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Abstract: A genetic programming (GP)-based logistic regression method is proposed in 

the present study for the downscaling of extreme rainfall indices on the east coast of 

Peninsular Malaysia, which is considered one of the zones in Malaysia most vulnerable to 

climate change. A National Centre for Environmental Prediction reanalysis dataset at  

42 grid points surrounding the study area was used to select the predictors. GP models 

were developed for the downscaling of three extreme rainfall indices: days with larger than 

or equal to the 90th percentile of rainfall during the north-east monsoon; consecutive wet 

days; and consecutive dry days in a year. Daily rainfall data for the time periods  

1961–1990 and 1991–2000 were used for the calibration and validation of models, 

respectively. The results are compared with those obtained using the multilayer perceptron 

neural network (ANN) and linear regression-based statistical downscaling model (SDSM). 

It was found that models derived using GP can predict both annual and seasonal extreme 

rainfall indices more accurately compared to ANN and SDSM.  

Keywords: genetic programming; downscaling; extreme rainfall indices; statistical 

downscaling model 
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1. Introduction 

Climate change due to global warming will modify the climate in terms of both the mean and variability 

of rainfall [1,2]. Small changes in rainfall variability and the mean can produce relatively large changes in 

the probability of extreme rainfall events [3,4]. As the primary impacts of climate change on human life, 

environments, economies and societies result from extreme events, changes in extreme weather events due 

to global warming have become a major concern in recent years [2,5,6]. Therefore, reliable projection of 

future changes in extreme indices at the local scale is a major challenge in any climate region. 

General circulation models (GCMs) are generally designed to simulate the present climate and 

project the future climate. However, GCMs cannot be used to project local- and regional-scale climates 

and their changes, because of their coarse spatial resolutions. Therefore, GCM simulations are 

downscaled into much finer spatial resolution for climate change impact studies at local and regional 

scales [7]. Two major downscaling approaches are often used: dynamical downscaling methods that 

are based on high-resolution regional climate models [8,9] and statistical downscaling methods based 

on some established statistical relationships between large-scale atmospheric variables (predictors)  

and local climate variables (predictands) [10,11]. Compared to dynamic downscaling, statistical 

downscaling requires simple computational skills to downscale GCM outputs in order to understand 

possible future changes in climate at the local scale [12]. 

A number of studies on downscaling extreme indices has been carried out in recent years [12–17]. 

However, this is still new in Malaysia and Southeast Asian countries, where studies of statistical 

downscaling have focused mainly on mean climate. Logistic regression is a popular technique for 

classifying information into two mutually exclusive and exhaustive categories [18]. It has been used for 

the downscaling of extreme rainfall indices in a number of research papers [19–21]. Logistic regression 

creates decision trees for the creation of decision rules. One of the main drawbacks of conventional 

logistic regression-based statistical downscaling procedures is that the performance of such models 

depends on theoretical assumptions and data restrictions. Furthermore, conventional statistical logistic 

regression methods show poor performance when the variable of interest is precipitation; the 

predictor/predictand relationships are very complex, and conventional downscaling methods may not 

work satisfactorily [22]. Genetic programming (GP) is a kind of non-parametric regression, which  

can relate the predictors and predictands and provide a predictive model identical to the analytical  

optimal solution when interrelationships between variables are poorly understood [23–29]. Genetic-based 

statistical logistic regression offers a clear advantage over the standard statistical logistic regression 

method [30,31]. It generates a set of logical expressions describing the structure of the data through 

iterative subsumption and probabilistically picks the most appropriate set to allow the system to predict 

in non-deterministic situations, while the achievement of this is not possible with current statistical logistic 

regression. Thus, the objective of the present study was to use a GP-based logistic regression method for 

the downscaling of rainfall extremes. The method is tested for the east coast of Peninsular Malaysia. 

