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Abstract: We conducted global warming projections using the Meteorological Research
Institute-Atmospheric General Circulation Model Version 3.2 with a 60-km grid size (MRI-AGCM3.2H).
For the present-day climate of 21 years from 1983 through 2003, the model was forced with observed
historical sea surface temperature (SST). For the future climate of 21 years from 2079–2099, the model
was forced with future SST projected by conventional couple models. Twelve-member ensemble
simulations for three different cumulus convection schemes and four different SST distributions were
conducted to evaluate the uncertainty of projection. Annual average precipitation will increase over
the equatorial regions and decrease over the subtropical regions. The future precipitation changes are
generally sensitive to the cumulus convection scheme, but changes are influenced by the SST over the
some regions of the Pacific Ocean. The precipitation efficiency defined as precipitation change per
1◦ surface air temperature warming is evaluated. The global average of precipitation efficiency for
annual average precipitation was less than the maximum value expected by thermodynamical theory,
indicating that dynamical atmospheric circulation is acting to reduce the conversion efficiency from
water vapor to precipitation. The precipitation efficiency by heavy precipitation is larger than that by
moderate and weak precipitation.
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1. Introduction

Uncertainty in future climate change projected by climate models originates from four main
factors: emission scenario, model structure, internal natural variability and initial condition and
external forcing and boundary condition [1]. For a given specific emission scenario, uncertainty of
future projection is often evaluated as a spread of responses by multiple models. A single model can
be used to estimate the spread of internal natural variability if it is integrated from multiple initial
conditions. The spread of responses by a single model can be also estimated by implementing multiple
versions of physical processes into the model [2].

It is natural to assume that future projection by models with higher reproducibility of observed
climate is more reliable than projections by models with lower reproducibility. In principle, the
reproducibility of precipitation climatology improves when we use a model with higher horizontal
resolution. Studies by [3–5] (Table S1) have revealed that the realistic reproduction of summertime
precipitation over East Asia requires an atmospheric model with higher horizontal resolution.
Therefore, we have been conducting a series of global warming projection experiments using the
Meteorological Research Institute-Atmospheric General Circulation Model Version 3 (MRI-AGCM3)
with 20-km and 60-km grid sizes [3,4,6–14] (Table S1). These models have relatively higher horizontal
resolution compared with global atmospheric models generally used in climate variability studies.
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Since the MRI-AGCM3 model has only the atmosphere and lacks the oceans, we have to specify
sea surface temperature (SST) to conduct the global warming projection. We adopted a ‘time-slice
experiment’ [15] where the model was forced by prescribed external boundary conditions and forcing.
For the present-day climate, observed SSTs were given to the model. This kind of model experiment is
conventionally called the Atmospheric Model Intercomparison Project (AMIP)-type simulation, which
is a standard method to evaluate the performance of atmospheric models. For the future climate,
future SSTs projected by the conventional atmosphere-ocean general circulation model (AOGCMs) are
given to the model.

One of the striking advantages of time-slice experiment is that we can increase the horizontal
resolution of atmospheric part, because we can save computer resources allocated for the ocean part.
Another advantage is that the present-day climatology simulated by an atmospheric model tends to be
better than that by an AOGCM, because SST prescribed in the present-day climatology is observation.
Errors in SST observation are generally smaller than those simulated by AOGCMs. SST simulated by
AOGCM has inevitable errors leading to the distortion of model climatology.

On the other hand, the disadvantage of the time-slice experiment is the lack of air-sea interaction.
Future change in the Indian monsoon is influenced by the SST-convection relationship, which would
be erroneously distorted if SST feedback from the atmosphere is not taken into account [16]. Tropical
cyclone simulated by the atmospheric model tends to show overestimation of intensity [17] and
erroneous northward shift of the existence area in mid-latitudes [18], owing to the lack of cooling by
mixing of the ocean surface layer.

Despite this weakness in the time-slice experiment, we selected the option to use the higher
horizontal resolution version of the atmospheric global model, which enables us to project the small
spatial scale structure of future climate change without any dynamical downscaling using regional
climate models. Moreover, we are collaborating with scientists investigating the impact of global
warming in the fields of natural disaster prevention, water resource management, agriculture and
irrigation. Some of their tools, such as the river discharge model and the flood analysis model,
require very high horizontal resolution forcing as input data. This is another reason to introduce a
higher horizontal resolution model by the time-slice experiment to meet the requirements of impact
assessment scientists.

Simulated precipitation change by the atmospheric model is sensitive to prescribed SST [19].
The dependence of precipitation change on SST was investigated using predicted future SST by some
individual AOGCMs participating in the third phase of the Coupled Model Intercomparison Project
(CMIP3), as well as the SST of the multi-model ensemble (MME) mean of the CMIP3 AOGCMs [6–9]
(Table S1).

Simulated precipitation change by the atmospheric model is also susceptible to physical processes,
such as the cumulus convection scheme implemented in the models. Using the MRI-AGCM3.2S
(20 km) and 3.2H (60 km), [9] have conducted a set of ensemble simulations for three different cumulus
convection schemes and four different SSTs obtained from the cluster analysis of 18 CMIP3 AOGCMs.
They found that the uncertainty of precipitation over the southern part of Asia originates in the
difference among cumulus convection schemes, while that over the Maritime Continent (MC) is
caused by the difference among SSTs. The dependence of precipitation change on SST was further
investigated using future SSTs obtained from the fifth phase of the Coupled Model Intercomparison
Project (CMIP5) AOGCMs [11–14] (Table S1). However, the dependence of precipitation change on the
cumulus convection scheme has not yet been fully examined using future SSTs of CMIP5 AOGCMs.

The purpose of this study is to answer the following questions. Firstly, do our models globally
perform better than the atmospheric models of other institutions with respect to annual average
precipitation, as well as extreme precipitation events? Secondly, how will precipitation change globally
with respect to annual average precipitation, as well as extreme precipitation events? Thirdly, how large
is the uncertainty of future change? Simulated precipitation by the atmospheric model is apparently
sensitive to SST and the cumulus convection scheme. The works in [9,14] have quantitatively evaluated
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the relative contributions of SST and cumulus convection to the uncertainty of future precipitation
change, but their target regions were limited to Asia. Therefore, we need to extend the target region
to the whole globe in order to get the big picture of precipitation change from the global perspective.
Fourthly, how will precipitation change globally in response to the increase of surface air temperature?
In global warming projections, models consistently project a global precipitation increase that is slower
than the increase in moisture expected from thermodynamic theoretical estimate [20,21]. We will
investigate how the conversion rate of precipitation from water vapor depends on the metrics of
precipitation, the cumulus convection scheme and SST.

