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Abstract: The Advection-Diffusion Equation is solved for a constant pollutant emission 

from a point-like source placed inside an unstable Atmospheric Boundary Layer. The 

solution is obtained adopting the novel analytical approach: Generalized Integral Laplace 

Transform Technique. The concentration solution of the equation is expressed through an 

infinite series expansion. After setting a realistic scenario through the wind and diffusivity 

parameterizations, the Ground Level Concentration (GLC) is determined, and an explicit 

approximate expression is provided for it, allowing an analytically simple expression for 

the position and value of the maximum. Remarks arise regarding the ability to express 

value and position of the GLC as explicit functions of the parameters defining the 

Atmospheric Boundary Layer scenario and the source height. 
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1. Introduction  

Irreversible consequences of air pollution in the Atmospheric Boundary Layer (ABL) and instances 

of environmental accidents or even catastrophes demand increasing real time environmental 

monitoring and control as a routine instrument. In order to evaluate such scenarios one needs efficient 

procedures, which yield immediate results, for instance evaluating the ground level concentration of 

pollutants, and especially the maximum concentration and its position. Numerical simulation 

approaches may in fact still be too slow to provide a map of concentrations in real time, when 

immediate decisions are necessary. However, analytical solutions for theoretical models are 

independent of a specific situation and function by parameter estimation. The computational evaluation 

of numerical data of the concentration field or for a set of positions is an instant task. In view of this, 

the current work presents a derivation of compact phenomenological formula extracted from the 

analytical GILTT (Generalized Integral Laplace Transform Technique) [1] approach which permits 

determination of the ground level concentration in terms of physical parameters. 

2. A Short Review of Solutions of the Advection-Diffusion Equation 

The analytical solution of the Advection-Diffusion Equation (ADE) has been performed following 

different approaches based on Gaussian and non-Gaussian solutions. Gaussian solutions represent a 

rather easy operative tool to handle. Non-Gaussian analytical solutions represent a more realistic 

approach to represent atmospheric diffusion. However, solutions using non-Gaussian approaches are 

much harder to achieve, and are often restricted only to rather simple parameterization profiles. A short 

review in analytically solving the ADE is provided. 

A two-dimensional (2-D) steady-state solution of the ADE is shown by [2] for ground source only. 
Parameterization of the ABL is realized through a power law for the wind )(zu  and the diffusivity 

)(zkz , respectively. A solution for elevated sources has been provided by [3] but only considering 

linear profiles of the diffusivity. Van Ulden [4] presented a solution based on the Monin-Obukhov 

similarity theory, the ABL parameterizations of which follow power law profiles. Such a solution 

upgrades that given in [2] allowing it to be applied to higher source heights inside the surface layer. 

The solution was implemented in a Skewed Puff Model [5]. 
Another 2-D solution has been worked out by Smith [6] where both )(zu  and )(zkz  follow a power 

law profile satisfying the conjugate law of Schmidt (that is: “wind exponent” = 1 − “ )(zkz  exponent”). 

An alternative solution uses constant )(zu  and a piecewise continuous power law function for )(zkz

[7]. 

Scriven and Fisher [8] proposed a solution solving the stationary ADE for long-range distances. 
Results were provided for constant )(zu  and linear profiles of )(zkz  inside the surface layer, and 

constant above, dry and wet deposition effects were included. References [9] and [10] presented 2-D 
solutions of the ADE for elevated source and with power profiles for both )(zu  and )(zkz . However, 

the solution assumes infinite height of the ABL. 

Demuth [11] provided a further solution with power law parameterizations with the more realistic 

assumption of a bounded ABL. Such a solution involves a series expansion of the concentration in 

terms of the Bessel functions. The solution has been implemented in the KAPPAG model [12].  
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Then [13] extended the solution of [11] with boundary conditions suitable for simulating dry 

deposition to the ground. 

Nieuwstadt [14] presented a one-dimensional (1-D) time-dependent solution. A further extended 

solution accounting for a growing ABL height was given in terms of Jacobi polynomials [15].  

Koch [16] developed a 2-D analytical solution for a ground level source with power law profiles for 

wind and eddy diffusion coefficients accounting for the effects of ground level absorption. The 

deposition term of the solution includes the Kummer function [17], which has the drawback that it 

requires continuous checking for computational overflow. 

In the work [18], an analytical solution was proposed adopting a constant wind and a diffusivity 

depending on the horizontal distance from the source. 