Three extreme rainfall indices that are important for the economy and livelihood of the population 

of the east coast of Peninsular Malaysia were downscaled: heavy rainfall days (days with larger than or 

equal to the 90th percentile of rainfall) during the north-east (NE) monsoon; consecutive dry days; and 

consecutive wet days in a year. The east coast of Peninsular Malaysia is one of the zones most 

vulnerable to climate change in the country [32]. It has been reported that extreme rainfall events have 
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increased in Peninsular Malaysia in recent years [32–34]. Floods triggered by heavy rainfall are  

a major hydrological disaster, and almost every year, phenomena occur in the area. Deni et al. [33] 

reported that rainfall intensity increased in much of Peninsular Malaysia during the south-west (SW) 

monsoon. During the NE monsoon, total rainfall, the frequency of extreme rainfall events and rainfall 

intensity increased all over the peninsula [34]. It is anticipated that variability in inter-annual and  

inter-seasonal rainfall due to climate change will cause more hydrologic extremes on the east coast  

of Peninsular Malaysia and make people’s livelihoods and local infrastructure more vulnerable. 

Therefore, downscaling extreme rainfall indices is very important for the creation of rational 

countermeasures in the context of climate change. 

2. Methodology 

2.1. Data and Sources 

Rainfall data recorded at three stations, namely Besut, Dungun and Kemaman, on the east coast of 

Peninsular Malaysia were used to downscale the extreme rainfall indices using GP. The location of 

rainfall stations on the map of Peninsular Malaysia is shown in Figure 1a. The climate of the area can 

be loosely divided into four seasons: the NE monsoon from October to February; the SW monsoon 

from April to August; and two inter-monsoonal transitional periods in March and September. The east 

coast is considered as the wet belt of Peninsular Malaysia, with an annual rainfall of 2800 mm. Heavy 

rainfall on the east coast of Peninsular Malaysia is usually associated with the NE monsoon. Maximum 

precipitation usually occurs during the months of November and December. On the other hand, 

cloudless skies are observed during the SW monsoon. The topographic map of the study area, prepared 

using the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital 

Elevation Model, is shown in Figure 1b. The elevation in the area varies from −4 m on the narrow 

coastal plain to 2270 m in the interior mountainous region.  

Daily rainfall data series for the time period 1961–2000 recorded at three locations in the study area 

were obtained from the Department of Irrigation and Drainage Malaysia. The predictors were obtained 

from the National Centre for Environmental Prediction (NCEP) reanalysis dataset [35]. Climate model 

data represent an aggregate over a grid box, and therefore, NCEP data are not an ideal representation 

of precipitation extremes computed from averages over stations. However, a number of studies have 

reported that the relationship between the extremes of gridded climatological datasets and observed 

point-level data from weather stations can be used to predict point-level extreme behavior from future 

runs of climate models [36–41]. 

Data quality control is a necessary step before the calculation of indices, because erroneous outliers 

can seriously impact index calculation and trends [42]. A number of quality control checks were 

carried out to identify errors, such as precipitation values below 0 mm, rainfall higher than 250 mm, 

more than 20 consecutive dry days during the NE monsoon and more than 20 consecutive wet days 

during the SW monsoon. Histograms of the data were also created to reveal problems in the dataset as 

a whole [43]. A Student’s t-test was used to test the difference in the means between the two segments 

of the dataset to ensure the homogeneity of data. Differences between the sub-set series are not 

significant at the 95% level of confidence for any station. 
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Figure 1. (a) Location of the rain gauge stations in Peninsular Malaysia; (b) terrain map of 

the study area. 

 

Three extreme rainfall indices were computed for the present study. Table 1 provides descriptions 

of the indices. The indices were calculated on a seasonal or annual basis. In computing the  

percentile-based index, the percentile was calculated from the reference period 1961–1990, which is a 

normal climate period as defined by the World Meteorological Organization [44]. Heavy rainfall on 

the east coast of Peninsular Malaysia is usually associated with the NE monsoon. Therefore, only 

heavy rainfall days (the days with larger than or equal to the 90th percentile of rainfall) during the NE 

monsoon were downscaled in the present study. 

Table 1. Definitions of precipitation indices used in the present study. 

Index Description Unit 

R90 
Total number of days during NE monsoon in a year with rainfall ≥90th 

percentile of 1961–1990 daily rainfall 
day 

CDD Maximum number of consecutive dry days (rainfall = 0) in a year day 
CWD Maximum number of consecutive wet days (rainfall > 0) in a year day 

2.2. Selection of Predictors 

One of the major challenges in climate downscaling, especially in downscaling extreme rainfall 

indices, is the selection of appropriate predictors. It is expected that predictors should be highly 

correlated with extreme rainfall indices. Furthermore, the predictors should be accurately projected by 

available GCMs for the future projection of climate. There are no general guidelines for the selection 

of predictors in different parts of the world, and therefore, a comprehensive search of predictors is 
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necessary [45]. Twenty-six NCEP variables that are usually projected by various climate models, 

including the Hadley Centre Climate Model (HadCM), were used in the present study for the selection 

of predictors. The description of 26 NCEP variables is given in Table 2. 

