Helium 1 0

The mass concentration of 17 elements was detected by the non-destructive analysis
method. Further details on sampling and analysis methods are provided in the refer-
ences [25,27]. Uncertainties of measurement data were examined by the procedure of the
PMF receptor model [27] and Equation (1), i.e., the elimination of missing values, chemical
species with low reliability, signal-to-noise ration < 0.2, measurement detection limits
(MDL), and so on. Table 2 shows the measurement detection limits of PM2.5 components.√

(error f raction × concentration)2 + (0.5 × MDLs)2 (1)

2.3. Positive Matrix Factorization (PMF)

Concentration data of PM2.5 components were used in the PMF receptor model to trace
primary emission sources at the receptor site. The PMF receptor model was operated using
the methods reported in the 2020 Annual Intensive Air Quality Monitoring Station report by
the National Institute of Environmental Research (NIER) [27]. Input and uncertainty data
were pre-treated using concentration data and the standard errors of PM2.5 components.
Finally, the total input data was 5257, used in the PMF receptor model.
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Table 2. MDL of PM2.5 components.

Components MDL Components MDL Components MDL

Ions

SO4
2− 0.00595

Elements

Si 0.03690 Cu 0.00022
NO3

− 0.01018 S 0.00515 Zn 0.00019
Cl− 0.00966 K 0.00309 As 0.00016
Na+ 0.00328 Ca 0.00069 Se 0.00021

NH4
+ 0.00218 Ti 0.00036 Br 0.00025

K+ 0.04444 V 0.00034 Ba 0.00088
Mg2+ 0.00106 Cr 0.00025 Pb 0.00030
Ca2+ 0.00286 Mn 0.00032

Carbons
OC 0.29731 Fe 0.00042
EC 0.00084 Ni 0.00024

2.4. Emission Inventories

Regional Emission Inventory in Asia (REAS) version 3.2, provided by the National
Institute for Environmental Science (NIES) in Japan, was used as East Asia’s air pollution
emission data. This emission inventory was updated by Kurokawa et al. in 2020, and it
included the real emission data set of East-North Asia from 1950 to 2015 [28]. This emission
inventory was composed of 10 parameters (SO2, NOx, CO, NMVOC, PM10, PM2.5, BC,
OC, NH3, and CO2) and seven sources (power plant, industry, transportation, domestic
fuel combustion, industrial process, agriculture, etc. (suspended emission, solvent use,
and human being). Monthly emission data were obtained with a 0.25 × 0.25 latitude and
longitude resolution.

2.5. Advanced Concentration, Emission, and Retention Time-Weighted Trajectory (ACERWT)

The CWT model is frequently applied in the related analysis of the hybrid receptor
model in Korea. The CWT model expresses the regional contributions using the weighted
trajectories of input air masses based on air pollutant concentration at the receptor site. The
equation of CWT is shown in Equation (2).

CWTi,j =
∑L

l=1 Clτi,j,l

∑L
l=1 τi,j,l

(2)

CWTi, j means the model results at the grids i (latitude), j (longitude), Cl is the con-
centration (µg/m3) when trajectory l reaches the receptor site, τi,j,l is the retention time of
trajectory l in the grid ( i, j). The CWT model has a limitation of overestimation in some
grids owing to the overlapping of several trajectories [24]. Thus, a weighted method in
concentrations and emissions was tried to overcome this limitation.

ACERWT model is the combination method using each grid’s emission data of East-
North Asia and the CWT method. As the first step in ACERWT, the emissions at the grid
( i, j) which l trajectory passes are estimated as like Equation (3) [24].

Ck,l =
Sk,l

∑Nl
k=1 Sk,l

= Cl
Sk,l

Sl
(3)

Ck,l means the concentration considered the emission data and its weighting factor at
the receptor site for l trajectory. k is the area where l trajectory passes, Sk,l is the emissions
at the k area in the l trajectory. Nl is the total number of k in the trajectory l, Sl is the total
emission on the trajectory l. As the second step, Equation (4) shows the calculation of the
ACERWT model result.

ACERWTi,j =
∑M

l=1 ∑Nl
k=1 Ck,lτi,j,k,l

∑M
l=1 ∑Nl

k=1 τi,j,k,l
(4)
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ACERWTi,j is the relative contribution of PM2.5 concentration to the receptor site at
the grid ( i, j). τi,j,k,l is used as the retention time at the k area contained in the grid (i, j) on
the l trajectory.