Due to the limitedness of generality and to the increasing development of Large Eddy Simulation 

(LES) models, analytical approaches to solve the ADE have been largely ignored. In this paper, a 

complete and coherent analytical solution of the ADE is presented. The solution is based on the GILTT 

method [1]. The solution in analytical closed form introduces progress in the field of the study of 

concentrations. Due to the non-explicit dependence on the set of variables defining the ABL scenario 

and the source features, an explicit analytical approximation would represent a useful reference when 

application purposes are required. Moreover, it provides a simple formula for the value and position of 

maximum ground level concentration in function of source characteristic and meteorological variables. 

3. The Solution by GILTT  

The two dimensional steady-state ADE for an emitting point-like source in a stationary ABL reads: 










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




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)(   (1) 

Where, along the x -direction, the longitudinal diffusion term has been neglected in respect to the 
advection term. In the above Equation (1), ),( zxC  represents the cross-wind integrated  

three-dimensional time-independent concentration: 






 dyzyxCzxC ),,(),(  (2) 

The horizontal wind )(zu  is the horizontal mean wind and )(zkz  is the vertical diffusivity. Both 

depend on the vertical coordinate z . The boundary conditions impose the flux to vanish at the extremes 
of the ABL ( hz ,0  ), and the source condition is set to represent the point-like source placed at the 

height Sh  above the ground level, namely: 

)(),0()( shzQzCzu    (3) 

where Q  is the constant rate of emission and )( Shz   is the Dirac  -function. 

The GILTT technique provides a solution for Equation (1) which is written in terms of a converging 

infinite series expansion [1]: 


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where )(zi  are the eigenfunctions of an auxiliary problem, i.e., solving the Sturm-Liouville equation, 

and )(xci  are x -dependent functions. As a consequence of convergence the series can be truncated at 

a certain number N  such that the rest ),( zxRN  become negligible in respect of the partial sum. If one 

accepts an error not larger than %5.0  then 190N , as shown in [19]. 

4. Turbulent Parameterization 

The choice of the turbulent parameterization is set to account for the dynamic processes occurring 

in the ABL. In the following, we restrict our discussion to simple vertical profiles of wind and eddy 

diffusivity still a reasonably realistic, but more specifically for an unstable regime. For an extension 

including stable regimens we refer to a future work. The choice of the vertical profile for the wind 
)(zu is set to follow a power law [20]: 







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




11

)(

z

z

u

zu
 (5) 

where 1u  is the mean wind velocity at the height 1z , while   is an exponent related to the turbulence 

intensity [21]. On the quantitative side, results will be provided setting 1.0 , and the reference wind 
1

1 3)01.0(  mshu ; these values are quite consistent with the whole range of unstable regimes [22]. 

The vertical diffusivity parameterization is chosen according to reference [23], which for an 

unstable ABL is given as: 




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 

h

z
zkwzkz 1)( *  (6) 

where h  is the height of the ABL, k  is the von Karman constant which is set to 0.4, and *w  is the 

convective scaling parameter related to the Monin-Obukhov length MOL  and the mechanical friction 

parameter *u  as: 
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For convective scenarios, MOL  is limited to values such that the relationship 10
MOL

h
 holds. Finally 

*u  is determined as [20,24] 
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where 0z  is the roughness ( h510 ). For an unstable ABL   defined as: 
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and 
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The chosen profiles ensure simple functions whilst maintaining rather realistic horizontal wind )(zu  

and diffusivity )(zkz  inside and at both edges of the ABL. 

5. Ground Level Concentration  

From the solution of the ADE, the Ground Level Concentration (GLC) is obtained after setting 
0z  inside the solution ),( zxC . Results will be reported in terms of the dimensionless GLC  

as follows: 

Q

hu
xCxCGLC


 )0,()(  (11) 

where  u  is the vertically averaged wind introduced in Equation (5) 
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If we consider the definition of u  profile in Equation (5) we have  
 1

1 /
1

zh
u

u


 . 

Equation (11) has been introduced to obtain the unitary limit independent of a specific  

parameter choice 

1)(lim 


xCGLC
x

 (13) 

according to the theoretical expectation for the two-dimensional ADE solution. 