2. Models and Experimental Design

2.1. The Global Atmospheric Model

The global atmospheric model used in this study is the MRI-AGCM3.2H. This model was
cooperatively developed by the Japan Meteorological Agency (JMA) and the MRI [22]. The horizontal
grid size of the model is 60 km. Hereafter, we call this model as the 60-km model in this paper.
The model has 60 levels reaching to 0.01 hPa top equivalent to an altitude of approximately 80 km.
We also used the same version with different horizontal resolution models of the MRI-AGCM3.2S
(20 km) and the MRI-AGCM3.2L (180 km) in order to compare the reproducibility of present-day
climatology (Table S2).

As for the cumulus convection scheme, we implemented the “Yoshimura scheme” (YS; [23])
which is modified from the Tiedtke scheme [24]. Simulated precipitation by models largely depends
on the kind of cumulus convection scheme implemented in the model. Therefore, in order to evaluate
the sensitivity of simulated precipitation on the cumulus convection scheme, we further utilized the
Arakawa–Schubert (AS) scheme [25] and the Kain–Fritsch (KF) scheme [26], as well as the Yoshimura
scheme. These versions of the models were already used for ensemble simulations in previous studies
that analyzed future changes in precipitation over Asia [9,10,14].

The Tiedtke, YS and AS schemes are all categorized as classical mass-flux type cumulus schemes.
In the Tiedtke scheme, only a single convective updraft is calculated in a single grid point, but is
represented as a more detailed entraining and detraining plume. In the AS scheme, on the other hand,
multiple convective updrafts with different heights are explicitly calculated within a single grid cell,
although each updraft is a more simplified entraining plume. YS can be regarded as a kind of hybrid
of the Tiedtke and AS schemes. YS represents all top-level cumulus plumes by interpolating two
convective updrafts with maximum and minimum rates of turbulent entrainment and detrainment [27].
YS performs better than the AS scheme in simulating precipitation in the tropics [22] and summer
precipitation over East Asia [5]. Because the AS scheme was the default convection scheme for the
MRI-AGCM3.0 and 3.1 models, an option for choosing the AS scheme was kept in the MRI-AGCM3.2.
The KF scheme was originally developed to simulate the mesoscale convective system (MCS) in
mid-latitudes. The KF scheme is based on a one-dimensional cloud model in which the exchange of
mass between cloud and environment is modulated through entrainment and detrainment. Since
the KF scheme well simulates MCSs, it is implemented in the operational regional model of the
JMA. Therefore, we also included the KF scheme in the options of the convection scheme in the
MRI-AGCM3.2.

2.2. Sea Surface Temperature and Sea Ice

We adopted a time-slice experiment [15] where the 60-km model was forced by prescribed external
boundary conditions and forcing. For the present-day climate from the year 1983–2003 (21 years), we
integrated the model giving the observed historical sea surface temperature (SST) and observed sea ice
concentration provided by the Hadley Centre sea ice and sea surface temperature data set version 1
(HadISST1) [28].
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For the future climate from year 2079–2099 (21 years), the boundary SST data were constructed
by combining three components: (i) future change in the MME mean of SST projected by the CMIP5
multi-model model (28 models) dataset; (ii) the linear trend in the MME mean of SST projected
by the CMIP5 multi-model dataset; and (iii) the detrended interannual observed SST anomalies
for the period from year 1979–2003. Future change in the MME mean of SST was taken from the
difference between the historical experiments and the future simulation. We integrated the model
under the Representative Concentration Pathway (RCP) 8.5 emission scenario [29] for the future
climate. Future sea ice concentration was obtained in a similar manner. For further details, refer to [30].

Considering that the response of atmospheric models is intrinsically susceptible to the SST
prescribed, we assessed the dependence of future precipitation change on the geographical distribution
of SST. For this purpose, we have separated 28 CMIP5 models into three groups with the clustering
analysis based on the future change in annual mean SST projected by CMIP5 models over the tropics
(Figure 1a–d). Figure 1e depicts the deviation of Cluster 1 from the average of all models (C0; Figure 1a).
Cluster 1 (C1; Figure 1e) is distinguished by larger warming in the Southern Hemisphere as compared
to the Northern Hemisphere; Cluster 2 (C2; Figure 1f) is characterized by large warming in the central
Pacific in the tropics; Cluster 3 (C3; Figure 1g) is distinguished by large warming around Japan.
The future sea ice concentration was calculated according to the clustering of SST. For more details,
see [31]. With these four different SST distributions, as well as three different cumulus convection
schemes, we can evaluate the spread of the model response, which can be interpreted as the kind of
reliability information on future precipitation change.
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historical and the Special Report on Emission Scenario (SRES) A1B scenario [32] aerosol emission 
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Figure 1. Annual mean sea surface temperature (SST) change (K) from the present-day (1979–2003,
historical simulation) and the future (2075–2099, RCP8.5 scenario). (a) The composite of a total
28 models (C0); (b) the composite of the cluster C1; (c) C2; (d) C3; (e–g) differences for each cluster from
the total mean (C0). The regions where over 75% of the models agree with the sign of the difference are
colored. Contours denote zero. The change is normalized by the tropical (30◦ S–30◦ N) mean for each
model before making the composition and then multiplied by the 28 models’ mean tropical SST change
(2.74 K). From [31].

2.3. Other External Forcings

Observed historical concentrations of greenhouse gases (GHG) such as carbon dioxide and
methane were given for the present-day climate simulations. The RCP8.5 emission scenario was applied
to the future climate simulations. We used three-dimensional natural and anthropogenic aerosol
distributions simulated by the MRI-Earth System Model (MRI-ESM; [27]) based on historical and the
Special Report on Emission Scenario (SRES) A1B scenario [32] aerosol emission data. We included
aerosols erupted only from Mt. Pinatubo in the year 1991. The three-dimensional distributions of
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stratospheric ozone calculated by the MRI-Chemical Transport Model (CTM) (MRI-CTM; [33]) based
on historical and A1B scenario aerosol emission data were prescribed. Aerosol and stratospheric
ozone distributions simulated by the MRI-ESM and MRI-CTM assuming the RCP8.5 scenario were
not available at the time when we started a set of global warming projections in this study. Table 1
summarizes the experimental designs and definitions of the simulation names.

Table 1. Definition of simulation names.