Table 2. Description of 26 NCEP variables used for predictor selection. 

No. Variables Description No. Variables Description 

1 mslp Mean sea level pressure 14 p5zh 500 hPa divergence 
2 p_f Surface airflow strength 15 p8_f 850 hPa airflow strength 
3 p_u Surface zonal velocity 16 p8_u 850 hPa zonal velocity 
4 p_v Surface meridional velocity 17 p8_v 850 hPa meridional velocity 
5 p_z Surface vorticity 18 p8_z 850 hPa vorticity 
6 p_th Surface wind direction 19 p800 850 hPa geopotential height 
7 p_zh Surface divergence 20 p8th 850 hPa wind direction 
8 p5_f 500 hPa airflow strength 21 p8zh 850 hPa divergence 
9 p5_u 500 hPa zonal velocity 22 rhum Near surface relative humidity 

10 p5_v 500 hPa meridional velocity 23 r500 Relative humidity at 500 hPa 
11 p5_z 500 hPa vorticity 24 r850 Relative humidity at 850 hPa 
12 p500 500 hPa geopotential height 25 shum Near surface specific humidity 
13 p5th 500 hPa wind direction 26 temp Mean temperature 

The climatic system is influenced by the combined action of multiple atmospheric variables in  

a wide tempo-spatial space. Any single circulation predictor and/or small tempo-spatial space are 

unlikely to be sufficient for climate projection, as they fail to capture key rainfall mechanisms based 

on thermodynamics and vapor content [46]. Following the suggestions of Wilby and Wigley [47], the 

regional synoptic circulation patterns that contributed to the anomalous rainfall pattern in Malaysia 

were considered in the selection of the spatial domain of each predictor, represented as 42 grid points 

surrounding the study area. All 26 daily NCEP variables at 42 NCEP grid points surrounding the study 

area (Figure 2) (total 26 × 42 = 1092) were individually correlated with local extreme rainfall events. 

The non-parametric Kendall tau correlation coefficient was used to measure the degree of association 

between NCEP variables and local extreme rainfall events. Finally, the NCEP variables that have  

a strong correlation with a particular rainfall event at a particular rainfall station were used for  

the selection of the final set of predictors through stepwise regression processes to downscale the 

corresponding rainfall event at that station. 

2.3. Statistical Downscaling Model 

The statistical downscaling model (SDSM) is a widely used downscaling tool developed by  

Wilby et al. [48]. The SDSM uses the multiple linear regression technique for the development of 

downscaling models. It develops each model by establishing the statistical relationship between the 

predictands and predictors as a first step and then simulates the future series of predictands by using 

the predicted data from GCMs. The SDSM uses two separate sub-models to determine the occurrence 

and the amount of conditional meteorological variables (or discrete variables), such as precipitation. 

Therefore, the SDSM can be classified as a conditional weather generator in which regression 
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equations are used to estimate the parameters of daily precipitation occurrence and amount separately. 

Therefore, it is more sophisticated than a straightforward regression model [49]. 

Figure 2. Location of NCEP grid points used to select the predictors. 

 

2.4. Statistical Downscaling Using Multilayer Perceptron Artificial Neural Network 

Multilayer perceptron (MLP) is the most popular, flexible and simplest type of artificial neural 

network (ANN), widely used to map non-linear relationships between predictors and  

predictands [50,51]. The main function of an ANN is to improve the performance function between the 

predicted and observed values. The MLP ANN is composed of an input layer, any number of hidden 

layers and an output layer of neurons [52,53]. Studies have revealed that statistical downscaling based 

on ANN models can present good non-linear regression models [54–56]. Therefore, ANN models have 

been used successfully for climate downscaling in many climatic regions [52,57]. 

The MLP neural network uses the following equations to model precipitation: 
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where F represents the linear activation function of the output neuron, bk is the threshold and wj 

represents the connection. G is the hyperbolic tangent sigmoid used as the activation function for the 

hidden nodes and can be expressed as follows: 
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where xi is the input to the network (NCEP predictors) and wi is the connection weight between nodes 

of the input and hidden layers. 