Figure 2 shows the flow chart of the ACERWT model. ACERWT is the combination
model to identify the regional contribution to the receptor site, PMF receptor model,
HYSLIT (back trajectory), and emission inventory. The size of the grid was 1◦ and the
region of Korea was located in the center of Northeast Asia.
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3. Results and Discussions
3.1. Emission Inventory

To figure out the regional source contribution of major sources in the grids of the
ACERWT model, Figure 3 shows the summated emissions of PM2.5, SOx and NOx for
vehicles, industries, coal combustions, and the total source in East Asia. The contribution
of vehicle sources is higher than that of other sources in Korea. At the same time, the contri-
butions of industrial and coal combustion_domestic (residential coal combustion) sources
are higher in China. Mainly, coal combustion sources for power plants are concentrated in
the Sandung Peninsula, near Korea.
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3.2. Chemical Composition of PM2.5

Table 3 shows the concentrations of chemical species of PM2.5. PM2.5 concentrations
were 22.2 ± 15.3 µg/m3 in the measurement periods, and the maximum concentration was
reached by 104 µg/m3. Fractions of ions, carbonaceous compounds, and heavy metals are
51%, 22%, and 12%, respectively.

Table 3. Average concentrations of chemical species (PMF input data) during the measurement
period (µg/m3).

AVG. MAX. MIN. STD. Sample No.

PM2.5 22.1 104 1 15.4 8460
SO4

2− 3.75 15.9 0.06 2.47 6244
NO3

− 5.52 46.5 0.01 6.42 6258
Cl− 0.31 5.07 0.01 0.35 6257
Anion 9.56 58.2 0.11 7.92 8693
Anion/PM2.5 0.38 0.81 0.06 0.20 8693
Na+ 0.15 2.62 0.01 0.17 6255
NH4

+ 2.91 17.9 0.01 2.55 6258
K+ 0.15 1.14 0.01 0.12 6050
Mg2+ 0.02 0.95 0.01 0.04 6218
Ca2+ 0.11 2.27 0.01 0.15 6223
Cation 3.30 18.2 0.05 2.67 8693
Cation/PM2.5 0.002 0.07 0.0001 0.006 8785
Ion/PM2.5 0.51 0.99 0.04 0.27 8693
OC 3.42 16.1 0.27 2.05 7367
EC 0.95 4.69 0.02 0.58 7367
Carbon 4.38 19.2 0.46 2.85 8744
Carbon/PM2.5 0.22 0.97 0.04 0.12 8744
Metal 2.41 10.4 0.06 1.66 8780
Metal/PM2.5 0.12 0.86 0.01 0.06 8780
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Figure 4 and Table 4 show the fractions of chemical species depending on PM2.5
concentration level and frequencies depending on PM2.5 concentration level by season.
NO3

− and NH4
+ increased with increasing PM2.5 concentration, and high concentrations

of PM2.5 were frequently observed during the winter. This means that the formation of
secondary aerosols such as (NH4)2SO4 and NH4NO3 actively progressed with increasing
PM2.5 concentration, especially the formation of NH4NO3, which was more active in winter.
Guo et al. 2010 reported that the reaction of NH4NO3 ↔ HNO3 + NH3 could be well
progressed by the heterogeneous reaction with temperature conditions [29]. In addition,
ammonia concentration at 2021 Daejeon was high in the winter season, and the formation of
NH4NO3 progressed well owing to heterogeneous reactions in our recent study [30]. Sulfate
(SO4

2−−) and OC are well-known pollutants of long-range transportation and vehicle
emissions, respectively. The contribution to high PM2.5 concentration by these two species
was not higher than NO3

−. The nitrate effect mainly caused the high PM2.5 concentrations.
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Table 4. Frequency (days) depending on PM2.5 concentration level by seasons.

Period Season PM2.5 ≤ 15 15 < PM2.5 ≤ 30 30 < PM2.5 ≤ 45 45 < PM2.5 ≤ 60 60 < PM2.5

1~2, 12.2020 Winter 560 748 480 230 165
3~5.2020 Spring 690 1027 355 82 23
6~8.2020 Summer 1180 633 247 17 1
9~11.2020 Autumn 986 679 229 76 52
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3.3. Source Apportionment Using PMF Receptor Model

The correlation analysis between predicted and observed data using input data in
the PMF receptor model evaluated correlation coefficients, slopes, and intercepts as all
affordable values. Correlation coefficients for major components of PM2.5, such as SO4

2−,
NO3

−, NH4
+, OC, EC, K, and so on, indicated 0.8 or bigger values. Figure 5 shows the

correlation between the predicted PMF receptor model and measurement data of PM2.5.
The correlation coefficient was 0.94. This coefficient was reasonably affordable and similar
to previous studies [7].
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Figures 6 and 7, and Table 5, show the results of the PMF receptor model. Eight factors
were determined: dust/soil, secondary nitrate, biomass burning, vehicles, secondary
sulfate, industry, coal combustion, and sea salt sources. Seasonal contribution (unit: µg/m3)
for every eight sources is shown in Figure 8, i.e., spring: March to May 2020, summer: June
to August 2020, autumn: September to November 2020, and winter: January to February
2020 and December 2020, respectively.