Present-Day Climate: 1983–2003, 21 Years

Cumulus
Convection a

Sea Surface Temperature (SST):
Observation by the HadISST1 [28]

YS HPYS
AS HPAS
KF HPKF

Future Climate: 2079–2099, 21 years

Cumulus
Convection a

Sea surface Temperature (SST):
Projections by the CMIP5 AOGCMs for the Emission Scenario RCP8.5

Cluster 0 MME Cluster 1 Cluster 2 Cluster 3

YS HFYSC0 HFYSC1 HFYSC2 HFYSC3
AS HFASC0 HFASC1 HFASC2 HFASC3
KF HFKFC0 HFKFC1 HFKFC2 HFKFC3

First character of simulation name denotes horizontal resolution: H = 60 km; Second character denotes the
target period: P = present-day, F = Future; Third and fourth characters denote the type of cumulus convection
scheme; a Yoshiumura (YS): [23]; Arakawa-Schubert (AS): [25]; Kain-Fritsch (KF): [26]; HadISST1: the Hadley
Centre sea ice and SST data set version 1; CMIP5: The fifth phase of the Coupled Model Intercomparison Project;
AOGCM: Atmosphere-Ocean General Circulation Model; RCP: Representative Concentration Pathway; MME:
multi-model ensemble.

3. Present-Day Climate

3.1. Observation for Model Verification

To validate the model, we used the One-Degree Daily data (1dd) of the Global Precipitation
Climatology Project (GPCP) v1.2 compiled by [34] from 1997–2008 (12 years). The horizontal resolution
of this dataset is 1.0◦ in longitude and latitude, corresponding to a grid spacing of roughly 90 km
at 35◦ N. The quantitative model performances were evaluated against GPCP 1dd data. Since the
60-km models have relatively higher horizontal resolution, we need observational data with higher
horizontal resolution for verification. However, the GPCP 1dd data do not cover the whole target
period of simulations from 1983–2003. Pentad and monthly data are calculated from daily data. In the
verification, model data were interpolated to the location of grid points of the GPCP 1dd data.

Observational data themselves have uncertainty of observation so that model skill depends on the
selection of observational data [35]. The pentad and monthly data of GPCP v2.2 provided by [36] are
also utilized from 1983–2003 (21 years). These data cover the whole target period of simulations from
1983–2003. The horizontal resolution of this dataset is 2.5◦ in longitude and latitude, corresponding to
a grid spacing of roughly 210 km at 35◦ N.

Further, the pentad and monthly data of the Climate Prediction Center Merged Analysis of
Precipitation (CMAP) v1201 compiled by [37] are used from 1983–2003 (21 years). The horizontal
resolution of this dataset is 2.5◦ in longitude and latitude, which is the same as GPCP v2.2. Moreover,
we used the Tropical Rainfall Measuring Mission (TRMM) 3B43 compiled by [38] from 1998–2010
(13 years). The horizontal resolution is 0.25◦ in longitude and latitude, corresponding to a grid spacing
of about 25 km at 35◦ N. However, regional coverage is restricted to a global belt extending from
50◦ S–50◦ N. Table 2 summarizes the observations used for verification.
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Table 2. Observational data of precipitation used in this study. GPCP: Global Precipitation Climatology
Project. 1dd: the One-Degree Daily data. CMAP: Climate Prediction Center Merged Analysis of
Precipitation, TRMM: the Tropical Rainfall Measuring Mission.

Name Time Resolution Spatial Resolution Period Region Reference

GPCP 1ddv1.2 Day 1.0 deg 1997–2013, 17 years Global [34]
GPCP 1ddv1.2 Month 1.0 deg 1997–2013, 17 years Global [34]

GPCP v2.2 Month 2.5 deg 1981–2000, 20 years Global [36]
CMAP v1201 Month 2.5 deg 1981–2000, 20 years Global [37]
TRMM 3B43 Month 0.25 deg 1998–2013, 16 years 50◦ S–50◦ N [38]

3.2. Global Distribution of Precipitation

The global distributions of annual average precipitation (PAV) simulated by the models are
compared with observations (Figure 2). In the observation of GPCP 1dd (Figure 2a), the region of large
precipitation extends over the Equator in the Indian Ocean, the Pacific Ocean, the Atlantic Ocean and
the Amazon in South America. Furthermore, precipitation is large over the South Pacific Convergence
Zone (SPCZ), which spreads over the MC and Papua New Guinea. In middle and high latitudes in
the Northern Hemisphere, precipitation shows moderate maxima over the North West Pacific Ocean
and the North West Atlantic Ocean. These regions correspond to the location of storm tracks owing to
the frequent passage of extratropical cyclones. Convective rainfall driven by the underlying warm
western boundary ocean currents also contributes in these regions [39]. The large-scale geographical
distributions of precipitation by other observations (Figure 2b–d) are approximately similar to that of
GPCP 1dd (Figure 2a). Local maximum of precipitation over the MC is larger in Figure 2c,d than in
Figure 2a, while precipitation over the MC is smaller in Figure 2b than in Figure 2a (also see Figure S1).

The 60-km models well reproduce the large-scale distribution of precipitation (Figure 2e–g),
but the precipitation over the maritime continent and the SPCZ is overestimated compared with
observations (Figure 2a–d). The MME mean of the CMIP5 atmospheric models’ AMIP runs (Table
S1) forced with a similar SST as the 60-km models shows also a realistic precipitation distribution
(Figure 2h). The grid size at 35◦ N of CMIP5 atmospheric models ranges from 28 km–342 km with an
average of 171.5 km and a median 171 km, which is larger than that of the 60-km model (last column
in Table S2). The 60-km model with the KF scheme (Figure 2g) shows the largest precipitation over the
MC compared with the other models (Figure 2e,f,h and Figure S2), which can be also confirmed in
Figure S2f.

In terms of model biases against GPCP 1dd v1.2 (Figure 2i–l), all models show excessive
precipitation over the MC and the central tropical Pacific Ocean.
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Figure 2. The climatology of annual average precipitation (PAV). Unit is mm day−1. (a–d) Observation
(Table 2); (e–h) simulations by models averaged for 1983–2003 (21 years); (e) HPYS; (f) HPAS; (g) HPKF;
(h) MME mean of 24 CMIP5 atmospheric models’ Atmospheric Model Intercomparison Project (AMIP)
runs (Table S1); (i–l) bias against GPCP 1ddv1.2 (a). GPCP, Global Precipitation Climatology Project.

3.3. Taylor Diagram

In order quantify the skill of models, we introduced the skill score S proposed by [40] against the
GPCP 1dd data (Figure 2a). S is defined by:

S =
4(1 + R)

(σ + 1/σ)2(1 + R0)

where R is the spatial correlation coefficient between observation and simulation, σ is the spatial
standard deviation of the simulation divided by that of the observations and R0 is the maximum
correlation attainable. Here, we assumed that R0 = 1. S evaluates the spatial correlation coefficient, as
well as the spatial standard deviation. S approaches unity in a perfect simulation.