2.5. Downscaling Using GP-Based Logistic Regression 

Logistic regression follows the same principles of linear regression, except that the outcome is a 

dichotomous variable representing success or failure. It assumes that the probability of success or 

failure, P(X), is related to X by the function. The general multiple logistic regression model can be 

represented in terms of p, i.e., probability of success (or failure) as: 
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and, ε++β+β+β= 210eL , where β0 is the intercept, β1, β2, …, βn are the slope coefficients and ε is the 

random error. 

Like linear regression, the goal is to estimate the regression coefficients (β0, β1, β2, …, βn) for a 

dataset. Unfortunately, the techniques used in linear regression to estimate the regression coefficients 

cannot be applied to logistic regression [18]. Traditionally, a stepwise regression procedure combined 

with the maximum likelihood method is used to determine significant predictors and their contribution 

to the probability of the target variable. The main disadvantage of stepwise regression with forward 

selection is that it can often result in biased selection of significant predictors [58]. In order to 

overcome this problem, a number of methods have been proposed, such as ridge regression, the least 

absolute shrinkage and selection operator [59], the elastic net [60], etc. However, these techniques 

often fail to infer sparse models or can exhibit undesirable behavior in the presence of highly 

correlated predictors [58]. Recently, GP has been proposed to overcome the inherent difficulties of 

logistic regression. Biesheuvel et al. [30] compared the performance of GP with logistic regression in 

diagnosing pulmonary embolism and reported that although the interpretation of a GP model is less 

intuitive, it is a promising technique for the development of prediction rules for diagnostic and 

prognostic purposes. Engoren et al. [31] also came to a similar conclusion and reported that GP can 

improve the prediction accuracy of logistic regression. The application of GP-based logistic regression 

has increased in recent years in different fields of science and technology [61–64]. 

In the present study, predictors (NCEP variables) were used to predict whether a rainfall event will 

occur or not. Therefore, the task of downscaling extreme indices is to find a model or function that 

maps the extreme rainfall indices from the predictors. The GP method is used to solve this problem by 

generating thousands of randomly-created computer programs. GP computer programs are often 

represented as symbolic expressions or an alternative representation of symbolic expressions given by 

expression trees. The tree representations consist of nodes and are of variable length. The nodes can 
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either be non-terminal or terminal nodes; the former consist of functions that perform some action on 

one or more signals within the structure to produce an output signal, and the terminal nodes represent 

an input variable or a constant. The fitness of each program is computed according to its prediction 

ability, which is measured using a hit rate. A hit rate, also known as a success rate, is calculated as: 




+
=

PredictioninFailurePredictioninSuccess

PredictioninSuccess
RateHit  (5)

After evaluating the fitness, better programs are selected for the next generation. Genetic operators, 

namely mutation and crossover, are used to generate offspring form the existing individuals. Crossover 

between two trees is carried out by randomly choosing a branch in each tree and switching them. 

Mutation is performed by choosing a node and changing its value or meaning, i.e., the function symbol 

could become another function symbol or be deleted and the terminal value could be modified. The 

process is repeated until the termination conditions are met. The fittest program in the final generation 

is the prediction model of a particular extreme rainfall event [28,65]. 

The commercial software, Discipulus [66], is used for the development of GP-based logistic 

regression models. Discipulus is a general purpose GP system, which can be used for regression and 

binary classification problems. The software creates small programs with the technique of GP, which 

answer questions. For example, it can be used to decide whether a 90th percentile rainfall amount will 

occur during a specific day or not. Daily rainfall data for the time period 1961–1990 were used as the 

GP learning set, and the data for the time period 1991–2000 were used for validation.  

3. Results 

3.1. Selection of Predictors 

For the selection of predictors, the NCEP variables from 42 grid points surrounding the study area 

were individually correlated with local rainfall events. The NCEP variables from different grid points, 

having high correlation with heavy rainfall event at Dungun station, are shown in Figure 3a. In the 

figure, the capital letter in an NCEP variable name represents the column and the lower case letter 

represents the row of the NCEP grid point, as shown in Figure 2. The number in brackets represents 

the NCEP variable, as described in Table 1. Therefore, Cd(23) represents relative humidity at 500 hPa 

at the grid point located in column “C” and row “d”. Eleven NCEP variables from different grid points 

were found to have high correlation with a heavy rainfall event. These NCEP variables were used to 

select the final set of predictors for the downscaling using stepwise multiple regression. Stepwise 

multiple regression is a way of choosing predictors of a particular dependent variable on the basis of 

statistical criteria, such as an F-test or adjusted R-squared test. Stepwise multiple regression adds and 

removes predictors, in a stepwise manner, until there is no justifiable reason to add or remove more. 