Table 5. Source contribution during the whole measurement period.

Source Contribution

Secondary Sulfate 35%
Secondary Nitrate 26%

Vehicle 16%
Biomass burning 6%

Industry 6%
Dust/soil 6%
Sea salt 4%

Coal combustion 1%
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Table 5. Cont.

Source Contribution

Pie chart
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The first factor showed a high contribution of Ca2+, Mg2+, Ti, and Fe, and it was
classified as a Dust/Soil source. The average concentration of dust was 1.73 µg/m3 (6.2%)
(Table 5), and the seasonal contribution in summer was the highest (Figure 8). Similar to
this study, Ca2+, Mg2+, Si, Ti, Fe, and Mn were used as markers for soil and dust sources
in previous studies [24,31]. The second factor showed a high contribution by NO3

− and
NH4

+, and it was classified as a secondary nitrate source. The average concentration of
this source was 7.2 µg/m3 (25.7%) (Table 5), and the seasonal contribution in the winter
season was the highest (Figure 8). NO3

− and NH4
+ were used as markers for secondary

nitrate sources [24,30,31], as similar to this study. Secondary nitrates are composed of
NO3

− and NH4
+, which are oxidized NO2 combined with NH4+ and exist as the form of

NH4NO3 in the atmosphere [9,32,33]. NH4NO3 is actively formed in the winter season by a
heterogeneous reaction. Similarly, ammonia concentration was high in the winter season at
2021 Daejeon, and the formation of NH4NO3 was high in our previous study [30]. The third
factor showed a high contribution of Cl− and K, and it was classified as a biomass-burning
source. Cl−, K and OC were well-known as markers for biomass-burning sources [30,31].
The average concentration of this source was 1.8 µg/m3 (6.5%) (Table 5), and the seasonal
contribution in the autumn and winter seasons was high (Figure 8). Biomass burning
sources are frequently observed from open burnings in agricultural areas during the late
fall to the winter season in Korea. The fourth factor showed a high contribution by OC, EC,
and Cu, and it was classified as a vehicle source. The average concentration of this source
was 4.38 µg/m3 (15.6%) (Table 5). The seasonal contribution was not significantly affected
by season changes (Figure 8) and is the typical urban site pattern. Generally, OC and EC
are well known as the emission species from vehicle exhaust. Previous reports show OC is
high in gasoline exhaust, while EC is high in diesel exhaust [34–37]. Unfortunately, gasoline
and diesel vehicles were not distinguished in this study. The fifth factor showed a high
contribution of SO4

2− and NH4
+ and was classified as a secondary sulfate source. The

average concentration of this source was 9.82 µg/m3 (34.9%) (Table 5), and the contribution
of PM2.5 in the Daejeon region was the highest in 8 factors. The seasonal contribution in
summer was slightly higher than other seasons (Figure 8). Secondary sulfate is composed
of SO4

2− and NH4
+, which is the oxidized SO2 combined with NH4

+, and it exists in the
form of (NH4)2SO4 in the atmosphere. Dockery et al. 2007 reported that high humidity
and temperature influenced the conversion from SO2 to SO4

2−. Thus, the formation of
(NH4)2SO4 was more active in the summer and daytime than in the winter and nighttime
seasons [7,38]. The sixth factor showed a high contribution by heavy metals such as Mn,
Fe, Ni, Cu, and Zn, classified as industry sources. The average concentration of this source
was 0.57 µg/m3 (5.6%) (Table 5). The seasonal contribution was not significantly affected
by season changes (Figure 8) [39]. The seventh factor showed a high contribution by As,
and it was classified as a coal combustion source. The average concentration of this source
was 0.38 µg/m3 (1.4%) (Table 5), and the seasonal contribution in the winter season was
higher compared to other seasons (Figure 8). The 8th factor showed a high contribution
of Na+ and Cl−, which was classified as a sea salt source. Sea salt, composed of Na+ and
Cl−, is produced from the bubbles bursting in the ocean and coast. The contribution of Cl−

was considerably low, which means that the loss of Cl− might be caused by the reaction of
HNO3 (produced from the reaction of NH4NO3 ↔ HNO3 + NH3) and NaCl [40].

3.4. Results of the Regional Contributions by ACERWT

The model results between CWT and ACERWT are compared in Figure 9. Unlike
the CWT result, the ACERWT model showed no contribution from the Yellow Sea region
(Figure 9, left), while the CWT result showed a high contribution from the overlapping
of several trajectories (Figure 9, right) [24]. This result suggests that the ACERWT model
can be an alternative to overcome the limitations of the CWT model. In addition, the
CWT model showed a high contribution from the near area of the receptor site and Yellow
Sea regions, and the contributions of Japan and South China were low. In contrast, the
ACERWT model showed a high contribution from East China and North-East China. From
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the point of view of the distribution of industries and population, the result of the ACERWT
model is relatively reasonable.
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Figure 9. Comparison of ACERWT (left) and CWT (right) model results.