Figure 3b displays the Taylor diagram [40] of S for the 60-km and CMIP5 atmospheric models
with respect to PAV. Although S is widely used to verify model performance in many climate modelling
studies, we must recognize that S cannot evaluate model bias because this method deals with deviation
from the mean value of the target domain both for observation and simulations. Therefore, we also
plotted the bias and root mean square error (RMSE) in Figure 3a. The target region is the global domain
(Figure 2). In the Taylor diagram (Figure 3b), the radial distance from the origin is proportional to
the standard deviation of a simulated spatial pattern normalized by the observed standard deviation.
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The spatial correlation coefficient between the observed and simulated fields is given by the angle
from the Y-axis. The skills of the GPCP 2.5◦ data and CMAP 2.5◦ data against the GPCP 1dd data
were also plotted to estimate the uncertainty of observations. This uncertainty originates from the
differences of averaged period, horizontal resolution, original source of data and retrieval method.
The difference among observations (green marks) is relatively small compared with the difference
among all models (Figure 2a,b).
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Figure 3. Skill of PAV simulated by models verified against the GPCP 1dd V1.2 data (green circle)
for the global domain. Green marks denote other observations (Table 2). Color characters show
the MRI-AGCM3.2H models. Red, orange and blue characters denote the YS, AS and KF schemes,
respectively. Black marks X show the CMIP5 individual models. Black circles indicate the MME mean.
Black squares indicate the average of the skill scores of all of the CMIP5 models (AVM). The target
domain is the same as in Figure 2. (a) The root mean square error (RMSE) and bias (mm day−1).
The domain average of observation is shown above the panel. (b) Taylor diagram for displaying
pattern statistics [40]. The standard deviation of the observation in the domain is shown above the
panel. The contour shows the value of Taylor skill S.
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Figure 3a shows that all of the 60-km and all of the 24 CMIP5 models have positive biases mainly
originating from overestimation of precipitation over the MC and the SPCZ. The RMSEs of the 60-km
models (character H) are smaller than or comparable to those of the CMIP5 models (black X).

We calculated the average skill of the individual CMIP5 models (AVM, black square), as well
as the skill of the spatial distribution of precipitation constructed from the MME mean (black circle)
of CMIP5 models. In the calculation of the AVM, we first evaluated the skill of the geographical
distribution of precipitation simulated by individual models, and then, we averaged all 24 skills. In the
case of linear skill measures, such as average and bias, the MME mean is identical to the AVM. In the
case of nonlinear skill measures, such as RMSE, the correlation coefficient and Taylor skill score S, the
MME mean and the AVM differ. In Figure 3a, the RMSE of MME (black circle) is smaller than that of
the AVM (black square). This is consistent with previous findings that the MME mean average can be
expected to outperform individual models in climate simulations [41–43]. The 60-km model with YS
(red H) shows the smallest RMSE of all models.

In the Taylor diagram (Figure 3b), the Taylor skill scores S (contour plot) of the 60-km models (H)
are also closer to the GPCP 1dd observation (green circle) than those of the CMIP5 models (black X).
The MME mean (black circle) is closer to the observation (green circle) than the AVM (black square)
as in Figure 3a. All of the models are plotted outside the quadrant of radius one. This means that
the simulated precipitation distribution has larger spatial variability than observation. The spatial
variability of the 60-km models is nearly comparable to that of the CMIP5 models, but the spatial
pattern simulated by the 60-km models is better than that by most CMIP5 models. The 60-km model
with YS (red H) is the closest to the observation (green circle) of all models.

In summary, the 60-km models perform better than or equal to the CMIP5 models in terms of
bias, RMSE, spatial pattern and Taylor skill score S, although the spatial variability of the 60-km model
is almost equivalent to that of the CMIP5 models.

3.4. Extreme Precipitation Events

We adopted four extreme precipitation indices (Table 3) from those proposed by [44]. PAV is also
included for comparison. These are indices measuring precipitation intensity, except for consecutive
dry days (CDD), which is a measure for dryness and the possibility of drought. These indices are based
on annual statistics. The Simple Daily precipitation Intensity Index (SDII) is widely adopted in model
studies, such as [45]. The maximum 5-day precipitation total (R5d) is a relevant measure to estimate
the possibility of natural disasters, such as flood and land slide. The indices SDII, R5d and CDD are
also adopted in Figure 9.37 of [46]. In the previous studies dealing with extreme precipitation events,
notations Rx5day and Rx1day are widely used to define R5d and The maximum 1-day precipitation
total (PMAX), respectively.

Table 3. Indices of precipitation.

Index Name Definition Unit

PAV Annual average precipitation Annual average precipitation mm day−1

SDII Simple daily precipitation intensity index Total annual precipitation divided by the number of
rainy days (precipitation ≥ 1 mm) mm day−1

R5d Maximum 5-day precipitation total Annual maximum of consecutive 5-day precipitation mm
PMAX Maximum 1-day precipitation total Annual maximum of daily precipitation mm

CDD Consecutive dry days Annual maximum number of consecutive dry days
(precipitation < 1 mm) day

Figure 4 compares the spatial correlation coefficients of the 60-km models against GPCP 1dd
with those of CMIP5 models with respect to the global distributions of extreme precipitation indices
(Table 3). In the case of PAV, the skills of the 60-km models are higher than the average skill of CMIP5
models (AVM, green line). The skills of the 60-km models with YS (red line) and with the KF scheme
(blue line) are even higher than the MME mean of CMIP5 models (green circle). In the case of SDII,
R5d, PMAX and CDD, the skills of the 60-km models are higher or comparable to those of CMIP5
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models. However, the models with the AS scheme show the lowest correlation coefficient among the
60-km models. This is due to the under-estimation of precipitation intensity by the 60-km model with
the AS scheme compared with models with the other cumulus scheme. See Figure S3 for the R5d case.Atmosphere 2017, 8, 93  10 of 23 
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Figure 4. Spatial correlation coefficients of the global distribution of precipitation indices (Table 3)
between observations by GPCP 1ddv1.2 and model simulations. Red, orange and blue bars denote the
60-km models with the YS, AS and KF schemes, respectively. Black bars show the CMIP5 individual
models. Green circles indicate the MME mean of CMIP5 models. Green bars indicate the AVM of
CMIP5 models. CDD, consecutive dry days.