Therefore, it allows the selection of the subset of independent variables that is the best predictor. The 

plot of regression coefficients between different subsets of independent variables and 90th percentile 

rainfall events at Dungun station is shown in Figure 3b. The figure shows that the model performance 

increases with the inclusion of more NCEP variables. However, it does not increase substantially after 

the inclusion of more variables with three independent variables, namely Cd(23), Db(2) and Db(3). 
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Therefore, these three NCEP variables were finally chosen as predictors for the downscaling of heavy 

rainfall days at Dungun station. 

Figure 3. (a) The NCEP variables from different grid points with good correlation with 

heavy rainfall events during the NE monsoon; (b) the plot of regression coefficients 

between different subsets of NCEP variables and heavy rainfall events at Dungun station. 

 

The process produced the same set of NCEP variables for all three stations. The NCEP variables 

selected as predictors for different rainfall indices are given in Table 3. NCEP variables at grid points 

located in the NE direction have more influence on the rainfall of the study area. This is justifiable, as 

the rainfall in the study area is influenced by the NE monsoon. 

Table 3 shows that the NCEP variables selected for downscaling rainfall indices are relative 

humidity at 500 and 850 hPa, surface airflow strength and surface zonal velocity. Precipitation at  

a location depends on the available air moisture content and flow of moist air. Relative humidity at  

500 and 850 hPa represents the water vapor available in the air; surface airflow strength represents the 

regime of near surface air flow and surface zonal velocity on the equator cause zonal wind stress. 

Therefore, selection of these variables is physically plausible for rainfall downscaling. Other 

researchers also used those variables as predictors for rainfall downscaling in Malaysia [67,68]. It is 

very important to remember that the predictors used for downscaling should be reliably simulated by 

GCMs. The predictors selected in the present study are well simulated by many GCMs, including 

Hadley Centre Coupled Model, version 2 (HadCM2), Canadian Global Coupled Model, version 2 
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(CGCM2), etc. Therefore, these predictors have been widely used for the downscaling and projection 

of future rainfall [67–69]. 

Table 3. NCEP variables used to build downscaled models. 

Event Predictor  Code Description 

90th percentile 
rainfall event 

P1 Cd(23) Relative humidity at 500 hPa at grid point Cd 
P2 Db(2) Surface airflow strength at grid point Db 
P3 Dc(3) Surface zonal velocity at grid point Dc 

Rainfall event 
P1 Cd(23) Relative humidity at 500 hPa at grid point Cd 
P2 Dd(24) Relative humidity at 850 hPa at grid point Dd 
P3 Db(3) Surface zonal velocity at grid point Db 

3.2. Downscaling Using GP 

The goal of a GP downscaling process is to produce an algebraic expression or model that best 

describes the daily rainfall from predictors. For this purpose, the GP algorithm works with solution 

candidates, which are tree structure representations of symbolic expressions. The function set used  

for non-terminal nodes includes +, −, ×, /, %, square root, log, as well as logical and other  

commonly-used trigonometric operators. As the goal is to find the extreme rainfall from NCEP 

variables, the terminal nodes must consist of selected NCEP variables, as well as constants. The 

obtained results are discussed below. 

3.2.1. Downscaling Heavy Rainfall Days 

A GP model for the downscaling of the days with larger than or equal to 90th percentile rainfall was 

developed first. The amounts of 90th percentile daily rainfall over the normal climate period  

(1961–1990) defined by the World Meteorological Organization [44] are 23.2, 24.6 and 25.8 mm at 

Besut, Dungun and Kemaman stations, respectively. GP-based logistic regression was used to decide 

whether 90th percentile rainfall will occur or not during a day from the NCEP variables.  