It would be redundant to compare the GILTT results with experimental data as outcomes have 

already been extensively reported in the literature [25,26]. Instead, the scope of this paper is to provide 
a simple explicit expression for the maximum GLC )( MMGLC xC occurring at the horizontal distance Mx  

as a function of the setting parameters for the ABL scenario and source emission. As previously 

mentioned, in fact, although Equation (4) represents the exact solution of the ADE (1) except for a 

round-off error, the series expansion misses manifest dependencies on ABL parameters and source 

height. On the other hand, the main advantage of the GILTT technique is that it allows the step from a 

differential-like approach, traditionally adopted to solve the ADE numerically, into a matrix algebra 

approach after applying the generalized Laplace transform. Then the core of the problem leads to the 

investigation of the behavior of the series (4) after setting 0z , and using the property of the  
Sturm-Liouville eigenfunctions for which 1)0( i  regardless of the index i . An analysis of the 

behavior and properties of the series (4) will indicate how to synthesize the considerable expression 

into a more compact formula. The results based on such an approach are still profile-dependent and a 

general approximation is beyond the scope of the present work. Nevertheless, the choice of a profile-

dependent approximation still maintains the advantage of simplicity and allows for a specific case for 

exploring the functional behaviors of the main physical parameters that drive atmospheric diffusion. 

To this end we introduce empirical parameters which are determined by fit procedures to best 
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reproduce the  

exact solution. 

Based on these facts, and bearing in mind the Gaussian solution and the GLC obtained with power 

low profile of wind and eddy diffusivity, the dimensionless GLC defined in Equation (11) can be 

approximated as follows: 

 
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1 2

2( ) 1 exp

b bcc
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C x
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 (14) 

Due to the negative values assumed by the Monin-Obukhov length, it will be defined in the 

following calculations as the positive dimensionless parameter hLL MM /
~

00  . Parameters b , c ,   

and   have been determined by least squares fittings procedures in Equation (14) against the 

analytical solution. These are: 
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)1()35.0( shwu     (18)

where the variables with ~ are normalized with respect to the ABL height h  (e.g., hhh ss 
~

). 

Equations (15)–(18) give the explicit dependency on the source height Sh , the wind parameters  

(it compares in   and  ), 1u  and the convection scaling parameter *w ( it compares in  ¸see  

Equation (18)) which is related to the Monin-Obukhov length MOL  and the friction parameter *u  by 

the relationship (7).  
From the explicit approximation for )(xCGLC  one may evaluate the position where the maximum 

GLC occurs. In fact, putting the derivative of Equation (14) equal to 0 with respect to x , and with the 

assumption that:  
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Finally, putting Mx in Equation (14), the corresponding Maximum Ground Level Concentration (

)( MMGLC xC ) is: 
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Two considerations are important here. Firstly, the expression for the position Mx  is valid provided 

that it is in the range of horizontal distances where a position Mx  occurs. Such approximation affects 

an error when high sources are concerned (above 35.0
~
sh ), but high convection-driven turbulence 

enforces condition (19). Secondly, because no maximum is reached for any 5.0
~
sh , the position of 

maxima in these cases has to be expected at x  (due to the predominant weight of the exponential 

function compared to the first factor in Equation (14)). For this reason, the study of the maximum GLC 

will be limited to sources placed below the ABL center level. The omission of maxima will be 

explicitly shown in Figure 1 (see next section). 

6. Results  

Figure 1 shows plots of the  GLC versus the horizontal distance from the source x~  for near surface 

source ( 01.0
~
sh ), a low source ( 1.0

~
sh ) (at the top of the surface layer 1.0~ slz ), center source (

5.0
~
sh ), and high source ( 7.0

~
sh ) (above ABL center) with 03.0

~
0 ML . Except for the plot 

7.0
~
sh , all show a maximum, where the sharpness of the peak reduces as sh

~
 increases, until a critical 

source height is reached (slightly above h5.0  ), then value 1 becomes an upper asymptote for the GLC. 

When the emitting source height decreases, the maximum GLC increases, and occurs at a closer 

distance, turning into a well-pronounced peak.  

In Figure 2a–2c, the GLC versus x~  is shown for three values of sh
~

 ( 1.0,05.0,01.0
~

sh ). For each 

source height, two extreme Monin-Obukhov lengths are used with 099.0 ,001.0
~ MOL  (empty squares 

and triangles, respectively). The second value for MOL
~

 reflects the limit imposed by the Pleim and 

Chang diffusivity introduced in Equation (6). The GILTT-based GLC are superimposed on the 

approximation of Equation (14) (dotted lines). The plots show that for near surface sources there is a 

slight difference between points and lines near the source position. Where the horizontal gradient is 

most pronounced, a logarithmic scale enhances such a discrepancy. 