In terms of RMSE, the skills of the 60-km models are also higher or comparable to those of CMIP5
models, except for CDD (Figure S4). The 60-km models have relatively larger positive bias of CDD
compared to those of CMIP5 models (Figure S5). This leads to the relatively larger RMSE of the 60-km
models compared to those of CMIP5 models.

The 60-km model with the KF scheme shows a higher spatial correlation coefficient than the 60-km
models with the YS and AS schemes except for CDD (Figure 4). However, the RMSE (Figure S4) and
bias (Figure S5) of the 60-km model with the KF scheme are generally larger than those of the YS and
AS schemes. Larger bias (Figure S5), as well as larger spatial variability by the KF scheme (Figure 3b)
might lead to larger RMSE (Figure S4) in spite of a higher spatial correlation coefficient (Figure 4).
The larger spatial variability by the KF scheme might originate from the tendency to produce excessive
local orographic rainfall.

We speculate that the higher skill of the 60-km model originates in the higher horizontal resolution
of the 60-km model as compared to that of the CMIP5 models (average 171 km). As for PAV, we
calculated the correlation coefficient between the model skill measured by the spatial correlation
coefficient and the grid size of the models. We used 31 models, including seven MRI-AGCMs with
different grid sizes and cumulus convection schemes, as well as 24 CMIP5 models (Figure S6). We found
a statistically-significant negative correlation between model skill and grid size, suggesting that higher
horizontal resolution is favorable for higher skill. This tendency is also confirmed with R5d, PMAX
and CDD (Figure S7). However, in the case of RMSE, the advantage of higher horizontal resolution
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was not clear. As for the precipitation over East Asa, the cumulus convection scheme, as well as higher
horizontal resolution contributes to higher skill of the MRI-AGCM3.2 models [11].

4. Future Climate

4.1. Changes in Annual Average Precipitation

Future changes in PAV are illustrated in Figure 5. In the case of the 60-km models with YS
(Figure 5a–d), the present-day simulation with the same YS of HPYS (1983–2003, 21 years) is subtracted
from future simulations of HFYSC0, HFYSC1, HFYSC2 and HFYSC3 (2079–2099, 21 years) to obtain
future change, which is converted into the ratio (%) to the present-day climatology HPYS. Similarly,
future changes by the 60-km model with the AS and KF schemes are calculated from the present-day
simulations with the corresponding same cumulus convection schemes. The statistical significance of
changes is evaluated by Student’s t-test based on variances of year-to-year variability.
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Pacific Ocean, the Arabian Sea and the high latitudes of the Northern Hemisphere. These regions 
correspond to the larger warming of SST (Figure 1a). Precipitation also increases in the high 
latitudes of the Southern Hemisphere, but the warming of SST is relatively small in these regions 
(Figure 1a). This suggests that the precipitation increase in the high latitudes of the Southern 
Hemisphere is caused by large-scale circulation, rather than by the local SST effect. Precipitation 
decreases over the eastern Southern Pacific Ocean in the subtropical region around 30° S, the ocean 
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Figure 5. Future changes (2079–2099) in annual average precipitation (%) from the present-day
climatology (1983–2003). Change is normalized by the present-day climatology. Hatched regions
show changes above the 95% significance level based on Student’s t-test. (First row; (a–e)) The 60-km
model with YS. Changes are calculated from the present-day climate simulations with YS. (Second
row; (f–i)) The 60-km model with the AS scheme. Changes are calculated from the present-day climate
simulations with the AS scheme. (Third row; (k–o)) The 60-km model with the KF scheme. Changes
are calculated from the present-day climate simulations with the KF scheme. (Fourth row; (p–t)) The
ensemble average of 60-km model with the three convection schemes (first–third row). (First column;
(a,f,k,p)) Simulations with the SST cluster C0. (Second column) Simulations with C1. (Third column)
Simulations with C2. (Fourth column) Simulations with C3. (Fifth column) The ensemble average of
simulations with the four SSTs (first–fourth column).

In the case of HFYSC0 (Figure 5a), precipitation increases over the equatorial regions of the
Pacific Ocean, the Arabian Sea and the high latitudes of the Northern Hemisphere. These regions
correspond to the larger warming of SST (Figure 1a). Precipitation also increases in the high latitudes
of the Southern Hemisphere, but the warming of SST is relatively small in these regions (Figure 1a).
This suggests that the precipitation increase in the high latitudes of the Southern Hemisphere is
caused by large-scale circulation, rather than by the local SST effect. Precipitation decreases over
the eastern Southern Pacific Ocean in the subtropical region around 30◦ S, the ocean to the west of
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Australia and the Atlantic Ocean in the subtropical region of the both hemispheres. These regions
with decreased precipitation roughly correspond to the region with relatively small SST warming
(Figure 1a). If we compare precipitation changes in Figure 5a–d, which are simulated by the same YS
forced with different SSTs, the spatial structure is almost similar from the large-scale perspective, but
the precipitation changes over the western tropical Pacific Ocean around Philippines differ among
simulations. In the case of the 60-km models with the AS scheme (Figure 5f–i; second row) and with
the KF scheme (Figure 5k–n; third row), the large-scale spatial structure is similar to those by the
60-km models with YS (Figure 5a–d; first row). However, precipitation decrease over the western
tropical Pacific Ocean by the 60-km models with the KF scheme (Figure 5k–n; third row) is much more
evident than the 60-km models with YS (Figure 5a–d; first row) and with the AS scheme (Figure 5f–i;
second row). The dependence of precipitation change on the convection scheme is summarized by the
ensemble averages (Figure 5e,j,o; last column). Precipitation increases over the western tropical Pacific
Ocean by the 60-km models with YS (Figure 5e) and with the AS scheme (Figure 5j), while precipitation
decreases over there by the 60-km models with the KF scheme (Figure 5o). The reason why the KF
scheme behaves different from the YS and AS schemes might relate to the sensitive responses of the KF
cumulus convection schemes over the MC (Figure S2), but the physical interpretation of the difference
among future precipitation changes is not straightforward.

The dependence of precipitation change on SST is summarized by the ensemble averages
(Figure 5p–s; bottom row). Precipitation increases over the equatorial regions of the Pacific Ocean in
simulations with SST clusters C0 (Figure 5p), C2 (Figure 5r) and C3 (Figure 5s). On the other hand, in
the case of C1 (Figure 5q), the region where precipitation increases over the equatorial regions of the
Pacific Ocean is confined to the eastern side of the ocean and does not extend westward. This might be
partly due to relatively small warming of SST in cluster C1 over the tropical Pacific Ocean compared
with C0, C2 and C3 (Figure 1e–g). We will further discuss the dependence of precipitation change on
convection scheme and SST in the later Section 4.3.