The GP software (Discipulus) used in the present study performs multiple runs by default. In the 

present study, 100 runs were used to produce a wide range of results. Termination of each run was 

considered as 200 generations without any improvement in fitness function. The distribution of results 

from multiple GP runs includes a distributional tail of excellent solutions. The best solution is selected 

based on the hit rate. The highest overall hit rates were obtained in downscaling heavy rainfall days in 

run 52 after 652 generations at Besut station, in run 47 after 712 generations at Dungun and in run 34 

after 512 generations at Kemaman. The highest overall hit rates obtained at different stations is given 

in Table 4. It can be seen from the table that GP is able to model the 90th percentile rainfall index in 

78.3%–81.1% of cases during calibration and 75.9%–78.0% of cases during validation. This means 

that GP-based logistic regression is successful in downscaling heavy rainfall days in more than  

78.3% of cases. The best tree structure representations of symbolic expressions produced by GP  

in downscaling heavy rainfall days at Besut station is shown in Figure 4. The simplified equations 

obtained from the GP structures that can be used to downscale the number of heavy rainfall days in the 

vicinity of three rainfall stations is given in Table 5. 
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Table 4. Overall hit rates during training and validation of genetic programming (GP) 

models in downscaling rainfall indices. 

Rainfall Indices Station Name 
Hit Rate (%) 

Training Validation 

Days with larger than or equal to 90th 
percentile rainfall 

Besut 81.1 78.0 

Dungun 80.1 76.8 

Kemaman 78.3 75.9 

Rainy days 

Besut 86.1 82.0 

Dungun 84.5 80.2 

Kemaman 83.9 81.0 

Figure 4. The tree structure representations of symbolic expressions produced by GP for 

heavy rainfall event downscaling at Besut (descriptions of P1, P2 and P3 are given in Table 3). 

 

Table 5. The simplified equations derived by GP for the downscaling of extreme rainfall 

indices (descriptions of P1, P2 and P3 are given in Table 3). 

Rainfall Indices Station Name Equation 

Days with larger 
than or equal to 90th 

percentile rainfall 

Besut −1.28[P2 − P1 + 1.258[P2 − P1 − 1.36[P2 + P3]]] × [P2 − P1] 

Dungun [P2 + P1 − 2.56[P2 + P1 − 3.26[P1 + P2 + P3]]] × 1.23P2 

Kemaman −1.11[P2 − P1 + 1.56[P2 − P1 − 1.45[P2 + P3]]] × [P2 − P1 + P3] 

Rainy days 

Besut (P3 − P1 + P2) − 1.51(P3 × P2 − P1) + 1.14(P1 − P3 + sqrt(P1)) 

Dungun 1.23 × (P1 + P2) − 1.26(P3 × P2 − P1) + 0.86(P1 − P2) 

Kemaman 2.34 × P2 − 2.13(P3 × 1.54 − P1) + 1.45(P1 − P3 × P1) 
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3.2.2. Downscaling Consecutive Wet and Dry Days 

For downscaling of consecutive wet and dry days, a GP model was developed to predict whether 

rainfall will occur or not during a day. This produced a binary time series for the whole period, which 

was used to compute the consecutive wet and dry days in a year.  

The GP model required different numbers of generations to give the highest overall hit rates at 

different stations. The best hit rates in downscaling rainy days at different stations is given in Table 4. 

It can be seen from the table that GP-based logistic regression was successful in downscaling rainfall 

days in 83.9%–86.1% of cases during calibration and 80.2%–82.0% of cases during validation. The 

best tree structure produced by the GP in downscaling rainy days at Besut is shown in Figure 5. The 

simplified equations obtained from the structures that can be used for downscaling rainy days at 

different stations are given in Table 5. 

Figure 5. The tree structure representations of symbolic expressions produced by GP for 

the downscaling of rainy days at Besut (descriptions of P1, P2 and P3 are given in Table 3). 

 

3.3. Downscaling Using ANN 

A feed-forward learning-based three-layer MLP ANN developed in MATLAB was used in the 

present study to downscale extreme rainfall indices. The same predictors used in GP (Table 3) were 

also used in the ANN. Like GP, an ANN is used to decide whether rainfall will occur or not during  

a day from the NCEP variables. Data for the time periods 1961–1990 and 1991–2000 were used for 

calibration and validation of the ANN model, respectively. The ANN was run 100 times, and the 

obtained results from each run were stored. A termination criterion for a single run was chosen as  

200 generations without improvement. The best ANN model was selected based on the hit rate. The 

results were then compared with those obtained using GP and the SDSM. 
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3.4. Downscaling Using the SDSM 

The SDSM package was also used to downscale daily rainfall with the same predictors used for GP 

(given in Table 3). Daily rainfall data for the time periods 1961–1990 and 1991–2000 were used for 

calibration and validation of the SDSM, respectively. The extreme rainfall indices were then estimated 

from the daily rainfall downscaled by the SDSM. In the present study, extreme rainfall indices during 

the validation period were computed and compared with observed and GP-based downscaled results.  