Figures 3a–3c refer to higher sources with 5.0,4.0,25.0
~
sh . These plots show well-matching 

results as well as a good reproduction of the position where the maximum GLC occurs. As the emitting 

source height sh
~

 increases, the approximated function slightly underestimates the GILTT-based 

maximum. This discrepancy reflects the fact that condition (19) is no longer satisfied. Nonetheless, 

through the whole range of source heights 25.0
~

0  sh  the function )(xCGLC  reproduces the GILTT 

results fairly well. 
Figures 4 and 5 show plots of the maximum GLC )( MMGLC xC  and its position Mx  for several 

source heights sh
~

 and for a selection of turbulence parameters MOL
~

. In both figures the GILTT results 

(points) are superimposed on the approximations (20) (dotted lines). Figure 5 depicts the position 

where the maximum occurs for low sources, where GILTT results (dotted lines) and our 



Atmosphere 2011, 2                            

 

 

28

approximations (solid lines) show well-matching results, regardless of the turbulence regime. When 

higher sources are considered, a difference is visible and increases as convective turbulence reduces its 

strength. This fact follows from the condition of (19). The turbulence dependency shows that, for a 

fixed sh
~

, the strength of convection causes Mx  to get closer to the source. From the physics point of 

view this result agrees with the mixing effect of turbulence. 

Figure 1. GILTT (Generalized Integral Laplace Transform Technique) Ground Level 

Concentration (GLC) versus the horizontal distance from the source hxx /~  . Four 

different source heights are selected: 7.0,5.0,1.0,01.0
~
sh  and 03.0

~ MOL . A maximum 

GLC occurs only for sources below the Atmospheric Boundary Layer (ABL) middle level. 
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Figure 2. GLC versus x~  for (a) 01.0
~
sh , (b) 05.0

~
sh , and (c) 1.0

~
sh . Points refer to 

the GILTT results, and dotted lines refer to the approximation function of Equation (14). 

Empty squares indicate 001.0
~ MOL , empty circles 099.0

~ MOL . 
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Figure 3. GLC versus x~  for (a) 25.0
~
sh , (b) 4.0

~
sh , and (c) 5.0

~
sh . Points refer to 

the GILTT results, and dotted lines refer to the approximation function of Equation (14). 

Empty squares indicate 001.0
~ MOL , empty circles 099.0

~ MOL . 
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Figure 4. Position of the maximum GLC versus the source height hhh ss /
~
 . Points refer 

to the GILTT results, dotted lines refer to Equation (20). 

 

Figure 5. Value of the maximum GLC versus the source height hhh ss /
~
 . Points refer to 

the GILTT results, dotted lines refer to Equation (21). 
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A final remark should be made in regard to Figure 5. Both GILTT and Equation (21) confirm that 

the maximum GLC value depends on the source height, regardless of the turbulence. Based on the 

Equation (21) and the parameters definitions (15)–(16) for b , c and  , the leading term for the 

maximum GLC results: 

1~
)(  sMMGLC hxC  (22) 

where the exponent −1 is a lower bound for the source term. These results broaden the well-known 

result obtained with the Gaussian approach for an unbounded ABL. Furthermore, this agrees with the 

two-dimensional Gaussian result that the maximum for the GLC is: 

2/1
2

)( 






e

xC MMGLC  (23) 

Note that for the three-dimensional case this is no longer true. It is evident that diffusive parameters 

do not play a part and it confirms that turbulence has the only effect that determines the distance where 

maximum GLC occurs. The results shown above can be generalized (see Figure 6 as an example) to 

the case of vertical diffusivities defined with a multiplicative Monin-Obukhov length: 

)(),,()( ** zGwuLFzkz   (24) 

where F and G are two functions. 

Figure 6. Ground level concentration versus the horizontal distance from the source. The 

source height has been set to 1.0/
~

 hhh ss . The value of the maximum GLC does not 

change as the turbulence varies. 
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7. Conclusions 

The results presented in this paper show the possibility of expressing the GLC from an emitting 

point-like source in a steady convective ABL by a compact analytical expression. The function was 

determined analyzing the behavior of the series expansion provided by the GILTT solution, the 

predictive power of which has been extensively demonstrated in the literature when applied to several 

experimental data sets. Despite the simplifications due to restricting only to unstable ABL regimes, the 

analysis allows a high level of understanding of the form of the ground level concentration. 

The main progress worth emphasizing is the following: for a function given in Equation (14), within 

the setting choice for the ABL parameter set, the maximum GLC depends only on the source height, 

regardless of the Monin-Obukhov length. However, turbulence can still affect the position where the 

maximum GLC occurs, which is also confirmed by the GILTT solution. A further notable point shown 

in the result that no maxima occurs for all sources placed above the ABL center level; the limit 

becomes an upper-bound limit. The existence of a non-zero limit is one of the main properties of the 

two-dimensional ADE. 

From the operative point of view, Equation (14) and its related features are useful as an additional 

tool for decisional as well as emergency responses.  
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