In the results of the ACERWT model, the regional contribution of North-Eastern China
and Eastern China was the highest, followed by Southern Japan and South Korea. This
result was based on the differences between back-tracking periods and emission inventories.
The regional contributions by Yellow Dust were from Mongolia, a desert area in China.
Filonchyk et al. (2022) mentioned that Yellow dust was produced from sandstorms in
desert areas in China [41]. The contributions of eastern and south-eastern areas were high
in the China region. According to Li et al.’s (2016) report, large-scale emission facilities
and industrial complexes were located with a high density in Jiangsu province, Shanghai,
and Henan province in Eastern China [42]. Beijing and Shanghai, i.e., China’s largest
metropolitan cities, have many anthropogenic emission sources in this Eastern or South-
Eastern China. In the Southern Taiwan region, which contains a large harbor and the
urban city of Kaohsiung, Tainan also influenced PM2.5 pollution at the receptor site. In
Japan, the regional contribution of the western area of Tokyo, Southern Japan, and Western
Japan contributed to PM2.5 pollution at the receptor site. Tokyo is the largest city in Japan,
and it has the Isogo coal power plant and the Hekinan coal power plant located in the
Nagoya region (Southern Japan). Goto and Kumamoto cities, with energy power plants
and anthropogenic emission sources due to the high population density in those urban
cities, are located in Western Japan [43].

In the domestic region, the regional contribution of Gaeseong city in North Korea
is high because of the high population density and industrial complex in Gaeseong city.
Moreover, the regional contribution of the Capital region (Seoul, Gyeonggi, and Incheon),
Chungcheong region (Dangjin, Cheongju, and Sejong) and Gyeongsang region (Busan
and Ulsan) was high; the population density of the capital region is considerably high;
Gyeonggi has many industrial complexes with high density, and Incheon has a large scale
of harbors and several industrial complexes. Large-scale emission sources such as the
iron and steel industry and coal power plants are distributed in Dangjin; Cheongju has
industrial complexes and large populations; and Sejong has a high-density population as an
administrative capital. Busan and Ulsan metropolitan cities are located in the Gyeongsang
region, and both cities have large-scale harbors and high populations.

4. Conclusions

In this study, we improved the hybrid receptor model using a model of Advanced
Concentration, Emission, and Retention Time Weighted Trajectory (ACERWT). Using the
CWT model (modified CWT model, MCWT) in our previous study, we tried to improve the
limitation of the regional contribution of the hybrid receptor model caused by overlapping
several air masses. The MCWT model could improve the performance of the regional
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contribution model. However, it suggested further studies. Thus, we tried to use the
ACERWT model combined with a Positive Matrix Factorization (PMF), the HYSPLIT
(back trajectory) model and the Regional Emission Inventory. In the PMF receptor model,
secondary sulfate source showed the highest contribution (35%), followed by secondary
nitrate sources (26%), vehicle sources (16%), biomass burning, dust/soil and industry
sources (6%, respectively), sea salt sources (5%), and coal sources (1%), respectively. The
result in ACERWT showed that the limitation of the Yellow Sea impact was significantly
improved in the previous studies. The contribution of the Yellow Sea to the receptor site was
significantly decreased, while the contribution of China, Japan, and Korea was increased.
Regions such as the eastern and south-eastern areas of China, the southern area of Taiwan,
the western area of Tokyo, and the central area of Korea, which significantly showed
high contributions, have large-scale emission facilities and industrial complexes. Regions
of eastern and south-eastern areas of China showed a high contribution. Beijing and
Shanghai, i.e., the largest metropolitan cities in China, have many anthropogenic emission
sources in this eastern or south-eastern region of China. Southern Taiwan, which contains
a large harbor and the urban cities of Kaohsiung and Tainan, has also highly influenced
PM2.5 pollution at the receptor site. The regional contribution of the Western area of
Tokyo, Southern Japan, and Western Japan regions influenced the regional contribution of
Gaeseong city in North Korea, which was also high because of high population density and
industrial complexes. This study’s modified ACERWT model could estimate the regional
contribution of PM2.5 pollution at the receptor site. The regional contribution results were
reasonable, and the ACERWT model is significantly upgraded compared to the previously
applied models. However, it still has a limitation for the quantitative contribution. In future
studies, the improvement of the pretreatment for model application and the quantification
of the regional contribution should be studied.
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