Figure 6. Observed number of heavy rainfall days and those downscaled by GP, the ANN 

and the statistical downscaling model (SDSM) during model validation at: (a) Besut; 

(b) Dungun; and (c) Kemaman. 
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Figure 7. Observed number of consecutive wet days and those downscaled by GP, the 

ANN and the SDSM during model validation at: (a) Besut; (b) Dungun; and (c) Kemaman. 

 

3.5. Comparison of Results 

Comparisons of observed and downscaled heavy rainfall days during monsoon, as well as 

consecutive wet days and consecutive dry days in a year over the model validation period (1991–2000) 

are shown in Figures 6–8, respectively. It can be seen in Figure 6 that all of the methods estimated the 

number of heavy rainfall days successfully over the evaluation period. However, the downscaled 

output from GP is closer to the observed values compared to those estimated by the ANN and the 
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SDSM. In most of the years, both the ANN model and SDSM overestimated the number of heavy 

rainfall days. Compared to the ANN, the SDSM overestimated heavy rainfall days more often. On the 

other hand, GP underestimated the number of days in certain years, but the estimated GP values were 

found to be very close to observed values in almost all of the years and at all of the stations. The root 

mean squared error (RMSE) and correlation coefficient (expressed as r2) between observed and 

downscaled values during validation are given in Table 6. The table shows that the errors in estimation 

of the number of heavy rainfall days by GP are always significantly less compared to ANN and SDSM 

estimations. The correlation coefficient between observed values and GP downscaled values during the 

validation period was also found to be higher compared to ANN and SDSM downscaling.  

Figure 8. Observed number of consecutive dry days and those downscaled by GP, the 

ANN and the SDSM during model validation at (a) Besut; (b) Dungun; and (c) Kemaman. 
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Similar results were obtained for consecutive wet days and consecutive dry days in a year. It can be 

seen from Figure 7 that the number of consecutive wet days in a year was overestimated by the ANN 

model and SDSM in most of the years at all three stations during the validation period. GP also 

overestimated the number of consecutive wet days in certain years. However, GP downscaled values 

are found to be closer to observed values compared to those downscaled by the ANN and SDSM at all 

of the stations. Table 6 shows that the errors in the number of consecutive wet days in a year estimated 

by GP is always significantly less compared to ANN and SDSM estimations. The correlation 

coefficient between observed and GP downscaled values during the validation period was also found 

to be higher. 

Errors in GP downscaling of the number of consecutive dry days in a year were found to be similar 

to those in the estimations of the other two extreme indices. It can be seen from Figure 8 that the 

downscaled number of consecutive dry days in a year by GP, the ANN and SDSM is less than the 

observed number of days in most of the years at all three stations. However, GP downscaled values are 

still found to be closer compared to those downscaled by the ANN and SDSM. 

Comparison of observed and downscaled heavy rainfall days during different months of the NE 

monsoon, as well as continuous wet days and continuous dry days during NE and SW monsoons at 

different stations during model validation is shown in Figure 9. It can be seen from Figure 9 that 

seasonal or monthly variations in extreme rainfall indices are well reconstructed by GP compared to 

those by the ANN and SDSM. In the case of heavy rainfall days, the SDSM was found to downscale 

almost to the same number in all of the NE monsoon months. The ANN is able to show some variation 

in the number of heavy rainfall days, but not like GP. It can also be noted from the values in Figure 9 

that all of the methods overestimated the number of heavy rainfall days in most of the months. Still, 

the values estimated by GP are closer to the observed values compared to those estimated by the ANN 

and SDSM. The RMSEs between the observed and estimated number of heavy rainfall days using 

different methods during model validation are given in Table 7. The table shows that the error in the 

estimation of the number of heavy rainfall days by GP is always less compared to the ANN  

and SDSM.  