The ensemble average of all 12 simulations (Figure 5a–d,f–i,k–n) is displayed in Figure 5t.
In general, precipitation increases globally, except some regions over the subtropical area. This
suggests that global average precipitation will increase in the future. We will discuss this point from a
global perspective in the later Section 4.4. The area of the statistically-significant region in the ensemble
average (Figure 5t) is larger than that of individual simulations (Figure 5a–d,f–i,k–n). This is one of
advantages of ensemble simulations and is mainly caused by the larger sample size (21 years/run ×
12 runs = 252 years) as compared to individual simulation (21 years). The geographical distribution of
precipitation change is qualitatively consistent with the Figure 12.10 in [46] based on the MME mean
of CMIP5 AOGCMs.

4.2. Extreme Precipitation Events

Figure 6 displays the future change in extreme precipitation events (Table 3) including PAV for
comparison. Each panel is calculated from the ensemble average of all 12 simulations. The area of
precipitation increase in SDII (Figure 6b) is larger than that in PAV (Figure 6a). In PAV, precipitation
decreases over the Mediterranean, the southern part of Africa, the ocean to the west of Australia and
in the subtropics of the South Atlantic Ocean, but in SDII, precipitation increases over these regions.
Another evident difference is that precipitation decreases over the western tropical Pacific Ocean
and Antarctica in SDII as opposed to the precipitation increase over these regions in PAV. In the case
of R5d (Figure 6c), the distribution of change is almost similar to SDII with some differences, but
the magnitude of the positive and negative change in R5d is larger than those in SDII. Unlike SDII,
R5d increases over Antarctica. This inconsistency might be originating in the difference of the index
definition. In the case of PMAX (Figure 6d), the distribution of change is almost similar to R5d. Unlike
the precipitation indices of PAV, SDII, R5d and PMAX, the index CDD is a measure of dryness and
drought possibility. Note that the color bar in CDD (Figure 6e) is reversed in contrast to the other color
bars (Figure 6a–d), such that brown color means dryness. CDD increases over the Mediterranean, the
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subtropical regions of eastern North Pacific Ocean, the United States, the Caribbean countries, the
North Atlantic Ocean and the subtropical regions in the Southern Hemisphere. Since most of these
regions are dry areas in the present-day observed climate condition, the drier region will get drier in
the future. Over Europe, Africa, Australia, North America and South America, both CDD (Figure 6e)
and extreme precipitation events (Figure 6b–d) will increase. This suggests that rainfall events in
these regions will concentrate to a short period of time, presumably leading to the increase of natural
disasters, such as flood and landslide.
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Figure 6. Future changes in precipitation indices (Table 3) by averaging all 12 simulations. Change is
normalized by the present-day climatology. Unit is %. Hatched regions show changes above the 95%
significance level. (a) PAV; (b) SDII; (c) R5d; (d) PMAX; (e) CDD. (a) is the same as Figure 5t.

Our finding that the area and rate of precipitation increase for heavy rainfall (Figure 6c,d) are larger
than that for mean precipitation (Figure 6a) agrees with previous studies by [47–51]. This is consistent
with the fact that changes in the extreme precipitation follow more closely the Clausius–Clapeyron
(C-C) relationship than changes in the mean precipitation [51]. We will further discuss this point in
Section 4.4.

Future R5d and CDD changes over land projected by the MME mean of CMIP5 AOGCMs are
illustrated in Figure 12.26 of [46]. In this figure, R5d increases almost all land area, while CDD increases
over the Mediterranean, the USA, South America and the southern part of Africa. Our results are
basically consistent with these changes.

4.3. Which Influences Precipitation Change, the Cumulus Convection Scheme or SST?

We evaluate the dependence of future precipitation change on the cumulus convection scheme
and SST. For this purpose, we have applied a two-way of analysis of variance (ANOVA; [52]) to future
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precipitation changes by the ensemble simulations with respect to three different cumulus convection
schemes and four different SST distributions (Figure 5a–d,f–i,k–n). The ANOVA is able to quantitatively
separate the relative contributions of the variances originating from differences in cumulus convection
schemes and from differences in SSTs to the total variance. For technical details, see the Supplemental
Materials. Figure 7a displays the total variance of future precipitation changes among all 12 simulations
(Figure 5a–d,f–i,k–n), which can be decomposed into contributions by cumulus convection (Figure 7b)
and SST (Figure 7c). The rest of the variance is named the residual (Figure 7d), which can be interpreted
as the component not explained by cumulus convection and SST or as a non-linear interaction between
cumulus convection and SST. In addition, internal natural variability of the atmosphere [53] may
contribute to this residual part. Normalized variances by the total variance (Figure 7a) are also shown
in Figure 7e,f. Finally, the relative magnitudes of the contribution from cumulus convection and SST
are illustrated in Figure 7g. In red regions, cumulus convection affects precipitation change. On the
other hand, in the blue region, SST affects precipitation change. In the tropics where convection is
relatively active, cumulus convection influences precipitation. As for the Pacific Ocean, SST influences
precipitation on some regions in the subtropics and middle latitudes, as well as the tropics. This
is partly consistent with [19] in which they stressed that the SST distribution is a dominant source
of uncertainty in future precipitation change. However, as for the Atlantic Ocean, SST influences
precipitation only in the northern part.
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We applied the ANOVA to extreme precipitation indices (Figure 8). In the case of SDII  
(Figure 8b), cumulus convection affects most part of the globe. As for R5d and PMAX, cumulus 
convection also affects most part of the globe, but SST influences some regions in the Pacific Ocean 
and the Atlantic Ocean. Figure 8a–c indicates that future changes in intense precipitation 

Figure 7. A two-way analysis of variance (ANOVA; [52]) applied to future annual average precipitation
changes by all 12 ensemble simulations with respect to three different cumulus convection schemes
and four different SST distributions (Figure 6a–d,f–i,k–n). (a) Total variance (100%2); (b) variance
due to convection scheme (100%2); (c) variance due to SST (100%2); (d) residual of variance (100%2);
(e) relative contribution of cumulus convection scheme as the ratio to the total variance (%); (f) relative
contribution of SST as the ratio to the total variance (%); (g) ratio (%) of the variance by the cumulus
convection scheme (b) to the variance by SST (c). Hatches show regions above the 95% significance
level based on the F-test.

Total variance of changes in PAV is small over land at high latitudes of the Northern Hemisphere
(Figure 7a). This is the outcome of the result that spatial patterns of precipitation change over these
regions are almost same (Figure 5a–d,f–i,k–n), indicating that change over this region is not sensitive
to the convection scheme and future SST distribution. This is caused by robust circulation changes
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at the 850 hPa height (Figure S8) where the spatial pattern of the height change over these regions is
almost same.