Table 6. The RMSEs and correlation coefficients (r2) between observed and downscaled 

extreme indices estimated by GP, the ANN and the SDSM during model validation. 

Indices Station 
GP ANN SDSM 

RMSE r2 RMSE r2 RMSE r2 

90th percentile 
rainfall days 

Besut 1.08 0.75 1.31 0.58 2.16 0.43 

Dungun 1.14 0.73 1.83 0.58 2.69 0.41 

Kemaman 1.13 0.67 1.62 0.61 2.57 0.51 

Consecutive wet 
days 

Besut 1.02 0.88 1.73 0.80 1.95 0.65 

Dungun 1.05 0.89 1.54 0.83 1.74 0.61 

Kemaman 1.10 0.96 1.66 0.92 2.20 0.46 

Consecutive dry 
days 

Besut 1.06 0.83 1.55 0.73 1.99 0.67 

Dungun 1.04 0.91 1.65 0.87 2.28 0.85 

Kemaman 1.23 0.82 1.60 0.82 2.26 0.77 
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Figure 9. Monthly/seasonal distribution of: (a) heavy rainfall days, (b) consecutive wet 

days and (c) consecutive dry days at Besut; (d) heavy rainfall days; (e) consecutive wet 

days and (f) consecutive dry days at Dungun; and (g) heavy rainfall days, (h) consecutive 

wet days and (i) consecutive dry days at Kemaman. 

 

Table 7. The RMSE in downscaled seasonal extreme indices using GP, the ANN and the 

SDSM during model validation. 

Indices Station GP ANN SDSM 

90th percentile 
rainfall days 

Besut 1.66 2.18 3.16 

Dungun 1.68 2.35 2.45 

Kemaman 1.80 3.12 3.54 

Consecutive wet 
days 

Besut 5.02 6.80 6.96 

Dungun 3.81 5.15 6.32 

Kemaman 2.92 6.96 7.91 

Consecutive dry 
days 

Besut 1.80 3.54 4.95 

Dungun 2.06 4.03 5.70 

Kemaman 2.69 4.72 5.70 

The number of consecutive wet days in two major seasons (SW monsoon and NE monsoon) was 

overestimated by the ANN and SDSM during the validation period at all three stations (Figure 9). GP 

also overestimated the number of consecutive wet days, but GP downscaled values were found to be 

closer to observed values compared to those downscaled by the ANN and SDSM in both of the 



Atmosphere 2014, 5 931 

 

 

seasons and at all of the stations. Table 7 shows that the errors in estimation of seasonal consecutive 

wet spells estimated by GP are always less compared to those estimated by the ANN and SDSM. 

Errors in the downscaling number of seasonal dry spells are also found to be less for GP. It can be seen 

from Figure 9 that downscaled lengths of seasonal dry spells estimated by GP, the ANN and the 

SDSM are lower than the observed number of consecutive dry days in both seasons at all of the 

stations. However, GP downscaled values were still found to be closer compared to those downscaled 

by the ANN and SDSM. 

4. Conclusions 

Downscaling daily rainfall is an extremely difficult task, as the relations between predictors and 

predictands are often difficult to map. This is especially true for Malaysia, where relations between 

local rainfall and ocean-atmospheric circulation parameters are not clearly understood. The application 

of GP shows that extreme rainfall indices in a tropical area, like the east coast of Peninsular Malaysia, 

can be downscaled with reasonable accuracy. It is expected that the GP-based methodology proposed 

in the present study can be used as a reliable tool for the projection of extreme rainfall indices at the 

local and regional scale, where climate projection under different climate change scenarios  

is important. 

It should be noted that extreme weather phenomena often occur at small scales; thus, coarse 

resolution models may not always be able to simulate extreme rainfall events accurately. In projecting 

future climates using downscaling models, it should be remembered that GCMs designed with a single 

run for long-term climate projection are apparently not dependent on the initial model conditions, as 

they are soon destroyed after a short period of simulation. These models, as a result, tend to diagnose 

tendencies of future climate states rather than precise predictions of whether particular events are 

likely to occur [70]. Downscaled models contain considerable uncertainties, and quantification of 

uncertainty for the outputs of downscaling models is very important. Studies can be carried out in the 

future to quantify the uncertainty in GP-based models in the downscaling of extreme rainfall indices 

on the east coast of Peninsular Malaysia. 
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