We applied the ANOVA to extreme precipitation indices (Figure 8). In the case of SDII (Figure 8b),
cumulus convection affects most part of the globe. As for R5d and PMAX, cumulus convection also
affects most part of the globe, but SST influences some regions in the Pacific Ocean and the Atlantic
Ocean. Figure 8a–c indicates that future changes in intense precipitation represented by SDII, R5D and
PMAX (Figure 8b–d) are much more sensitive to the cumulus convection scheme than those by PAV
(Figure 8a).
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Figure 8. Ratio (%) of the variance by the cumulus convection scheme to the variance by SST.
The ANOVA is applied for future changes in precipitation indices (Table 3). Hatched regions show the
ratio above the 95% significance level. (a) PAV; (b) SDII; (c) R5d; (d) PMAX; (e) CDD. (a) is the same as
Figure 7g.

The authors in [9] have conducted similar ensemble simulations for different cumulus convections
and different SSTs using the MRI-AGCM3.2S and MRI-AGCM3.2H. They used the SSTs of CMIP3
AOGCMs with the A1B scenario, whereas we used the SSTs of CMIP5 AOGCMs with RCP8.5 in
this paper. They reported that the precipitation change in PAV over the tropical Pacific Ocean is
much affected by SST, but that the contribution of the cumulus convection scheme to the heavy
precipitation over the tropical Pacific Ocean is larger than the contribution to PAV. Our results are
consistent with their results, although both results cannot be directly compared due to some differences
in experimental design.



Atmosphere 2017, 8, 93 16 of 23

4.4. Precipitation Efficiency

In principle, the increase in annual average precipitation and precipitation intensity can be
attributed to the increased availability of water vapor caused by the warming air temperature of the
atmosphere [46,54]. Figure 9a shows the future changes in annual average surface air temperature
(SAT) projected by HPYS and HFYSC0. Warming over land is larger than over ocean because the heat
capacity of land is smaller than that of ocean. Warming in the Northern Hemisphere is larger than in
the Southern Hemisphere because the area of land in the Northern Hemisphere is larger than that in
the Southern Hemisphere. Especially, warming over the high latitudes in the Norther Hemisphere is
conspicuous. This is mainly caused by the surface albedo feedback mechanism. The reduction in snow
over land and the extent of sea ice over the Arctic Ocean leads to the decrease of albedo at the surface,
which enhances the absorption of the short wave at the surface to warm up SAT. The future change in
precipitation projected by HPYS and HFYSC0 (Figure 9b) has some common features with changes in
SAT (Figure 9a) in that precipitation change is generally larger over land than over ocean and is larger
in the Northern Hemisphere than in the Southern Hemisphere.
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temperature (◦C) by HFYSC0 (2079–2099) from the HPYS (1983–2003); (b) PAV change (%) by HFYSC0
relative to HPYS; (c) precipitation efficiency (%/◦C) defined as PAV change (b) divided by surface air
temperature change (a). Hatched regions indicate that precipitation efficiency is larger than the rate of
precipitation increase (7.5%/◦C) expected from the Clausius–Clapeyron (C-C) relationship.

Figure 9c shows the ratio of PAV change to SAT change at each grid point using the simulations
of HPYS and HFYSC0. This quantity, which is the rate of precipitation change per one degree rise
in SAT, can be interpreted as a kind of ‘precipitation efficiency’, which measures the conversion rate
from water vapor to precipitation. This precipitation efficiency is referred to as the ‘hydrological
sensitivity’ in Section 9.3.4.1 of [55]. Hereafter, we consistently use the terminology ‘precipitation



Atmosphere 2017, 8, 93 17 of 23

efficiency’. Figure 9c shows that the distribution of precipitation efficiency basically resembles that of
precipitation change (Figure 9b), but the magnitudes of precipitation efficiency over the high latitudes
in the Northern Hemisphere are reduced due to the large increase of temperature there. In Figure 9c,
hatched regions denote that the precipitation efficiency exceeding the value 7.5%/◦C theoretically
expected from the C-C relationship [21]. Precipitation efficiency is larger than the theoretical value
over the equatorial region of the Pacific Ocean, the Arabian Sea and high latitudes in the Southern
Hemisphere, but precipitation efficiency is smaller than the theoretical value in most parts of the globe.
This implies that the dynamical effect of atmospheric circulation is reducing the local thermodynamical
effect of precipitation change in most regions. Our results are consistent with the findings by [21]
in which they show that the precipitation efficiency of the MME mean of CMIP3 AOGCMs exceeds
the theoretical value only over the central and eastern equatorial Pacific and the western Indian
Ocean. The authors in [20] have revealed that precipitation is supposed to increase slower than the
C-C relationship, and the models actually match the anticipation. Our results are consistent with
their findings.

We further extended our analysis to intense precipitation. Figure 10 illustrates the precipitation
efficiency of R5d and PMAX, as well as PAV for comparison, using all 12 simulations. The geographical
distribution of precipitation efficiency by R5d and PMAX generally resembles that by PAV. However,
the area of positive regions (blue) by R5d and PMAX is larger than that by PAV, which is directly
caused by the distribution of precipitation change by R5d (Figure 6c) and PMAX (Figure 6d). Another
noteworthy feature is that the magnitude of positive precipitation efficiency (blue regions) by R5d and
PMAX is larger than that by PAV, especially over the northern Pacific Ocean.
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From Figure 9, we expect that the global average precipitation efficiency by R5d and PMAX
might be larger than that by PAV. From a global perspective, we firstly calculated the global average of
precipitation changes and SAT changes and then evaluated precipitation efficiency. This procedure
smooths out the strong locality in Figures 9c and 10 in which precipitation efficiency is derived at each
grid point. Another intention here is to investigate the dependence of precipitation efficiency on the
cumulus convection scheme and SST, because Figures 9 and 10 are based on the ensemble average
of all 12 simulations. Figure 11a shows the relationship between PAV changes and SAT changes for
all 12 simulations. The characters denote the convection schemes, and colors denote SST clusters.
Precipitation changes are mainly determined by the cumulus convection scheme (character) and are not
sensitive to SST (color). For instance, precipitation changes by the AS scheme (character A) are almost
the same value of about 8.4% regardless of SAT increase ranging from about 3.1–3.6 ◦C. Conversely,
SAT changes are mainly determined by SST and are less sensitive to the cumulus convection scheme.
For instance, SAT changes by SST cluster C0 (black) are almost the same value of between 3.5 and
3.6 ◦C, regardless of large precipitation changes. As for precipitation change, the AS scheme gives
the largest changes, whereas YS gives the smallest changes. As for SAT, SST cluster C1 gives the
largest warming, whereas the SST cluster C3 gives the smallest warming. HFASC3 (blue A) gives the
largest precipitation efficiency 2.46%/◦C = 8.40%/3.42 ◦C, whereas HFYSC1 (red Y) gives the smallest
precipitation efficiency 2.09%/◦C = 7.59%/3.64 ◦C. The range of precipitation efficiency of PAV is small
due to the narrow range of SAT change from about 3.4–3.7 ◦C.

Figure 11b shows the relationship between precipitation changes and SAT changes for R5d
and PMAX, as well as PAV for comparison. Note that the ranges in vertical and horizontal axes of
Figure 11b are wider than those of Figure 11a. In Figure 11b, marks denote variables and colors denote
the cumulus convection schemes. The differences of SST clusters are not discriminated in Figure 11b.
In reference to the diagonal line indicating the theoretically-expected value of 7.5%/◦C, precipitation
efficiency of PAV (X mark) is far less than this value. If we focus only on the YS cumulus scheme (red),
precipitation efficiency becomes larger in the following order: PAV (mark X), R5d (circle) and PMAX
(triangle). The same relationship holds true for the AS scheme (black) and KF scheme (green). Since
the indices PAV, R5d and PMAX represent a much more intense rainfall event in this order, Figure 11b
implies precipitation changes associated with heavier rainfall events are larger than those by moderate
or weak rainfall events. It is noteworthy that the precipitation efficiency of PMAX almost reaches
the theoretical value of 7.5%/◦C. In other words, it is reasonable that precipitation changes in heavy
rainfall events are large because the conversion from water vapor into precipitation is much more
effective than moderate or weak rainfall events. This is consistent with previous studies [48–51,56] in
which the change of extreme precipitation is larger than that of mean precipitation.

The authors in [10] have investigated the future precipitation over East Asia using the
MRI-AGCM3.2H with SSTs of CMIP3 AOGCMs assuming the A1B scenario and found that the
precipitation efficiency of heavy precipitation is larger than that of mean precipitation. Our results are
also consistent with their results. Using the same experiment by the study of [10], the authors in [57]
have calculated precipitation efficiency over the Arctic and have revealed that precipitation efficiency
of heavy precipitation is comparable or less than that of mean precipitation. This is presumably
because rainfall over the Arctic is mainly caused by horizontal transport of moisture rather than
cumulus convection.
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Figure 11. Dependence of precipitation change (%) on global average annual mean surface temperature
change (◦C). (a) Dependence of PAV changes on the cumulus convection scheme and SST. Characters
Y, A and K mean the YS, AS and KF schemes, respectively. Black, red, green and blue colors mean
SST cluster C0, C1, C2 and C3, respectively. (b) Dependence of precipitation change on different
indices. The black slanted line denotes the rate of precipitation increase (7.5%/◦C) expected from
the Clausius–Clapeyron relationship. The X mark, circle and triangle mean PAV, R5d and PMAX,
respectively. Red, black and green colors mean the YS, AS and KF schemes, respectively.

5. Conclusions

In the present-day climate simulation for 1983–2003 (21 years) by the MRI-AGCM3.2H, we
confirmed that the model well reproduces the global distributions of annual average precipitation
and precipitation intensity. The performance of the MRI-AGCM3.2H is higher or equal to those
by the CMIP5 atmospheric global models. This can be partly attributed to the higher horizontal
resolution of the MRI-AGCM3.2H as compared with CMIP5 atmospheric models, because we found a
statistically-significant correlation between model skill and grid size with respect to annual average
precipitation and precipitation extremes.

In the future climate simulation for 2079–2099 (21 years), we have conducted the 12 ensemble
simulations for three different convection schemes and four different future SST distributions, assuming
the emission scenario RCP8.5. Annual average precipitation will increase over the equatorial regions
and decrease over the subtropical regions. The area of precipitation increase by intense precipitation is
larger than that by annual average precipitation. The differences of precipitation change among all
12 simulations are generally sensitive to the cumulus convection scheme, but changes are influenced
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by the SST over the some part of the Pacific Ocean. This is almost consistent with the previous work
by [9], although their SST distributions are different from those used in this paper.

The precipitation efficiency defined as precipitation change per 1◦ surface temperature
warming is evaluated. The global average of precipitation efficiency for annual precipitation was
less than the maximum value expected by thermodynamical theory, indicating that dynamical
atmospheric circulation is acting to reduce the conversion efficiency from water vapor to precipitation.
The precipitation efficiency by intense precipitation is larger than that by moderate and weak
precipitation. This agrees with previous works by [48–51,56].

Our results suggest that the selection of a convection scheme is crucial in climate simulation.
Furthermore, implementing multiple cumulus convection schemes might be favorable to evaluate
the spread of future precipitation change and enhance the reliability of future projection, if computer
resources are rich and available. However, uncertainty in future precipitation change is often attributed
to the different SST patterns among CMIP5 AOGCMs. We still recognize future projection is influenced
by SST distributions, because future projected SST has also large uncertainties.

One of the major caveats in our simulations is the lack of air-sea interactions. In order to evaluate
the effect of air-sea coupling process, we have already finished the future climate projection using
the MRI-AGCM3.2H coupled with a full ocean model [18]. Figure S9 shows the difference between
future precipitation changes projected by an atmospheric model and a coupled model. As is expected,
differences are large over the eastern tropical Pacific Ocean. The reason and mechanism of the
difference is not yet fully analyzed and should be explored in future studies.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4433/8/5/91/s1: Table S1:
Previous studies on precipitation using the MRI-AGCM3, Table S2: Features of 24 CMIP5 models used in this
study, Figure S1: Comparison among observations for PAV, Figure S2: Comparison among simulations for PAV,
Figure S3: Same as Figure S2 but for R5d, Figure S4: Root mean square errors of global distribution of precipitation
indices between observations by GPCP 1ddv1.2 and model simulations, Figure S5: Same as Figure S4 but for bias,
Figure S6: Dependence of model skill on the grid spacing of 31 models including 7 MRI-AGCM3.2 models and
24 CMIP5 atmospheric models, Figure S7: Correlation coefficients between the skill and grid size of 31 models,
Figure S8: Same as Figure 5 but for 850 hPa height, Figure S9: Comparison between future changes in PAV by
atmospheric model and AOGCM, ANalysis Of VAriance (ANOVA): Technical details.
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